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Asymptotic properties of the maximum likelihood estimator in
zero-inflated binomial regression

Alpha Oumar DIALLO*P, Aliou DIOP?, Jean-Francois DUPUYP

*LERSTAD, CEA-MITIC, Gaston Berger University, Saint Louis, Senegal.
YIRMAR-INSA, Rennes, France.

Abstract

The zero-inflated binomial (ZIB) regression model was proposed by Hall| (2000)) to account for
excess zeros in binomial regression. Since then, the model has been applied in various fields,
such as ecology and epidemiology. In these applications, maximum likelihood estimation
(MLE) is used to derive parameter estimates. However, theoretical properties of the MLE in
Z1B regression have not yet been rigorously established. The current paper fills this gap and
thus provides a rigorous basis for applying the model. Consistency and asymptotic normality
of the MLE in ZIB regression are proved. A consistent estimator of the asymptotic variance-
covariance matrix of the MLE is also provided. Finite-sample behavior of the estimator is
assessed via simulations. Finally, an analysis of a data set in the field of health economics
illustrates the paper.

Keywords: Asymptotic normality, consistency, count data, excess of zeros, simulations.

1. Introduction

Zero-inflated regression models have attracted a great deal of attention over the past
two decades. These models account for excess zeros in count data by mixing a degenerate
distribution with point mass of one at zero with a standard count regression model, such as
Poisson, negative binomial or binomial. The zero-inflated Poisson (ZIP) regression model
was proposed by [Lambert| (1992) and further developed by Dietz and Bohning (2000), |Li
(2011), [Lim et al| (2014) and Monod| (2014), among many others. Zero-inflated negative
binomial (ZINB) regression was proposed by [Ridout et al.| (2001)), see also Moghimbeigi et
al.| (2008), Mwalili et al.| (2008)), |Garay et al.| (2011). The zero-inflated binomial (ZIB) re-
gression model was discussed by Hall (2000), Vieira et al.| (2000) and Hall and Berenhaut
(2002)). Since their introduction, these models have been applied in numerous fields, such as
agriculture, econometrics, epidemiology, insurance, species abundance, terrorism study, traf-
fic safety research...In particular, ZIB regression model was recently used in dental caries
epidemiology (Gilthorpe et al., [2009; Matranga et al., 2013). This increasing interest for
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zero-inflated models renders necessary to establish theoretical properties for their parameter
estimates. So far, however, mathematical considerations in zero-inflated models (such as
asymptotic properties of maximum likelihood estimates) have attracted much less attention
than applications. Moreover, the existing literature essentially focuses on the ZIP regres-
sion model. See, for example, |Min and Czado (2010) who establish asymptotic properties
of maximum likelihood estimates (MLE) in a zero-modified generalized Poisson regression
model. But to the best of our knowledge, no asymptotic results have been provided for the
zero-inflated binomial regression model. In this paper, we investigate this issue.

In the ZIB model proposed by Hall (2000), the individual observation is a bounded count
which can be thought of as the number of successes occurring out of a finite number of trials.
The mixing probabilities and success probabilities are assumed to follow logistic regression
models with parameters v and [ respectively. We provide rigorous proofs of consistency and
asymptotic normality of the maximum likelihood estimators of v and 3. We also conduct a
simulation study to evaluate finite-sample performance of these estimators. All these results
provide a firm basis for making statistical inference in the zero-inflated binomial regression
model.

The remainder of this paper is organized as follows. In Section [2| we recall the definition
of the ZIB model, we describe maximum likelihood estimation and we introduce some useful
notations. In Section [3| we state some regularity conditions and establish consistency and
asymptotic normality of the maximum likelihood estimator in ZIB regression. Section
reports results of the simulation study. An application of ZIB model to the analysis of
health-care utilization by elderlies in United States is described in Section [5 A discussion
and some perspectives are provided in Section [6]

2. Zero-inflated binomial regression model

In this section, we briefly recall the definition of the ZIB model, we describe maximum
likelihood estimation in ZIB regression and we introduce some useful notations.

2.1. Model and estimation

Let (Z;,X;, W;), i =1,...,n be independent random vectors defined on the probability
space (2,C,P). For every i = 1,...,n, the response variable Z; is generated from the
following two-state process:

(2.1)

7 0 with probability p;,
! B(m;,m;) with probability 1 — p;,

where B(m, ) denotes the binomial distribution with size m and success (or event) proba-
bility m. Thus, Z; follows a standard binomial distribution with probability 1 — p;. The first
state (also called zero state) occurs with probability p;. No success can occur in the zero
state. The ZIB model reduces to a standard binomial distribution if p; = 0, while p; > 0
leads to zero-inflation. In Hall (2000), the mixing probabilities p; and event probabilities 7;
(t=1,...,n) are modeled by the logistic regression models

logit(p;) = v W, (2.2)



and

respectively, where X; = (1, Xi2, ..., Xip) " and W, = (1, Wy, ..., W,,)" are random vectors
of predictors or covariates (both categorical and continuous covariates are allowed) and T
denotes the transpose operator. Let ¢ = (87,7")" be the unknown k-dimensional (k :=

p + q) parameter in models (2.1)-(2.3). The log-likelihood of 1), based on observations
(Zi,Xi,Wi), 1= 1, Loy, is

() = i {Ji log (67TW2' F (14 eﬂTXi)_mi) ~log (1 n e'YTWi)

=1

+(1—J;) [ZzﬂTXz’ — m; log (1 + eﬁTXi)] } ’

= 2 la(), (24)

where J; := 1z} (see Hall, 2000). The maximum likelihood estimator U = (BT,AT)T of
1 is the solution of the k-dimensional score equation

i) = 22

= 0. (2.5)

In what follows, we establish consistency and asymptotic normality of 1/371 First, we need to
introduce some further notations.

2.2. Some further notations

Define first the (p x n) and (¢ x n) matrices

1 1 cee 1 1 1 e 1
X — X.12 X.22 : X.nQ and W Wm sz : an 7
le X2p T an qu W2q U qu

and let V be the (k x 2n) block-matrix defined as

X 0.
7= Lo %)

where 0,;, denotes the (a x b) matrix whose components are all equal to zero. Let also
C(¥) = (Cj(¥))1<j<2n be the 2n-dimensional column vector defined by

C() = (A1), .., Au(®), Bi(¥), ..., Bu(¥)) T,



where for every 1 =1,...,n,

mieﬂTXi mieﬂTxi
A TN T ) I (Zi_ () >
Jie? Wi(hy(B))™ e Wi

eﬁ/'rwl(hxﬁ))mZ + 1 - 1 —i—e'yTWi’

and hy(B) := 1 + e X, Finally, let k;(¢)) := €7 Wi(hy(8))™* + hi(B), i = 1,...,n. Then,
some simple algebra shows that the score equation (2.5) can be rewritten as

ln(1h) = VC(¥) = 0.

Il i e

(j = 1,...,b) that is, As; = (A1 ,...,Aqj)". Then, it will be useful to rewrite the score
vector as

in (1/1) - Z VojCj <¢)

We shall further denote by I,(¥) the (k x k) matrix of second derivatives of I,(¢) that is,
L() = 0%, () /0oy T. Let D(v) = (D;;(th))1<i j<2n be the (2n x 2n) block matrix defined
as

[ Du(w) Do)
D) = [Do,(w) Dm)}’

where Dy (), Do(e)) and D3()) are (n x n) diagonal matrices, with i-th diagonal elements
(t=1,...,n) respectively given by

() = Jimye? X () — BT [ TW ()7 m(1 — J;)e? X
Dy) = <Gy () [T s D)™+ 1] ) + = —
BT o
DQ,%(@Z)) - (kz(¢))2 < (hz(ﬁ)) k1(¢)> + (1 n e’YTWi)Z’
Dy () — — 2 X ()

(ki(¥))?
Then, some tedious albeit not difficult algebra shows that ln(¢) can be expressed as
[() = —VD($) V.

Note that C'(¢),V and D(¢) depend on n. However, in order to simplify notations, n will
not be used as a lower index for these quantities.

In the next section, we establish rigorously the existence, consistency and asymptotic
normality of the maximum likelihood estimator 1, in the ZIB models ([2.1])-(2.3]).
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3. Regularity conditions and asymptotic properties of the MLE

We first state some regularity conditions that will be needed for proving our asymptotic
results:

C1 The covariates are bounded that is, there exist compact sets X C R?” and VW C R? such
that X; € X and W; € W foreveryi =1,2,... Foreveryt=1,2,...,7=2,...,pand
(=2,...,q,var[X;;] > 0 and var[W;] > 0. Foreveryi =1,2,...,the X;; (j =1,...,p)
are linearly independent and the Wy, (¢ =1,...,q) are linearly independent.

C2 The true parameter value ¢y := (34,79 )" lies in the interior of some known compact
set Bx G C RP x RY.

C3 The Hessian matrix [,(t)) is negative definite and of full rank, for every n = 1,2, ...,
and %ln(lb) converges to a negative definite matrix. Let A\, and A,, be respectively the
smallest and largest eigenvalues of VID(1)y)V'. There exists a finite positive constant
c1 such that A, /\, < ¢; for every n =1,2,... The matrix VVT is positive definite for
every n = 1,2,... and its smallest eigenvalue A tends to +oo as n — oo.

C4 Forevery i =1,...,n, m; € {2,..., M} for some finite integer value M.

In what follows, the space R* of k-dimensional (column) vectors will be provided with the

Euclidean norm || - ||2 and the space of (k x k) real matrices will be provided with the norm
[|A[|]2 := maxg|,=1 ||Az||2 (for notations simplicity, we will use || || for both norms). Recall
that for a symmetric real (k x k)-matrix A with eigenvalues A1,..., A, ||A]] = max; |\

We first prove existence and consistency of 1,:

Theorem 3.1 (Existence and counsistency). Under conditions C1-CY, the mazimum like-
lthood estimator 1, exists almost surely as n — oo and converges almost surely to 1.

Proof of Theorem [3.1} The proof is inspired by the proof of consistency of the MLE in
usual logistic regression (Gouriéroux and Monfort, [1981)) but technical details are different.
We first prove an intermediate technical lemma.

Lemma 3.2. Let ¢, : RF — RF be defined as: ¢n(¥) = 1 + (VD(h)VT) i, (4). Then
there exists an open ball B(vo, 1) (with r > 0) and a constant ¢ (0 < ¢ < 1) such that:

Proof of Lemma (3.

,l/} € B(’l/}07 7’).

0u() = 9u(D)|| < ellv: =P for all v, € Blvo,r). (3.6)

[\

. The property (3.6) holds if we can prove that Hang;ﬁ)

’ < ¢ for all




Letting I, be the identity matrix of order k£, we have:

|22 =+ vy i)
= ||[Ir = (VD(1o) V") 'VD(¢) VTH
= [[(VD(y ))@W@ OV
S VT 1|| IV (D( DM)VTH
At V(Do) = D(v) VTII

Now, let Z denote the set of indices {(z’,j) € {1,2, ...»2n}? such that D;;(¢yy) # 0}. Then
the following holds:

3 ST VLVLD, () — Dy (o))

[VD(o) = D) V|| =

i=1 j=1

’Lj - ij(wO)
< Voz 7,] .
= ZEJ)E:IH (tho) H' ¢D)

From C1 and C2, there exists a constant ¢z (ca > 0) such that |D;;(t))| > co for every
(i,j) € Z. For example, consider the case where D;;(1)y) coincides with some Ds ¢(1y), for
¢e{l,...,n}. For every ¢ € B x G, we have:

mye? XetrTTWe (] 4 of " Xeyme—1 my‘mw

> )
(1+e‘YTWl(1+eﬁTX€)W)2 (1 + Mw (1 + Mx)me)?

ID3,ee(¥)] =

. T . T T T
where mx := ming x e? X mwy = min,, w e’ W Mx = maxg x e X My = max., w e’ w.

By C1, C2 and C4, there exists a positive constant ds such that (HMSJETJ\X()WP > d3. Using
similar arguments, we obtain that for every ¢ € Bx G, |Dy ()| > dy and |D go(1))| > dy for
some dy,ds > 0. Letting co = minj<;<3 d;, we conclude that |D;;(100)| > c2 for every (4, j) € Z.
Moreover, D;;(+) is uniformly continuous on B x G (by Heine theorem) thus for every e > 0,
there exists a positive number r such that for all ¥ € B(vo,7), |D;;(¢) — Dyj(o)] < €. It

follows that

(4,5)€Z

< £ trace Z V.ZVT Dy (o)
€2 (4,9)€T

= —trace <ZZV”VT i (Yo )

=1 j=1

€

= —t VD () VT
o race( (¢o) )

< kA,

C2
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This in turn implies that H 822}@

8‘7;% ‘ < ¢ for all » € B(ty,r), which concludes the proof. O

‘ < 6’“&\ < %4 Now, choosing € = ¢;2 with 0 < ¢ < 1,
c2 c2 C1

we get that H

We now turn to proof of Theorem 3.1l Define the function ¢ — n,(¢) by n,(¢) == ¢ —
bn() = —(VD(h)VT) ", (1). Then n,(bo) converges almost surely to 0 as n — oo. To
see this, note that

) = )™ ) = (2o (i)

. -1
By C3, (%ln(iﬂo)) converges to some matrix X. Moreover,

1
n

.y X Ai(vo)
" XA ()
im1 Wi Bi(vo)
% Z?:l qui(wO)

converges to 0 almost surely as n — oo. To see this, note that for every ¢ = 1,...,n and
j=1....p

E[Xiin(wo)] = E[E[Xiin(%ﬂXi,WiH = E[XijE[Ai(%HXi,WiH,

2
2.
2

S =3 |=

%in(iﬂo) = %VO(%) =

and
B X Ba X
E[A,(¢0)| X5, Wi] = E|—J, mic ra—a) [z =m0 x, W
€0 Wi(hi(Bo))™+1 + hy(Bo) hi(Bo)
myefs E[J,[X;, W,] +E[(1 - J))Z|X;, W]
= — i| X, Wil + — Ji)4i| Ay, WV
e Wi(h;(Bo))™+t + hy(Bo)
m”BOTXiE[ Ji1X;, Wi
- L= Ji| X, Wyl
hi(Bo)
Now,

E[J;|X;, W] = P(Z;=0X;,W;)
= pi+ (1 —m)™ (1 —p)
e Wi 1
C ltewW i (hi(Bo))™ (14 e Wi)
€0 Wi (i)™ + ha((o)
(hi(B0))™ " (1 + €70 We)

7



and

E[(1 - J)Zi|X;, W;] = m(1—p;)m;
myelo Xi

hi(Bo) (1 + €10 Wi)’

Thus
mieﬁoT Xi mieﬁoT Xi mieﬁoT Xi
- (hi(Bo))™ (1+ 670TW") i hi(Bo) (1 + 670TW1') ~ hi(Bo)
e Xe e W (o)™ + (o)
hi(fo) (hi(Bo))™ " (1 + €0 Wi)

E[A;(10o)|Xs, W] =

_ m;ef X mefs X + m,ePo Xiero Wi
mieﬁoT X mieﬁoT Xievo Wi

- hi(Bo) (1 + e%TWi) [1 -1+ eWOTWi)} +

hi(Bo) (L4 €0 W) hy(Bo) (14 €70 Wi)
= 0.

hz(ﬁo) (1 + G’YOTWi)

It follows that E[X;;A;(¢0)] = 0. Similarly, for every i =1,...,nand ¢ =1,..., ¢, we have:
E[WieB;(vo)] = E[E[W;Bi(v0)| X, W] = E[WiE[B;(¢0)|X:, W]
and

Yo Wi h. m; Yo Wi
g Wi -
e%o Wi(h;(Bg))™ + 1 1+ en Wi
= 0,

E[B;(10)|Xi, Wi

thus E[W;B;(1o)] = 0. Moreover, for every i =1,...,nand £ =1,...,q,

var(WigBi(vo)) = E[var(WiB;(vo)|Xs, W) + var(E[WieB; ()| Xi, Wil)
= E[m%Var(Bi(%ﬂXi,Wi)]

2
_ o [ €0 Wi(hi(Bo))™ J—
= E VVZ‘Z (@'ngi (hz(ﬁo))mz I 1) Var(Jz|Xzy Wz)

) ( e Wi(h;(By))™ )
" e%0 Wi(h;(Bo))™ + 1

IA
=




Therefore, by C1, C2 and C4, there exists a finite constant c3 such that var(W;,B;(¢)) < cs.
Similarly, there exists a finite constant ¢, such that var(X;;A;(v)) < csforeveryi=1,...,n
and j =1,...,p. It follows that

ivar( ng (10)) 3Z—<oo

=1

and

> Var(XUAl(wo)) > 1
Z 2 <y ; 2_2 < 00.

i=1

Kolmogorov’s strong law of large numbers (see for example Jiang (2010), Theorem 6.7)
implies that for every j =1,...,p,

1 n
— XiiA; — E [X;;A:( XA
n ;{ J (¢0) [ Z J wo
converges almost surely to 0. Similarly, for every £ =1,...,q, - LS~ WieBi(tbo) converges

almost surely to 0. Finally, %in(¢0) and 7, (1) converge almost surely to 0 as n — oo.

Now, let € be an arbitrary positive value. Almost sure convergence of 7,(1) implies
that for almost every w € €, there exists an integer n(e,w) such that for any n > n(e,w),
1. (¢0)]] < € or equivalently, 0 € B(n, (1), €). In particular, let € = (1 — ¢)s with 0 < ¢ < 1
such as in Lemma[3.2] Since ¢, satisfies the Lipschitz condition (3.6), Lemma 2 ofGouriéroux
and Monfort| (1981) ensures that there exists an element of B(ty,s) (let ¥, denote this
element) such that T (Up) = 0 that is,

(VD(0)VT) (b)) = 0

Condition C3 implies that ln(@zn) = 0 and that 12)\71 is the unique maximizer of [,,.
To summarize, we have shown that for almost every w € Q and for every s > 0, there
exists an integer value n(s,w) such that if n > n(s,w), then the maximum likelihood esti-

mator zzn exists, and HzZn — ]| < s (that is, Jn converges almost surely to ). |
We now turn to asymptotic normality of the maximum likelihood estimator in the ZIB

regression model.

Theorem 3.3 (Asymptotic normality). Let 3, = VD((Zn)VT. Then, under conditions
~1 ~
C1-C4, 32 (Y, — 1) converges in distribution, as n — oo, to the Gaussian vector N(0, I};).

Proof of Theorem A Taylor expansion of the score function yields

0= I (¥n) = La(¥0) + L (¥n) (W — 0),
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Wherg {/;n lies between z/ﬁ\n and 1. Thus, in(l/)o) = —Z;l({En)(zZn—%). Letting f]n = —ln(zzn) =
VD(1,)VT and %, ¢ := VD(¢hy) V", we have:

~

SH(f — o) = [Aéi;ﬂ S5 ] 2 (Badha - ). (37)

1

~lo 1
The terms [S25,, 2] and [E 222 o) in converge almost surely to Ij. To see this, we show

for example that ||, 227210 — || =% 0 as n — oo. First, note that

1| ~_1 1 1 ~1
Hz 22,30—1ngAg 5,2 n"’(EfL’O—Eﬁ) , (3.8)

and

A S0 = Sall = A

V(Do) ~ D)V

By Theorem , Jn converges almost surely to ¢y. Let w € ) be outside the negligible
set where this convergence does not hold. By the same arguments as in proof of Lemma
. 3.2 for every e > 0, there exists n(e,w) € N such that if n > n(e,w), then A | V(D(vy) —

D(p,))VT|| < e. Thus A l||V( ( 0)— (wn))VTH converges almost surely to 0. By continuity
of the map A — Az, ||A, (Eflo - 22)H converges almost surely to 0. Moreover for n
sufficiently large, there exists 0 < ¢; < oo such that almost surely, A,%||Zn2|| < c5An/
)\é < 0501% (by condition C3). Thus Hi;éEé,o — Ii|| converges almost surely to 0. Almost
sure convergence of Hiéi_% - ]k|| to 0 follows by similar arguments.

It remains us to show that Zn O( w(n — 1)) converges in distribution to the Gaussian
vector N(0, I;). Note that En,()( S(thn — 1)) = E;é 3211 Ve;C;i(10). Thus, by [Eicker
(1966)), this convergence holds if we can check that the following conditions are fulfilled:

1) max1<]<2nV (VVT)71V,; — 0 as n — oo, 2) SUD) < j<on E[C;(0)*1{ic;(wo)>e}] — 0 as
¢ — 00, 3) mflS]an [C;(10)?] > 0. Condition 1) follows by noting that

0 < max VL(VVT)™V,; < max ||[Vy|[(VVT)™Y = max ||[Ve[?/ M

1<j<on % 1<j<2n 1<j<2n

and that ||V,;| is bounded, by C1. Moreover, 1/\, tends to 0 as n — oo by C3. Con-
dition 2) follows by noting that the C;(¢), j = 1,...,2n are bounded under C1, C2, C4.
Finally, we note that E[C;(¢0)?] = var(C;(¢p)) since E[C;(¢o)] = 0, j = 1,...,2n. If
je{n+1,....2n}, C;(vo) = Bj(¢y), with j' = j — n. Then var(C;(¢pp)) = var(B; (1)) =

10



Elvar(Bj (o)X, Wyr)| + var(E[ By (o)X, W) = E[var(Bj ()X, W)]. Now,

2

e'YoTWj’ hir(By))™"
var(By (60)[ X, W) = (i (Bo)) var(Jy X, W)

ATV Iy (Go)"™ +1
2
GVOTW]-/ (hj’ (ﬂo))mj/

- P(Zy = 0[X;, W) (1 — P(Z; = 0|X,;, W)
eﬂ/OTWj,(hj/ (Bo))™ + 1 J J J J J J

(e Wiy (Bo)™ et
- GVJWj’(hj,(BO))mj/+1 (py + (1 =)™ (1L —py)) (1 — pj)

X(l - (1 - Wj’)mj,)a

2

and thus, var(Bj (1) X, W;) > 0 for every 7' = 1,...,n by C1, C2, C4. It follows that
var(Cj(vp)) > 0 for every j = n+1,...,2n. By similar arguments, var(C; (1)) > 0 for every
j=1,...,2n and condition 3) is satisfied.

1 ~

To summarize, we have proved that E;g(En(zEn — 1bg)) converges in distribution to
N(0,1;). This result combined with Slutsky’s theorem and equation (3.7) implies that

~1 ~
Y2 (¢, — 1bg) converges in distribution to N(0, Iy). O
4. Simulation study
_In this section, we assess finite-sample properties of the maximum likelihood estimator
Un.
4.1. Study design

We generate data from the following ZIB regression model:

logit(m;) = f1.Xi1 + BoXio + B3 Xis + BaXia + B5Xis + B Xie + B Xz
and
logit(pi) = Wi + 72Wia + 13Wiz + 7uWis + s Wis,

where X;; = 1 and the Xjs,...,X;7 are independently drawn from normal A(0,1), uni-
form (2,5), normal AV (1,1.5), exponential £(1), binomial B(1,0.3) and normal N (—1,1)
distributions respectively. We let W;; = 1 and W;4 and W;5 be independently drawn from
normal N (—1,1) and binomial B(1,0.5) distributions respectively. The linear predictors in
logit(m;) and logit(p;) are allowed to share some common terms by letting Wi, = X;» and
Wis = Xi6. The regression parameter 3 is chosen as 3 = (—0.3,1.2,0.5,—0.75, —1,0.8,0) .
The regression parameter v is chosen as:

e case 1: v = (—0.55,—0.7,—1,0.45,0)"
e case 2: v = (0.25,-0.4,0.8,0.45,0)"

11



We consider several sample sizes, namely n = 150, 300, 500. The numbers m; are allowed to
vary across subjects, with m; € {4,5,6}. Let (n4,ns,ng) = (card{i : m; = 4}, card{i : m; =
5}, card{i : m; = 6}). For n = 150, we let (n4,ns,n¢) = (60,50,40). For n = 300, we let
(n4,ns,n6) = (120, 100, 80) and for n = 500, we let (n4, ns,ng) = (200,170, 130).
Using these values, in case 1 (respectively case 2), the average proportion of zero-inflation in
the simulated data sets is 25% (respectively 50%). For each combination of the simulation
design parameters (sample size and zero-inflation proportion), we simulate N = 5000 samples
and we calculate the maximum likelihood estimate qﬂn

Computational aspects of maximum likelihood estimation in ZIB regression are discussed
by [Hall| (2000). There, the author develops an EM algorithm for estimating ¢. Alternatively,
he also suggests to use Newton-Raphson algorithm for solving . In his paper, [Hall
(2000) motivated his preference for the EM algorithm by programming simplicity. Since
then, numerous R packages (R Core Team) 2013) have been developed for maximizing log-
likelihoods such as or for solving likelihood equations such as (2.5). In our simulation
study, we use the R package maxLik (Henningsen and Toomet, [2011)).

4.2. Results

For each configuration sample size x zero-inflation proportion of the simulation
design parameters, we calculate the average bias of the estimates Bj,n and 4y, of the 3; and
over the NV estimates. Based on the N simulated samples, we also obtain the average standard
error (SE) and empirical standard deviation (SD) for each estimator 5, (j = 1,...,7) and
Yem (B =1,...,5). Finally, we obtain 95%-level confidence intervals for the 5; and ;. We
provide their empirical coverage probability (CP) and average length ¢(CI). Results are given
in Table [I| (case 1) and Table [2| (case 2).

Finally, in order to assess the quality of the Gaussian approximation stated in Theorem
we provide normal Q-Q plots of the estimates (see figures (1| and [2] for n = 300 in case
1 and figures [3] and [4] for n = 300 in case 2. Plots for n = 150 and n = 500 yield similar
observations and are thus omitted).

From these results, it appears as expected that the bias, SE, SD and ¢(CI) of all estimators
decrease as the sample size increases. The bias stays moderate provided that the sample size
is large enough (say, n > 300). The empirical coverage probabilities are close to the nominal
confidence level, even when the sample size is moderate. As may also be expected, we observe
that the maximum likelihood estimator of the §;s (respectively vxs) performs better when the
zero-inflation proportion decreases (respectively increases). Finally, it appears from normal
Q-Q plots that the Gaussian approximation of the distribution of the maximum likelihood
estimator in ZIB regression is reasonably satisfied, even when the sample size is moderate.
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BTL ;Y\TL
n Bl,n 52,n 53,71 54,n 55,n 56,n 57,n /7\1,71 %,n /7\3,71 /7\4,71 /7\5,71

150
bias  -0.0116 0.0297 0.0132 -0.0230 -0.0317 0.0286 0.0009 -0.0753 -0.0504 -0.0736 0.0512 0.0074
SD 0.5686 0.1673 0.1484 0.1018 0.1635 0.2755 0.1278  0.5208 0.3583 0.7332 0.3150 0.5887
SE 0.5546 0.1635 0.1454 0.0993 0.1596 0.2706 0.1241 0.5038 0.3441 0.8796 0.3061 0.5771
CP 0.9446 0.9419 0.9436 0.9440 0.9459 0.9486 0.9459 0.9609 0.9534 0.9659 0.9576 0.9586
((CI) 2.1648 0.6375 0.5682 0.3877 0.6210 1.0572 0.4840 1.9387 1.3256 2.8945 1.1760 2.2280

300
bias  -0.0105 0.0173 0.0072 -0.0100 -0.0150 0.0097 -0.0015 -0.0359 -0.0206 -0.0732 0.0242 0.0115
SD 0.3887 0.1140 0.1012 0.0689 0.1128 0.1887 0.0863  0.3411 0.2281 0.5015 0.2078 0.3838
SE 0.3793 0.1120 0.0996 0.0681 0.1088 0.1849 0.0845 0.3304 0.2255 0.4953 0.1998 0.3794
CP 0.9467 0.9499 0.9489 0.9487 0.9427 0.9457 0.9423 0.9503 0.9501 0.9595 0.9479 0.9559
¢(CI) 1.4843 0.4380 0.3900 0.2663 0.4251 0.7240 0.3304 1.2894 0.8791 1.8958 0.7782 1.4824
500

bias  0.0009 0.0092 0.0027 -0.0066 -0.0096 0.0081 0.0010 -0.0170 -0.0094 -0.0395 0.0157 0.0010
SD 0.2925 0.0856 0.0766 0.0518 0.0828 0.1418 0.0664 0.2545 0.1740 0.3687 0.1554 0.2922
SE 0.2910 0.0858 0.0764 0.0521 0.0832 0.1418 0.0647 0.2497 0.1702 0.3631 0.1508 0.2874
CP 0.9490 0.9498 0.9480 0.9508 0.9518 0.9500 0.9436 0.9514 0.9470 0.9548 0.9506 0.9510
¢(CT) 1.1397 0.3359 0.2993 0.2041 0.3255 0.5555 0.2531 0.9766 0.6653 1.4107 0.5891 1.1246

Table 1: Simulation results (case 1). SE: average standard error. SD: empirical standard deviation. CP: empirical coverage probability of
95%-level confidence intervals. ¢(CI): average length of confidence intervals. All results are based on N = 5000 simulated samples.
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Bn Yn
n Bl,n 52,n ﬁS,n 54,n 55,n 56,n 57,n /7\1,71 %,n %,n :}\/4,71 /7\5,71
150
bias -0.0396 0.0607 0.0278 -0.0378 -0.0589 0.0414 -0.0008 -0.0019 -0.0034 0.0507 0.0430 -0.0108
SD 0.7568 0.2220 0.1976 0.1384 0.2257 0.4291 0.1719 0.4184 0.2593 0.4788 0.2377 0.4307
SE 0.7228 0.2115 0.1909 0.1313 0.2154 0.4078 0.1639 0.4084 0.2490 0.4679 0.2298 0.4278
CpP 0.9395 0.9451 0.9445 0.9409 0.9443 0.9467 0.9431 0.9549 0.9517 0.9515 0.9527 0.9559
K(CI) 2.8115 0.8214 0.7435 0.5105 0.8330 1.5810 0.6358 1.5947 0.9704 1.8286 0.8948 1.6738
300
bias -0.0180 0.0263 0.0121 -0.0160 -0.0278 0.0249 -0.0018 -0.0011 -0.0046 0.0255 0.0214 0.0043
SD 0.4954 0.1447 0.1311 0.0896 0.1462 0.2784 0.1088 0.2808 0.1694 0.3184 0.1581 0.3014
SE 0.4851 0.1415 0.1282 0.0881 0.1430 0.2707 0.1088 0.2780 0.1672 0.3174 0.1550 0.2918
CP 0.9466 0.9482 0.9496 0.9492 0.9428 0.9448 0.9508 0.9498 0.9460 0.9522 0.9490 0.9446
é(CI) 1.8953 0.5524 0.5011 0.3441 0.5572 1.0566 0.4245 1.0883 0.6541 1.2429 0.6058 1.1431
500
bias -0.0075 0.0151 0.0073 -0.0109 -0.0163 0.0142 -0.0016 -0.0027 -0.0030 0.0160 0.0108 0.0022
SD 0.3707 0.1101 0.0982 0.0679 0.1083 0.2094 0.0837 0.2133 0.1298 0.2448 0.1175 0.2237
SE 0.3684 0.1075 0.0974 0.0670 0.1083 0.2053 0.0824 0.2125 0.1273 0.2423 0.1178 0.2231
CP 0.9492 0.9472 0.9502 0.9516 0.9498 0.9446 0.9458 0.9502 0.9492 0.9484 0.9516 0.9510
K(CI) 1.4413 0.4204 0.3813 0.2621 0.4229 0.8029 0.3224 0.8323 0.4984 0.9492 0.4613 0.8744

Table 2: Simulation results (case 2). SE: average standard error. SD: empirical standard deviation. CP: empirical coverage probability of

95%-level confidence intervals. ¢(CI): average length of confidence intervals. All results are based on N = 5000 simulated samples.



5. An application of ZIB model to health economics

5.1. Data description and modelling

In this section, we describe an application of ZIB regression to the analysis of health-care
utilization by elderlies in the United States. This application is based on data obtained from
the National Medical Expenditure Survey (NMES) conducted in 1987-1988. This data set
was first described by Deb and Trivedi (1997). It provides a comprehensive picture of how
Americans (aged 66 years and over) use and pay for health services. Several measures of
health-care utilization were reported in this study, including the number of visits to a doctor
in an office setting (denoted by ofd in what follows), the number of visits to a non-doctor
health professional (such as a nurse, optician, physiotherapist. .. ) in an office setting (ofnd),
the number of visits to a doctor in an outpatient setting, the number of visits to a non-doctor
in an outpatient setting, the number of visits to an emergency service and the number of
hospital stays. A feature of these data is the high proportion of zero counts observed for
some of the health-care utilization measures. In addition to health services utilization, the
data set also contains information on health status, sociodemographic characteristics and
economic status. [Deb and Trivedi| (1997) analyse separately each measure of health-care
utilization by fitting zero-inflated count data models to each type of health-care usage in
turns.

Here, we consider the following issue. Consider a patient who decides to visit a health
professional in an office setting. We wish to identify factors that explain patient’s choice
between a visit to a doctor and a visit to a non-doctor. For our study, we consider patients
in the NMES data set who have a total number of office consultations comprised between 2
and 25. Among these n = 3227 patients, frequencies of zero in ofnd and ofd counts are 62.1%
and 1.21% respectively. Let Z; and m; be respectively the number of non-doctor office visits
and the total number of office visits for the i-th patient (i = 1,...,3227). Given m;, one
may model Z; as a B(m;, m;) distribution. However, the high frequency of zero in ofnd count
suggests that Z; is affected by zero-inflation. Therefore, we suggest to use a ZIB model for Z;.
Several covariates are available in the NMES data set, including: i) socio-economic variables:
gender (1 for female, 0 for male), age (in years, divided by 10), marital status (1 if married,
0 if not married), educational level (number of years of education), income (in ten-thousands
of dollars), ii) various measures of health status: number of chronic conditions (cancer,
arthritis, diabete...) and a variable indicating self-perceived health level (poor, average,
excellent) and iii) a binary variable indicating whether individual is covered by medicaid or
not (medicaid is a US health insurance for individuals with limited income and resources, we
code it as 1 if the individual is covered and 0 otherwise). Self-perceived health is re-coded
as two dummy variables denoted by "health1" (1 if health is perceived as poor, 0 otherwise)
and "health2" (1 if health is perceived as excellent, 0 otherwise). As mentioned above, we
wish to identify determinants of patients choice between a doctor and a non-doctor visit. We
model zero-inflation and event probabilities p; and 7; by and respectively, where
X, and W, are the set of covariates listed above.

First, we fitted a ZIB regression model incorporating all available covariates in (2.2))
and (2.3), i.e., letting X; = W, for every i. Then, Wald tests were used to select rele-
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parameter variable estimate s.e. Wald test of

Hy:B3;=0
B intercept -0.2095 0.2983 NS
Ba health1 -0.3459 0.0750 VS
Jo health?2 0.2642 0.0816 VS
o chronic -0.0939 0.0167 VS
Bs age -0.0566 0.0360 NS
Be gender 0.0687 0.0487 NS
Br marital status 0.1372 0.0476 VS
Bs educational -0.0031 0.0067 NS
B income -0.0069 0.0064 NS
Bro medicaid -0.0911 0.0924 NS
" intercept 1.1095 0.1549 VS
Yo health1 0.3338 0.1284 S
Y3 gender -0.3220 0.0873 VS
Y4 educational -0.0746 0.0124 VS
s medicaid 0.4519 0.1621 VS

Table 3: Health-care data analysis (NS: not significant at the 5% level, S: significant at level between 1%
and 5%, VS (very significant): significant at level less than 1%).

vant covariates in submodels and (2.3). However, this procedure can be cumbersome
when the number of covariates is large. Thus, we propose an alternative procedure (here,
both procedures yield the same final set of significant predictors). In a first stage, we fit a
standard logistic regression model with all available covariates to binary indicators 1¢z,—oy,
1t =1,...,n. The resulting model is not a model for zero-inflation since some of the 0 may
arise from the binomial distribution B(m;, 7;). However, we expect that this rough procedure
will still select a relevant subset of covariates, that will be used in a second stage in the logis-
tic sub-model for p;. Using this procedure and Wald testing, we identify four significant
predictors: "health1" dummy variable, gender, educational level and medicaid status, that

are included in p; while all covariates are included in ;. Results for the resulting ZIB model
are displayed in Table [3]

5.2. Results

In Table 3] we report estimate, standard error (s.e.) and significance level (as: not
significant, significant or very significant) of Wald test of nullity for each parameter.

As mentioned above, gender, educational level, medicaid status and "healthl" dummy
variable are identified as the most influencing factors of the decision of never resorting to
non-doctor health professionals, with a probability of never resorting which increases when
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health level degradates (one reason is that patients whose health declines may tend to favor
visits to a doctor). Medicaid recipients are more likely to renounce non-doctor office visits.
One explanation is that patients with medicaid coverage may limit their consultations to
those necessary, that is, to doctor visits only (recall that medicaid is a health insurance for
poor people). The probability of never resorting to non-doctor office consultations decreases
with the number of years of education. This is coherent with previous findings, e.g., Deb
and Trivedi| (1997), who postulate that education may make individuals more informed
consumers of medical care services. More informed patients may tend to diversify their
health-care utilization.

For patients who eventually consult non-doctor health professionals in an office setting,
ZIB model suggests that health status variables (number of chronic conditions and self-
perceived health) are the most influencing factors of the choice between doctor and non-
doctor visit. ZIB model also suggests that patients with poor health will favor visits to
doctors over non-doctors, which seems a natural finding. Perhaps surprisingly, marital status
has a significant effect on the choice of doctor vs non-doctor visit (being married increases
the probability of visiting a non-doctor health professional). One explanation is that marital
status may capture some income effect leading married patients to diversify their health-care
utilization.

6. Discussion

Zero-inflated binomial regression is now commonly used for investigating count data with
zeros excess. In this paper, we provide a rigorous basis for maximum likelihood inference in
this model. Precisely, we establish consistency and asymptotic normality of the maximum
likelihood estimator in ZIB regression. Moreover, our simulation study suggests that the
maximum likelihood estimator performs well under a wide range of conditions pertaining to
sample size and proportion of zero-inflation.

We consider here the basic ZIB regression model. Hall (2000) proposes to incorporate
random effects to this model when the count data are correlated. Several other general-
izations of ZIB regression may be developed to account for the increasing complexity of
experimental data. For example, one may use partially linear link functions for the mixing
and /or success probabilities (such as in the ZIP model, see for example |Lam et al.| (2006]) and
He et al. (2010)). Asymptotic properties of the statistical inference in these generalizations
are still unknown and their rigorous derivation remains an open problem. This is a topic for
our future work.

Acknowledgements

Authors are grateful to the referees and associate editor for their comments and sug-
gestions on an earlier version of this paper. Authors acknowledge financial support from
the "Service de Coopération et d’Action Culturelle" of the French Embassy in Senegal and
logistical support from Campus France (French national agency for the promotion of higher

17



education, international student services, and international mobility). Authors also acknowl-
edge grants from CEA-MITIC (an African Center of Excellence in Mathematics, Informatics)
and ICT, implemented by Gaston Berger University (Senegal).

References

Deb, P., Trivedi, P. K., 1997. Demand for medical care by the elderly: a finite mixture
approach. Journal of Applied Econometrics 12(3), 313-336.

Dietz, E., Bohning, D., 2000. On estimation of the Poisson parameter in zero-modified
Poisson models. Computational Statistics & Data Analysis 34(4), 441-459.

Eicker, F., 1966. A multivariate central limit theorem for random linear vector forms. The
Annals of Mathematical Statistics 37(6), 1825-1828.

Garay, A. M., Hashimoto, E. M., Ortega, E. M. M., Lachos, V. H., 2011. On estimation and
influence diagnostics for zero-inflated negative binomial regression models. Computational
Statistics & Data Analysis 55(3), 1304-1318.

Gilthorpe, M. S., Frydenberg, M., Cheng, Y., Baelum, V., 2009. Modelling count data with
excessive zeros: The need for class prediction in zero-inflated models and the issue of data

generation in choosing between zero-inflated and generic mixture models for dental caries
data. Statistics in Medicine 28, 3539-3553.

Gouriéroux, C., Monfort, A., 1981. Asymptotic properties of the maximum likelihood esti-
mator in dichotomous logit models. Journal of Econometrics 102, 17, 83-97.

Hall, D. B., 2000. Zero-inflated Poisson and binomial regression with random effects: a case
study. Biometrics 56(4), 1030-1039.

Hall, D. B., Berenhaut, K. S.; 2002. Score tests for heterogeneity and overdispersion in
zero-inflated Poisson and binomial regression models. The Canadian Journal of Statistics
30(3), 415-430.

He, X., Xue, H., Shi, N.-Z., 2010. Sieve maximum likelihood estimation for doubly semi-
parametric zero-inflated Poisson models. Journal of Multivariate Analysis 101, 2026-2038.

Henningsen, A., Toomet, O., 2011. maxLik: A package for maximum likelihood estimation
in R. Computational Statistics 26(3), 443-458.

Jiang, J., 2010. Large Sample Techniques for Statistics. Springer, New York.

Lam, K. F., Xue, H., Cheung, Y. B., 2006. Semiparametric analysis of zero-inflated count
data. Biometrics 62(4), 996-1003.

Lambert, D., 1992. Zero-inflated Poisson regression, with an application to defects in man-
ufacturing. Technometrics 34, 1-14.

18



Li, C.-S., 2011. A lack-of-fit test for parametric zero-inflated Poisson models. Journal of
Statistical Computation and Simulation 81(9), 1081-1098.

Lim, H. K., Li, W. K., Yu, P. L. H., 2006. Zero-inflated Poisson regression mixture model.
Computational Statistics & Data Analysis 71, 151-158.

Matranga, D., Firenze, A., Vullo, A., 2013. Can bayesian models play a role in dental
caries epidemiology? Evidence from an application to the BELCAP data set. Community
Dentistry and Oral Epidemiology 41(5), 473-480.

Min, A., Czado, C., 2010. Testing for zero-modification in count regression models. Statistica
Sinica 20(1), 323-341.

Moghimbeigi, A., Eshraghian, M. R., Mohammad, K., McArdle, B., 2008. Multilevel zero-
inflated negative binomial regression modeling for over-dispersed count data with extra
zeros. Journal of Applied Statistics 35(9), 1193-1202.

Monod, A., 2014. Random effects modeling and the zero-inflated Poisson distribution. Com-
munications in Statistics. Theory and Methods 43 (4), 664-680.

Mwalili, S. M., Lesaffre, E., Declerck, D., 2008. The zero-inflated negative binomial regression
model with correction for misclassification: an example in caries research. Statistical
Methods in Medical Research 17(2), 123-139.

R Core Team, 2013. R Foundation for Statistical Computing.  Vienna, Austria
http://www.R-project.org/.

Ridout, M., Hinde, J., Demetrio, C. G. B., 2001. A score test for testing a zero-inflated
Poisson regression model against zero-inflated negative binomial alternatives. Biometrics
57(1), 219-223.

Vieira, A. M. C., Hinde, J. P., Demetrio, C. G. B., 2000. Zero-inflated proportion data
models applied to a biological control assay. Journal of Applied Statistics 27(3), 373-389.

19



Sample Quantiles Sample Quantiles

Sample Quantiles

Normal Q-Q plot for ﬁl,n

0.0

-15

-4 -2 0 2 4

Theoretical Quantiles

Normal Q—-Q plot for /B\4,n

-0.7
1

3

-1.0

4 -2 0 2 4

Theoretical Quantiles

Normal Q—-Q plot for §7,n

0.3

-0.3 0.0

|
~

|
N
o
[\S]
I

Theoretical Quantiles

Figure 1: Normal Q-Q plots for Blﬂ, e

Sample Quantiles

Sample Quantiles

Normal Q-Q plot for /|§2,n

©
© 4
o
R
o ]
e T T T
-4 -2 0 2 4
Theoretical Quantiles
ey
Normal Q-Q plot for 5,
[oe]
d —
I —
<
S 4
| o
T T T 1

-4 -2 0 2 4

Theoretical Quantiles

20

Sample Quantiles

Sample Quantiles

Normal Q-Q plot for ﬁS,n

02 05 038

-4 -2 0 2 4

Theoretical Quantiles

Normal Q-Q plot for/B\G,n

02 08 14

! ! ! 1
-4 -2 0 2 4

Theoretical Quantiles

’B?,n with n = 300 (case 1).



Sample Quantiles Sample Quantiles

Sample Quantiles

Normal Q-Q plot for ¥ ,

o -
o‘ —
-
o -
C\i 1o
I T T T
-4 -2 0 2 4
Theoretical Quantiles
Normal Q-Q plot for §5 ,
o 4
N
|
<+ do
I T T T
-4 -2 0 2 4
Theoretical Quantiles
Normal Q-Q plot for Js ,
o
0 -
o 1
<
T T T 1
-4 -2 0 2 4

Theoretical Quantiles

Figure 2: Normal Q-Q plots for 4; ,, ...

Sample Quantiles

Sample Quantiles

21

0.5

-1.5

1.0

0.0

Normal Q-Q plot foer,n

Theoretical Quantiles

Normal Q-Q plot for'\74,n

Theoretical Quantiles

, 5. With n = 300 (case 1).



Sample Quantiles Sample Quantiles

Sample Quantiles

Normal Q-Q plot for ﬁl,n

0.0 15

2.0

-4 -2 0 2 4

Theoretical Quantiles

Normal Q—-Q plot for /B\4,n

-0.7

-11

L
4 2 0 2 4

Theoretical Quantiles

Normal Q—-Q plot for §7,n

)

-04 0.0 04

I I I
-4 -2 0 2 4

Theoretical Quantiles

Figure 3: Normal Q-Q plots for Blﬂ, e

Sample Quantiles

Sample Quantiles

Normal Q-Q plot for /|§2,n

14

0.8

o

-4 -2 0 2 4

Theoretical Quantiles

Normal Q-Q plot forﬁs,n

1.0

-1.6

! ! ! 1
-4 -2 0 2 4

Theoretical Quantiles

22

Sample Quantiles

Sample Quantiles

Normal Q-Q plot for ﬁS,n

02 06 10

-4 -2 0 2 4

Theoretical Quantiles

Normal Q-Q plot for/B\G,n

o

0.0 1.0 20

I I I
-4 -2 0 2 4

Theoretical Quantiles

, Br.n With n = 300 (case 2).



Sample Quantiles Sample Quantiles

Sample Quantiles

15

-0.5 0.5

15

0.0

1.0

-1.0 0.0

Normal Q-Q plot for ¥ ,

[%]
S 2
IS
a
>
(o4
Q
[oX
g
T T T %]
-4 -2 0 2 4
Theoretical Quantiles
Normal Q-Q plot for §5 ,
%]
g 2
S
®©
>
(o4
Q
Qo
§
T T T (%]
-4 -2 0 2 4
Theoretical Quantiles
Normal Q-Q plot for Js ,
T T T
-4 -2 0 2 4

Theoretical Quantiles

Figure 4: Normal Q-Q plots for 4; ,, ...

23

Normal Q-Q plot foer,n

N
O- —
<
o' —
[I—
N T2
< T T T

-4 -2 0 2 4

Theoretical Quantiles
Normal Q-Q plot for J; ,
00

©
o
S
e T T T

-4 -2 0 2 4

Theoretical Quantiles

, 5. With n = 300 (case 2).



	Introduction
	Zero-inflated binomial regression model
	Model and estimation
	Some further notations

	Regularity conditions and asymptotic properties of the MLE
	Simulation study
	Study design
	Results

	An application of ZIB model to health economics
	Data description and modelling
	Results

	Discussion

