Abstract : Wireless capsule endoscopy (WCE) allows medical doctors to examine the interior of the small intestine with a non-invasive procedure. This methodology is particularly important for Crohn's disease (CD), where an early diagnosis improves treatment outcomes. However, the viewing and evaluation of WCE videos is a time-consuming process for the medical experts. In this work, we present a recurrent attention neural network for the detection in WCE images of CD lesions in the small bowel. Our classifier reaches 90.85% accuracy on our own dataset annotated by experts from the Hospital of Nantes. The model has also been tested on a public endoscopic dataset, the CAD-CAP database used for the GIANA competition, and achieves high performance on detection task with an accuracy of 99,67%. This automatic lesion classifier will greatly reduce the amount of time spent by gastroenterologists in reviewing WCE videos, which will likely foster the development of this technique and speed-up the diagnosis of CD.