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Abstract - Volume, Variety and Velocity are the three
dimensions that have definitely impacted the tools required to
store Big Data. Adapted data management tools have arisen,
i.e. NOSQL systems. Compared to existing DBMS, NoSQL
systems are commonly accepted to support larger volume of
data, provide faster data access, better scalability and higher
flexibility. While NoSQL solutions have proven their efficiency
to handle Big Data, it’s still an unsolved problem how the
automatic storage of Big Data in these systems could be
ensured. The aim of this paper is to propose a precise and
automatic approach that guides and facilitates the Big
Database implementation task within document-oriented
systems considered as the new generation of DBMS
technology. Our approach will assist the developers to map
Big Database UML conceptual model into document-oriented
physical models; it relies on a unified model designed for
document-oriented systems. The instances of this model can be
generated to target specific NoSQL platform.

Keywords: Big Data storage; NoSQL; UML conceptual
model; document-oriented model; MDA.

1 Introduction

In the Big Data era, there must be DBMS able to store
large datasets effectively with high performance. Not only the
amount of data is on a completely different level than before,
but also we have various types of data including factors such
as format, structure, and sources. Furthermore, the speed at
which these data must be collected and analyzed is increasing.
In such scenario, Big Data applications need a database
solution that integrates easily all possible data structures while
offering lower latency, better scalability as well as higher
flexibility.

Relational systems are mature data management technology.
However, with the rise of Big Data, these systems became
unfit for large and distributed data management. The major
problems of relational technologies are: (1) the horizontal
scale: relational databases are mainly designed for single-
server configurations; to scale it, it has to be distributed on
multiple powerful servers, which seems really expensive.
Furthermore, handling tables across different servers is a
complex task, (2) a strict data model to design before data
processing: in the context of Big Data, it should be easy to add
new data; but the problem is that relational models are hard to

change incrementally without impacting performance or
making the database offline.

Compared to existing DBMS, NoSQL systems are commonly
accepted to support larger volume of data and provide flexible
data models, low latency at scale and faster data access [7].
NoSQL covers a wide variety of different systems that can be
classified into four basic types: key-value, column-oriented,
document-oriented and graph-oriented. In this paper, we focus
on the document-oriented. This is justified by the fact that our
case study, detailed in section “Motivation”, requires
processing operations that access to hierarchically structured
data, and that document-oriented systems have proven to be
the most adapted solution for this kind of operations [13].

Today, the developers have to deal with the problem of storing
Big Data in NoSQL systems. New approaches, guidelines, and
techniques are required in order to overcome the complexity
of this task. In this context, a new automatic approach that
guides and facilitates the Big Database implementation task
within document-oriented systems will be presented in this

paper.

The remainder of the paper is structured as follows. Section 2
motivates our work using a case study in the healthcare field.
Section 3 introduces our approach. Sections 4 and 5 detail our
contributions. Section 6 presents our experiments. Section 7
reviews previous work. Finally, Section 8 concludes the paper
and announces future work.

2 Motivation

2.1 Case study

To motivate and illustrate our work, we present a case
study in the healthcare filed. This case study concerns national
or international scientific programs for monitoring patients
having serious diseases. The main goal of this program is (1)
to collect data about disease development over time, (2) to
study interactions between different diseases (3) to evaluate
the short and medium-term effects of their treatments. The
medical program can last up to 3 years. Data collected from
establishments involved in such a program have the
characteristics of Big Data (the 3 V):

Volume: The amount of data collected from different health
care services during a time period can reach several terabytes.



Variety: The amount of data created while monitoring
patients come in different types and formats. Therefore, the
DW used for this application will contain: (1) structured data
(respiratory rate, blood pressure, temperature, patient name,
diagnosis codes, etc.), (2) unstructured data (patient histories,
visit summaries, paper prescriptions, radiology reports...) and
(3) semi-structured document (such as the package leaflets of
medicinal products that provide a set of comprehensible
information enabling the use of the medicinal product safely
and appropriately).

Velocity: Some data are produced in continuous flow by
sensors; it must be processed in near real time because it can
be integrated into time-sensitive processes. For example, some
measurements, like temperature, require an emergency
medical treatment if they cross a given threshold).

2.2 Necessity of conceptual model for Big Data
applications

One of the NoSQL key features is that databases can be
schema-less. This means, in a table, meanwhile the row is
inserted, the attributes names, and values are specified. Unlike
relational systems - where first, the user defines the schema
and creates the tables, second he inserts data -, the schema-less
property offers undeniable flexibility that facilitates the
physical model evolution. End-users are able to add
information without the need of database administrator. For
instance, in the medical program that follows-up patients
suffering from a chronic pathology — case study presented in
the previous section — one of the benefits of using NoSQL
databases is that the evolution of the data (and schema) is
fluent. In order to follow the evolution of the pathology,
information is entered regularly for a cohort of patients. But
the situation of a patient can evolve rapidly which needs the
recording of new information. Thus, few months later, each
patient will have his own information, and that’s how data will
evolve over time. Therefore, the data model (i) differs from
one patient to another and (ii) evolves in unpredictable way
over time. We should highlight that this flexibility concerns
the physical level i.e. the stored database exclusively [2].

In information systems, the importance and the necessity of
conceptual models are widely recognized. The conceptual
model provides a high level of abstraction and a semantic
knowledge element close to human comprehension, which
guarantees efficient data management [1]. Furthermore, this
model is a document of interchange between end-users and
designers, and between designers and developers. Also, the
conceptual model is used for system maintenance and
evolution that can affect business needs and/or deployment
platform. The Unified Modeling Language (UML) is widely
accepted as the standard of information system modeling [1].

2.3 Objective & utility

On the one hand, NoSQL systems have proven their
efficiency to handle Big Data. On the other hand, the needs of
a conceptual modeling and design approach remain up-to-date.
Therefore, we are convinced that it’s important to provide a
precise approach that guides and facilitates the Big Database

implementation task within NoSQL systems. This approach
will assist the developers to map Big Database UML
conceptual model into NoSQL physical models.

For this, we propose the "Object2ZNoSQL" MDA-based
approach presented in the following section.

3 Object2NoSQL approach

3.1 Three-Level architecture of Object2NoSQL
process

In this paper, we propose the Objetc2NoSQL approach
that starts from a UML class diagram and generate NoSQL
physical models. We introduce a logical level between
conceptual (business description) and physical (technical
description) levels in which a document-oriented logical
model is developed.

The need for this intermediate (logical) layer is justified by
referring to the ANSI/SPARC architecture. This architecture
shows conceptual (business description) and internal
(technical description) levels. The latter may be decomposed
into two levels: logical and physical [18]. The logical level
aims to provide an intermediate model that describes the
structure of the data, without itemizing the specific features of
each system. This ensures data independence meaning that
upper level is isolated from changes to lower level.

In our scenario, the logical model corresponds to a NoSQL
model that can be implemented on different document-
oriented platforms. The advantage of using this unified model
is to limit the impacts related to technical aspects of NoSQL
systems. Thus, technological changes of the NoSQL system
(or even its replacement by another system) will appear in the
physical model, but would not affect the logical model. Only
the transformation process “Logical Model -> Physical
Model” will be adapted and restarted; there will be no impact
on “Conceptual Model -> Logical Model” transformation.
This simplifies the transformations and saves developers
efforts and time.

3.2 Formalization tool

To formalize and automate the Object2NoSQL process,
we use the Model Driven Architecture (MDA) [4]. MDA is
well-known as a framework for models automatic
transformations; One of its main aims is to separate the
functional specification of a system from the details of its
implementation in a specific platform. This architecture
defines a hierarchy of models from three points of view:
Computation  Independent Model (CIM),  Platform
Independent Model (PIM), and Platform Specific Model
(PSM) [5]. Among these models, we use the PIM to describe
data hiding all aspects related to the implementation platforms,
and the PSM to represent data using a specific technical
platform.

3.3 Component of Object2NoSQL process

In our scenario, the UML class diagram and the document-
oriented logical model belong to the PIM level. At the PSM
level we consider NoSQL physical models that correspond to
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document-oriented platforms. Switching between models is
ensured by M2M (Model-To-Model) transformations; such
transformations describe a mapping between source and target
models elements. Figure 1 shows the different component of
Object2NoSQL process.

Object2DOLM (1) is the first step in the process. It transforms
the input UML Class Diagram into the Document-Oriented
Logical Model (DOLM) presented in section IV.
DOLM2DOPM (3) is the second step that generates
Documents-Oriented Physical Models (DOPMs) (4) starting
from the DOLM, as well as a set of guidelines necessary for
the developer to elaborate the application interface. This
interface will be used by doctors to perform some tasks such
as data entry.

Indeed, depending on how we define their physical data
model, NoSQL systems can be classified into three categories:

(1) Systems where the data model is previously fixed. In other
words, like relational systems, attributes names and types must
be defined when creating each table. Data entry is only
possible after the model has been fully defined. Example:
Cassandra (column-oriented system) and Riak TS (key-value
system).

(2) Systems where only part of the model is defined before the
user inserts data; it usually concerns specifying tables names.
This is the case in MongoDB (document-oriented system) and
HBase systems (column-oriented system).

(3) Systems where the data model is specified as and when the
row is inserted. The user inserts each row specifying the table
name as well as the attributes names. Example: Neo4;j (graph-
oriented system) and Redis (key-value system).

In the last two categories, systems do not require the full
definition of the physical model before data entry. However,
the developer must have knowledge on the attributes to use
and guidelines on how to implement relationships. Thus, in
addition to generating the elements needed for creating the
NoSQL physical model, our approach provides details and
guidelines that allow developer to elaborate the application
interface.

4 Object2DOLM transformation

In this section we present the Object2DOLM
transformation, which is the first step in our approach as
shown in figure 1. We first define the source (UML Class
Diagram) and the target (Document-Oriented Logical Model).
After that, we focus on the transformation itself.

Object2NoSQL Approach

4.1 Source: UML class diagram
A Class Diagram (CD) is defined as a tuple (N, C, L), where:

N is the class diagram name,

C is a set of classes. Classes are composed from structural and

behavioral features. In this paper, we consider the structural

features only. Since the operations describe the behavior, we

do not consider them. For each class ¢ € C, the schema is a

tuple (N, A, IdentO¢), where:

e c.Nis the class name,

e c.A={aj,..,ag} is a set of q attributes. For each attribute
a® € A, the schema is a pair (N,C) where “a®.N” is the
attribute name and “a®.C” the attribute type; C can be a
predefined class, i.e. a standard data type (String, Integer,
Date ...) or a business class (class defined by user),

e c.IdentO® is a special attribute of c; it has a name
IdentO°N and a type called “Oid”. In this paper, an
attribute which type is “Oid” represents a unique object
identifier, i.e. an attribute which value distinguishes an
object from all other objects of the same class [6].

L is a set of links. Each link 1 between n classes, with n>=2, is

defined as a tuple (N, Ty, Pr'), where:

e LN is the link name,

e LTy is the link type. In this paper, we consider the three
main types of links between classes: Association,
Composition and Generalization,

e LPr'={pr},..,prl} is a set of n pairs. Vi € {1,..,n}, pr} =
(c, cr®), where pri.c is a linked class and prl. cr® is the
multiplicity placed next to c. Note that pr}. cr¢ can contain
a null value if no multiplicity is indicated next to ¢ (like in
generalization link).

4.2 Target: Document-Oriented logical model

The Document-Oriented Logical Model (DOLM) mainly
shows tables and their interrelationships (binary relationships).
In this section, we present this model.

In DOLM, DataBase (DB) is the top level container that owns

all the elements. It’s defined as a tuple (N, T, R), where:

N is the database name,

T is a set of tables. The schema of each table t € T is a tuple

(N, A, IdentL"), where:

e t.Nis the table name,

e tA={aj,..,ay} is a set of q attributes that will be used to
define rows of t; each row can have a variable number of
attributes. The schema of each attribute a® € A is a pair



(N,Ty) where “a®.N” is the attribute name and “a*.Ty” the
attribute type,

e t. IdentL! is a special attribute of t; it has a name IdentLt.N
and a type called “Rid”. In this paper, an attribute which
type is “Rid” represents a unique row identifier, i.e. an
attribute which value distinguishes a row from all other
rows of the same table.

R is a set of binary relationships. Each relationship r €R
between t; and t, is defined as a tuple (N, Pr"), where:

e 1.N is the relationship name,

e r.Pr" = {pr],pry} is a set of two pairs. Vi € {1,2}, pr{ =
(t, crt), where prl.t is a related table and pr}.cr® is the
multiplicity placed next to t.

4.3 Transformation Rules

R1: each class diagram CD is transformed into a database DB,
where DB.N = CD.N.

R2: each class ¢ € C is transformed into a table t € DB, where
t.N =c.N, IdentL*.N = IdentO°€.N.

R3: cach class attribute a° € c.A is transformed into a table
attribute a%, where at.N = a®.N, a%. Ty = a®.C, and added to the
attribute list of its transformed container t such as a* € t.A.

R4: each binary link 1 € L (regardless of its type: Association,
Composition or Generalization) between two classes c¢; and c,
is transformed into a relationship r € R between the tables
t, and t, representing ¢, and c,, where r.N = LN, r.Pr’ =
{(ty, crer),(ty, cr2)}, cret and crz are the multiplicity placed
respectively next to ¢; and c,.

R5: each link 1 € L between n classes {cy, ...,c,} (n>=3) is
transformed into (1) a new table t', where t'N = 1.N and t'. A =
@, and (2) n relationships {ry,...,r,}, Vi € {1,..,n} rj links t!
to another table t; representing a related class c;, where r;.N =
(t'.N)_(t;.N) and ry. Pr™ = {(t!, null), (t;, null)}.

R6: each association class c,s5, between n classes {cy, ...,Cp}
(n>=2) is transformed like a link between multiple classes (R5)
using (1) a new table t?¢, where t*N = LN, and (2) n
relationships {ry,...,ry}, Vi € {1,..,n} r; links t?¢ to another
table t; representing a related class c;, where r;.N =
(t?“.N)_(t;.N) and rj. Pr™ = {(t¥¢, null), (t;, null)}. Like any
other table, t3¢ contain also a set of attributes A, where t3€.A
= Casso-A-

We have formalized these transformation rules using the QVT
(Query / View / Transformation), which is the OMG standard

for models transformation. An excerpt from QVT rules is
shown in figure 3.

5 DOLM2DOPM transformation

In this section we present the DOLM2DOPM
transformation that generates (1) the physical model of the
adopted document-oriented system and (2) the guidelines that
assist developers to implement the logical relationships and
indicate the attributes that can be used.

5.1 Source: Document-Oriented Logical Model

The source of DOLM2DOPM transformation is the
target of the previous transformation Object2DOLM. It’s a
document-oriented NoSQL logical model.

5.2 Target: Document-Oriented physical model

To illustrate our approach, we have chosen MongoDB
and CouchDB systems. For MongoDB, the corresponding
mapping is available in [17].

5.2.1 couchDB

CouchDB database (DB®H) doesn't have tables [16]. It
contains a set of documents that are the containers of data.
Thus, DB®H is defined as a tuple (N, D), where:

N is the database name,

D is a set of documents. Each document has: (1) an identifier
which allows to uniquely reference it in the database, and (2) a
set of key-value pairs called properties. Each property is
composed of a key that represents its name, and a value that
can be atomic or complex (composed of other properties).
Formally, the schema of each document d € D is a tuple (Id¢,
PR), where:

e d.IdY is a unique identifier of d. It has a name Id9.N and a
type 1d4.Ty.

e dPR = PR* U PR¥is a set of atomic and complex
properties that will be used to fill d. The schema of an atomic
property pr2 € PR is a pair (Key,Ty) where “pr?.Key” is the
property name and “pr®.Ty” is the property type. The schema
of a complex property pr™ € PRX is also a tuple (Key, PR”)
where pr*.Key is the property name and pr*.PR’ is a set of
properties where PR’ PR.

5.3 Target: Document-Oriented physical model
5.3.1 couchDB physica model

R1: the logical database DB is transformed into a CouchDB
database DB®H, where DB“".N = DB.N.

5.3.2  Guidelines

CouchDB database (DB®H) doesn't have tables [16]. It
contains a set of documents that are the containers of data.
Thus, DB®H is defined as a tuple (N, D), where:

N is the database name,

R2: As mentioned before (Section V.B), a CouchDB database
contains a set of documents; the concept of "collections" that
allows to classify these documents don’t exist. Each row in a
logical table will correspond to a document in CouchDB. This
document needs to be explicitly associated to the
corresponding table. For this, our process creates, for each
document d corresponding to a row in a logical table t, a
complex property pr* where:

- prf* Key is composed of (1) the table name and (2) a
sequential number,

- pr£¥.Value contains the property list of d.

For example, for a row in the logical table “Patient”, we have
the following CouchDB document:

{



[T L

Patient 1: { name: “”,

[T3EL)

profession : “”,
.}
}

Thus, all documents having the property key XXXX i, will be
considered to belong to the logical table XXXX.

Formally, V d € DB¢" D a document corresponding to a row
in a logical table t, we create a complex property pre™ where:

e pri*.Key = [t.N] i;1iis a sequential number referring a row
in t (example : Patient 1, Doctor 5 ...),

e Each attribute a* € t. A" is transformed into a property
pr?, where pri.Key = a“N, and pr?.Ty = a'.Ty, and then
added to the property list of its container pr¢* such as pr?
€ pre¥.Value.

R3: In CouchDB, the logical relationships could be converted

using two forms: references and nested data. Thus, for each

relationship r between two tables t; and t,, the following
solutions may be considered:

Solution 1: r is transformed into a property pr”®/ referencing

one or more documents that correspond to rows in t,, where

pr7¢f key = (t,.N) Ref, and then added to the property list of

documents that contain the complex property pr;* where
pre¥ Key = [¢,.N]_i, such as pr™/ € pr* Value.

Solution 2: r is transformed into a property pr™®/ referencing
one or more documents that correspond to rows in t;, where
pr7éf key = (t;.N)_Ref, and then added to the property list of
documents that contain the complex property prfzx where
pre, Key = [t,.N] i, suchas prref e pre, Value.

Solution 3: r is transformed by embedding one or more
documents containing the property prgy.Key = [t;.N] i in
documents containing the property pr*.Key = [t;.N]_i, where
pre) € pr.Value.

Solution 4: r is transformed by embedding one or more
documents containing the property pr{*.Key = [t;.N] i in
documents containing the property pry*.Key = [t,.N] i, where
pre € pr° . Value.

The type of the reference property (monovalued or
multivalued) used in solutions 1 and 2, as well as the number
of documents (one or many) to be nested in solutions 3 and 4,
depend on the relationship cardinalities.

In this section, we have proposed different solutions to
transform the logical relationships under CouchDB. In order to
choose the most suitable solution, the developer can be well
guided thanks to the performance measurement shown in
Section “Experiments”. We have measured the queries
response time using each of the proposed solution. The
developer will make his choice according to the queries
features he needs to perform, the expected performances as
well as the queries frequency of use.

6 Experiments

In this section, we show how to transform a UML
conceptual model into a document-oriented NoSQL physical

model. As presented in the previous section, several solutions
can ensure this transformation. We first detail how we
implemented the Object2NoSQL process and then we show
the experiment we conducted to study the impact that the
choice of solution used to map the logical relationships may
have on the execution time of queries.

6.1 Implementation

We have implemented the Object2DOLM and
DOLM2DOPM transformations using a set of tools provided
by Eclipse Modeling Framework (EMF). It’s a models
transformation environment that contains a set of plugins
which can be used to create a model and generate other
outputs based on this model. Each transformation is expressed
as a sequence of elementary steps that builds the resulting
model step by step from the source model. Stepl: we create
the source and the target metamodels using the metamodeling
language Ecore. Step2: we build an instance of the source
metamodel; for this, we wuse the standard-based XML
Metadata Interchange (XMI) format. Step3: we implement the
transformation rules by means of the Query / View /
Transformation (QVT) language (the OMG standard language
for specifying model transformations). Step4: we test the
transformation by running the QVT script of step3; this script
takes as input the source model created in step 2 and returns
the resulting model in the form of XMI file.

Object2DOLM is the first step in Object2NoSQL process. It
transforms the input UML class diagram (figure 2) into the
proposed DOLM (figure 4). Object2DOLM transformation is
performed by means of the mapping rules defined in section 4.
These rules have been formalized using the QVT language; an
excerpt from the QVT script is shown in figure 3. The
comments in the script indicate the rules used.

In the second step, the developer indicates the document-
oriented system he wants to use (MongoDB for example) and
chooses one of the relationship mapping solutions we propose;
then the DOLM2DOPM transformation runs (figure 5).
Starting from the DOLM created by the previous
transformation (Object2DOLM), DOLM2DOPM generates (1)
the physical model of the selected system (figure 6) and (2)
the associated guidelines (figure 7). We illustrate our
experiment using MongoDB.

Note that due to lack of space, we only present excerpts from
models and QVT scripts.

6.2 Evaluation

Depending on the functionalities of the document-
oriented system selected by the developer, the logical
relationships could be mapped into different forms. To assist
the developer in choosing the most effective form, we
performed an evaluation to study the impact of each mapping
solution on the queries execution time.

We carry out the experimental assessment using a cluster
made up of 3 machines. Each machine has the following
specifications: Intel Core 15, 8GB RAM and 2TB disk.
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Fig.8. Experimental Results

On the other hand, we have used data generator tools to  based on the following criteria: (1) The features of queries
generate a dataset of about 1TB with JSON format. These files  (number of filters, number of attributes to return) and (2) How
are loaded into the systems using shell commands. For queries  frequently each query will be used. We note that due to lack of
set, we have written 6 queries which concern two tables and  place, only the results obtained under MongoDB are
the relationship between them. These queries involve the two  presented.

related tables and gradual increase in the number of attributes

to return. An excerpt from our experiment results is depicted 7 Related work

in figure 8. For each query, we indicate the obtained response
time according to (1) the relationship cardinalities and (2) the
transformation solution used. Thus, the developer can make
his choice using our experiment results. This choice will be

Big Data applications developers have to deal with the
question: how to store Big Data in NoSQL systems? To
address this problem, existing solutions propose to model Big
Data, and then define mapping rules towards the physical



level. In the specific context of a data warehouse, both [12]
and [11] have defined a set of rules to transform a
multidimensional model into a NoSQL model. Other studies
[9] and [8] have investigated the process of transforming
relational databases into a NoSQL model. To the best of our
knowledge, only few works have presented approaches to
implement UML conceptual model into NoSQL systems. Li et
al. [10] propose a MDA-based process to transform UML
class diagram into column-oriented model specific to HBase.
Starting from the UML class diagram and HBase metamodels,
authors have proposed mapping rules between the conceptual
level and the physical one. Obviously, these rules are
applicable to HBase, only. Gwendal et al. [3] describe the
mapping between a UML conceptual model and graph
databases via an intermediate graph metamodel. In this work,
the transformation rules are specific to graph databases used as
a framework for managing complex data with many
connections. Generally, this kind of NoSQL systems is used in
social networks where data are highly connected. In [14] data
modeling in MongoDB database has been shown by using
class diagram and JSON format to represent the documents.
Similarly, Banker [15] provides some tools of data modeling,
but limited to MongoDB database and always referring to
JSON format as a modeling solution.

Regarding the state of the art, some of the existing works [9]
and [8] focus on relational model that, unlike UML class
diagram, lacks of semantic richness, especially through the
several types of relationships that exist between classes. Other
solutions, [12] and [11] have the advantage to start from the
conceptual level. But, the proposed models are Domain-
Specific (Data Warehouses system), so they consider fact,
dimension, and typically one type of links only. Approaches
proposed in [10] and [3] are only applicable to column-
oriented [10] and graph-oriented [3] data stores. [14] and [15]
present a study of techniques and tools for data modeling
using MongoDB system; the proposed solutions are not
generic, they are restricted to MongoDB document database.
However, it makes more sense to generalize the
transformation process in order to allow the user to choose the
target document-oriented system that suits the best with
business rules and technical constraints.

8 Conclusion and future work

This paper provides an automatic MDA approach that
generates NoSQL physical models starting from a UML
conceptual model. Our approach relies on a pivot logical
model that uses tables and binary relationships. This model
exhibits a sufficient degree of platform-independency, so that
its mapping to one or more NoSQL document-oriented
platforms is feasible. The advantage of using a unified
(logical) model is that this model remains stable, whenever the
NoSQL systems evolve or even if we decide to completely
change the used platform. In these two cases, it would be
enough to evolve the physical (platform-dependent) models,
and of course adapt the transformation rules; this simplifies
the transformation process and saves developers efforts and
time.

Our approach is based on two main steps. The first one
automatically creates the logical model starting from a UML
class diagram. In the second step, the developer chooses one
of the relationship implementation solutions we propose, and
the NoSQL physical models are generated starting from the
logical model. Our approach assists the developer to choose
the most suited implementation to the project he is working
on. We have measured the queries response time using each of
the proposed transformation solution. Thus, the developer can
choose the most suited solution according to: (1) the queries
features (number of filters, number of attributes to return) and
(2) the queries frequency of use.

We are currently working on automating the overall process.
The choice of the relationship implementation solution will be
done by the system itself without requiring developer
intervention. We also plan to complete and generalize our
transformation process to consider the constraints defined in
the conceptual model; once the NoSQL physical model is
created, another process has to be performed to check these
constraints.
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