J. W. Chase and K. R. Williams, Single-stranded DNA binding proteins required for DNA replication, Annu. Rev. Biochem, vol.55, pp.103-136, 1986.

R. L. Karpel, The Biology of Non-Specific DNA-Protein Interactions, pp.103-130, 1990.

T. M. Lohman and M. E. Ferrari, Escherichia coli singlestranded DNA-binding protein: multiple DNA-binding modes and cooperativities, Annu. Rev. Biochem, vol.63, pp.527-570, 1994.

M. S. Wold, REPLICATION PROTEIN A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism, Annu. Rev. Biochem, vol.66, pp.61-92, 1997.

S. Chrysogelos and J. Griffith, Escherichia coli single-strand binding protein organizes single-stranded DNA in nucleosome-like units, Proc. Natl Acad. Sci. USA, vol.79, pp.5803-5807, 1982.

J. D. Griffith, L. D. Harris, and J. Register, Visualization of SSB-ssDNA complexes active in the assembly of stable RecA-DNA filaments, Cold Spring Harb. Symp. Quant. Biol, vol.49, pp.553-559, 1984.

A. Syvanen, M. Alanen, and H. Soderlund, A complex of single-strand binding protein and M13 DNA as hybridization probe, Nucleic Acids Res, vol.13, pp.2789-2802, 1985.

M. S. Soengas, C. Gutierrez, and M. Salas, Helix-destabilizing activity of [phi]29 single-stranded DNA binding protein: effect on the elongation rate during strand displacement DNA replication, J. Mol. Biol, vol.253, pp.517-529, 1995.

S. D. Lefebvre, M. L. Wong, and S. W. Morrical, Simultaneous interactions of bacteriophage T4 DNA replication proteins gp59 and gp32 with single-stranded (ss) DNA, J. Biol. Chem, vol.274, pp.22830-22838, 1999.

L. Hameau, J. Jeusset, S. Lafosse, D. Coulaud, E. Delain et al., Human immunodeficiency virus type 1 central DNA flap: dynamic terminal product of plus-strand displacement DNA synthesis catalyzed by reverse transcriptase assisted by nucleocapsid protein, J. Virol, vol.75, pp.3301-3313, 2001.

H. Delius, N. J. Mantell, and B. Alberts, Characterization by electron microscopy of the complex formed between T4 bacteriophage gene 32-protein and DNA, J. Mol. Biol, vol.67, pp.341-350, 1972.

C. Bustamante and C. Rivetti, Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope, Annu. Rev. Biophys. Biomol. Struct, vol.25, pp.395-429, 1996.

H. G. Hansma, Surface biology of DNA by atomic force microscopy, Annu. Rev. Phys. Chem, vol.52, pp.71-92, 2001.

B. D. Sattin and M. C. Goh, Direct observation of the assembly of RecA/DNA complexes by atomic force microscopy, Biophys. J, vol.87, pp.3430-3436, 2004.

Y. L. Lyubchenko, DNA structure and dynamics: an atomic force microscopy study, Cell Biochem. Biophys, vol.41, pp.75-98, 2004.

D. Ristic, M. Modesti, T. Van-der-heijden, J. Van-noort, C. Dekker et al., Human Rad51 filaments on double-and single-stranded DNA: correlating regular and irregular forms with recombination function, Nucleic Acids Res, vol.33, pp.3292-3302, 2005.

O. Pie´trement, D. Pastre´, F. Landousy, M. O. David, S. Fusil et al., Studying the effect of a charged surface on the interaction of bleomycin with DNA using an atomic force microscope, Eur. Biophys. J, vol.34, pp.200-207, 2005.

W. X. Shi and R. G. Larson, Atomic force microscopic study of aggregation of RecA-DNA nucleoprotein filaments into left-handed supercoiled bundles, Nano Lett, vol.5, pp.2476-2481, 2005.

H. G. Hansma, R. L. Sinsheimer, J. Groppe, T. C. Bruice, V. Elings et al., Recent advances in atomic force microscopy of DNA, Scanning, vol.15, pp.296-299, 1993.

Y. L. Lyubchenko, B. L. Jacobs, S. M. Lindsay, and A. Stasiak, Atomic force microscopy of nucleoprotein complexes, Scanning Microsc, vol.9, pp.705-724, 1995.

T. A. Brown, C. Cecconi, A. N. Tkachuk, C. Bustamante, and D. A. Clayton, Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism, Genes Dev, vol.19, pp.2466-2476, 2005.

A. T. Woolley and R. T. Kelly, Deposition and characterization of extended single-stranded DNA molecules on surfaces, Nano Lett, vol.1, pp.345-348, 2001.

J. Adamcik, D. V. Klinov, G. Witz, S. K. Sekatskii, and G. Dietler, Observation of single-stranded DNA on mica and highly oriented pyrolytic graphite by atomic force microscopy, FEBS Lett, vol.580, pp.5671-5675, 2006.

H. G. Hansma and D. E. Laney, DNA binding to mica correlates with cationic radius: assay by atomic force microscopy, Biophys. J, vol.70, pp.1933-1939, 1996.

, NaCl 300 mM, SpdCl 3 300 mM with R ¼ [(gp32)/(nucleotides)] ¼ 1/7. (b) AFM image of M13 ssDNA-yRPA complexes formed in spermidine buffer Tris 20 mM pH 7.5, NaCl 20 mM, ) AFM image of M13 ssDNA-gp32 complexes formed in spermidine buffer Tris 20 mM pH 7.5

C. Rivetti, M. Guthold, and C. Bustamante, Scanning force microscopy of DNA deposited onto mica: equilibration versus kinetic trapping studied by statistical polymer chain analysis, J. Mol. Biol, vol.264, pp.919-932, 1996.

Z. Shao, J. Mou, D. M. Czajkowksy, J. Yang, and J. Y. Yuan, Biological atomic force microscopy: what is achieved & what is needed, Adv. Phys, vol.45, pp.1-86, 1996.

D. Pastre´, O. Pie´trement, S. Fusil, F. Landousy, J. Jeusset et al., Adsorption of DNA to mica mediated by divalent counterions: a theoretical and experimental study, Biophys. J, vol.85, pp.2507-2518, 2003.

D. Pastre´, L. Hamon, F. Landousy, I. Sorel, M. O. David et al., Anionic polyelectrolyte adsorption on mica mediated by multivalent cations: a solution to DNA imaging by atomic force microscopy under high ionic strengths, Langmuir, vol.22, pp.6651-6660, 2006.

T. M. Lohman and L. B. Overman, Two binding modes in Escherichia coli single strand binding protein-single stranded DNA complexes. Modulation by NaCl concentration, J. Biol. Chem, vol.260, pp.3594-3603, 1985.

N. Kantake, T. Sugiyama, R. D. Kolodner, and S. C. Kowalczykowski, The recombination-deficient mutant RPA (rfa1-t11) is displaced slowly from single-stranded DNA by Rad51 protein, J. Biol. Chem, vol.278, pp.23410-23417, 2003.

B. Revet and A. Fourcade, Short unligated sticky ends enable the observation of circularised DNA by atomic force and electron microscopes, Nucleic Acids Res, vol.26, pp.2092-2097, 1998.

C. R. Zobel and M. Beer, Electron stains. I. chemical studies on the interaction of DNA with uranyl salts, J. Biophys. Biochem. Cytol, vol.10, pp.335-346, 1961.

C. W. Tabor and H. Tabor, Polyamines. Annu. Rev. Biochem, vol.53, pp.749-790, 1984.

M. E. Ferrari, W. Bujalowski, and T. M. Lohman, Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode, J. Mol. Biol, vol.236, pp.106-123, 1994.

L. B. Overman, W. Bujalowski, and T. M. Lohman, Equilibrium binding of Escherichia coli single-strand binding protein to single-stranded nucleic acids in the (SSB)65 binding mode. Cation and anion effects and polynucleotide specificity, Biochemistry, vol.27, pp.456-471, 1988.

T. F. Wei, W. Bujalowski, and T. M. Lohman, Cooperative binding of polyamines induces the Escherichia coli single-strand binding protein-DNA binding mode transitions, Biochemistry, vol.31, pp.6166-6174, 1992.

W. Bujalowski and T. M. Lohman, Escherichia coli single-strand binding protein forms multiple, distinct complexes with single-stranded DNA, Biochemistry, vol.25, pp.7799-7802, 1986.