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Abstract—This paper aims at presenting a novel ensemble
learning approach based on the concept of covariance pooling
of CNN features issued from a pretrained model. Starting from
a supervised classification algorithm, named multilayer stacked
covariance pooling (MSCP), which exploits simultaneously second
order statistics and deep learning features, we propose an alter-
native strategy which employs an ensemble learning approach
among the stacked convolutional feature maps. The aggregation
of multiple learning algorithm decisions, produced by different
stacked subsets, permits to obtain a better predictive classification
performance. An application for the classification of large scale
remote sensing images is next proposed. The experimental results,
conducted on two challenging datasets, namely UC Merced
and AID datasets, improve the classification accuracy while
maintaining a low computation time. This confirms, besides
the interest of exploiting second order statistics, the benefit of
adopting an ensemble learning approach.

Index Terms—Covariance pooling, pretrained CNN models,
multilayer feature maps, ensemble learning approach, remote
sensing scene classification.

I. INTRODUCTION

A supervised classification algorithm aims at labelling an
image to a class according to its content. To this end, standard
approaches were based on encoding handcrafted features with
for instance the bag of words model (BoW) [1], the vector
of locally aggregated descriptors (VLAD) [2] or the Fisher
vectors (FV) [3]. Those coding methods have demonstrated
successful results in a large variety of applications such as
image classification [3]–[5], text retrieval, action and face
recognition, etc. More recently, deep learning methods have
proved to outperform standard machine learning algorithms
in a large variety of domains. In particular, neural networks
models the human brain by stacking multiple layers able
to extract and learn automatically specific image features.
Convolutional Neural Networks (CNN) [6] have achieved great
success in the computer vision community which makes them
a standard for image classification tasks [6]. They are built
from various hidden layers consisting in convolution, pooling
and activation functions. In order to take advantage of coding
methods and CNN features, several authors have proposed

hybrid architectures which combine CNN models with FV
and VLAD descriptors such as the Fisher network [7] and
the NetVLAD [8]. A multilayer approach has recently been
proposed in [9]. It consists in stacking the FV descriptors com-
puted on the outputs of different CNN layers. Nevertheless, all
these strategies operate only with first order statistics in the
feature space of the CNN architecture. They do not consider
second order statistics which have been proved to be important
in human visual recognition process [10].

To tackle this problem, many authors have proposed to
define strong and discriminant feature representation by con-
sidering second-order statistics with the use of covariance
matrices. But, since the geometry of covariance matrices is
not Euclidean, standard Euclidean tools are not suited to
handle these kind of descriptors. For that, the geometry of the
space of symmetric positive definite (SPD) matrices should be
taken into account. Since then, on one side, coding methods
were extended to covariance matrix descriptors yielding to
the following approaches: the log-Euclidean bag of words
(LE BoW), the bag of Riemannian words (BoRW) [11], the
log-Euclidean vector of locally aggregated descriptors (LE
VLAD) [12] and the intrinsic Riemannian vector of locally
aggregated descriptors (RVLAD), the Log-Euclidean Fisher
vectors (LE FV) [13] and the Riemannian Fisher vectors
(RFV) [14]. On the other side, second order statistics were
also extended to CNN models to enhance their performance.
Several architectures have recently been introduced. A first
attempt was the pooled covariance matrix from the outputs of
a CNN [15]. Another way to exploit second-order statistics
in a deep neural network is the Riemannian SPD matrix
network (SPDNet) [16]. This network aims at mimicking
the conventional fully connected, convolution-like layers and
rectified linear units (ReLU)-like layers of a CNN to data
which do not lie on an Euclidean space. In the same spirit,
Yu et al. have proposed in [17] a second order CNN (SO-
CNN) that can be trained in an end-to-end fashion. Recently,
we have proposed in [13] an hybrid deep neural network
based on the log-Euclidean Fisher vectors encoding of region



covariance matrices which combines second-order statistics
with FV descriptors. Later, He et al. have proposed in [18] a
multiscale version: the multilayer stacked covariance pooling
(MSCP). Inspired by this work and by the success of ensemble
learning strategies in the computer vision community [19], this
paper aims at proposing a novel ensemble learning approach
based on covariance pooling of stacked convolutional layers.

The paper is structured as follows. Section II presents and
discusses the related works based on second order statistics.
Then, Section III introduces the proposed ensemble learning
approach based on covariance pooling (ELCP). An application
on remote sensing scene classification is next presented in
Section IV. Finally, Section V concludes this paper and
provides some perspectives of this work.

II. RELATED WORKS

The success achieved by CNN modeling for many computer
vision tasks such as image classification has allowed to extend
their use in the remote sensing community. However, training
a CNN model from scratch requires a large number of labelled
images. In computer vision, the ImageNet dataset is generally
considered but, when working with remote sensing images,
there is no such large annotated dataset. As such, a transfer
learning approach is better suited. It consists in exploiting
CNN models (pretrained on ImageNet) as feature extractors.
This strategy has been proved to be effective and to outperform
traditional handcrafted feature-based methods [6]. Based on
this concept of transfer learning, different supervised classifi-
cation strategies have recently been introduced in the literature
in order to exploit second order statistics on the output of a
CNN:

• LE FV encoding of CNN layers (Hybrid LE FV) [13],
[20],

• Multilayer stacked covariance pooling (MSCP) [21].
The next two subsections present these strategies.

A. LE FV encoding of CNN layers

We have introduced in [20] an hybrid deep neural network
based on the log-Euclidean Fisher vectors encoding of region
covariance matrices. This approach generalizes the algorithm
introduced in [9] by exploiting second-order statistics, via
the computation of region covariance matrices. The general
principle can be summarized as follows. Each layer of a CNN
is represented by a set of region covariance matrices which are
further encoded with FV. For that, the concept of FV encoding
has been extended to covariance matrix descriptors which
are SPD matrices. In order to manipulate these data points
that do not lie on an Euclidean space but on a Riemannian
manifold, the log-Euclidean metric was adopted. This allows
the definition of the log-Euclidean Fisher vectors (LE FV). The
proposed approach was then integrated in a supervised image
classification algorithm based on the encoding of deep neural
networks features obtained via a transfer learning approach.

Note that in this approach, only the first layers of the
CNN have been encoded with the LE FV since the last
convolutional layers have a relatively small spatial dimension.

It is hence irrelevant to compute a large number of region
covariance matrices for the deepest convolutional layers. A
simple encoding with FV is considered (i.e. only first order
statistics are considered as in [9]). Even if this approach
was successfully validated for the classification of large scale
images and very high resolution texture images, it involves an
heavy computation time. To alleviate this issue, a covariance
pooling based approach has been introduced in [21].

B. Multilayer stacked covariance pooling

Fig. 1: Architecture of the multilayer stacked covariance
pooling strategy (MSCP).

Fig. 2: Description of the downsampling and averaging fusion
operations over convolutional feature maps in the MSCP
algorithm.

Willing to exploits second order statistics and convolutional
networks, He et al. have proposed in [21] a method named
multilayer stacked covariance pooling (MSCP) where informa-
tion among specific convolutional layers are fused in a single
covariance matrix. Contrary to the hybrid LE FV method
presented in Section II-A which represents each layer by a set
of covariance matrices, a single covariance matrix is computed
for MSCP which allows to significantly faster the computation
time.



Fig. 3: Architecture of the proposed ensemble learning approach for covariance pooling of multilayer stacked CNN features
(ELCP).

The general principle of MSCP is summarized in Fig. 1.
First, three convolutional layers, with different depth, are
considered and analyzed separately. For a given convolutional
layer, an ensemble learning approach is considered by splitting
the convolutional features into d subsets. For each subset,
k features are selected without replacement. These latter are
next downsampled and averaged in order to obtain only one
descriptor by subset (see Fig. 2). Then, the d average descrip-
tors for each convolutional layer are concatenated allowing
to obtain a tensor of dimension s × s × 3d. The covariance
pooling operator is next applied, it consists in computing the
3d×3d covariance matrix descriptor. Finally, the log-Euclidean
metric is considered for classification. For that, the LE vector
representation is computed and an SVM classifier is adopted.

Even if an ensemble learning strategy is adopted in the
MSCP algorithm, each convolution map is only seen once.
There is no sampling with replacement as classically done
in a random forest classifier for example. Moreover, the main
drawback of MSCP concerns the averaging operator presented
in Fig. 2. There is no reason for the obtained average descriptor
of the first subset to be different from the one computed on
the last subset. This yields that the covariance matrix of these
average descriptors may not be well conditioned. To overcome
these issues, the next section introduces a novel ensemble
learning approach based on the covariance pooling of CNN
features.

III. ENSEMBLE LEARNING APPROACH BASED ON
COVARIANCE POOLING (ELCP)

Inspired by the MSCP classification method presented in
Section II-B, the proposed approach, named ELCP, aims at
proposing an ensemble learning approach. The idea behind
this technique is to combine several weak classifiers to produce
better predictive performance than with a single classifier. This
will ensure robustness by combining the decision obtained on
different subsets [19]. The global principle is shown in Fig. 3.

First, features from three convolutional layers (conv1, conv2
and conv3) are extracted. Their associated feature maps are

denoted M1, M2 and M3 respectively. Usually, the spatial
dimension of CNN layers is different from one layer to
another. For example, in the case of the Vgg-vd-16 model,
M1 ∈ R56×56×256, M2 ∈ R28×28×512 and M3 ∈ R14×14×512.
In order to stack these three feature maps, a bilinear interpola-
tion is applied allowing to downsample each feature maps to
the smallest spatial dimension. Furthermore, for each image,
the stacked feature maps produced by the convolutional layers
are partitioned into N subsets of k features. These subsets
are obtained by random sampling with replacement. Then,
for each subset, a covariance pooling strategy is considered.
It consists in computing the k × k covariance matrix C.
Since covariance matrices are SPD matrices that lies on a
Riemannian manifold, the Euclidean distance is not adapted to
compute a similarity measure between them. The geometry of
SPD matrices should be considered. Here, the log-Euclidean
metric is adopted. It permits the projection of covariance
matrices to a tangent space where Euclidean tools can be
considered. It allows the representation of covariance matrices
as vectors. Practically, it consists in mapping the covariance
matrices C on the log-Euclidean space via the log map
operator [22] defined as:

CLE = logId C = V logm(D) VT , (1)

where C = VDVT is the eigen decomposition of covariance
matrix C and logm() is the matrix logarithm. Then, to
obtain the log-Euclidean vector representation, a vectorization
operation Vec() is performed such that:

x = Vec(X) =
[
X11,

√
2X12, . . . ,

√
2X1k, X22,

√
2X23, . . . , Xkk

]
.

(2)
More detailed explanations about the covariance mapping into
the log-Euclidean space can be found in [20]. It yields that
the obtained covariance matrix C ∈ Rk×k is transformed to a
vector c ∈ R

k(k+1)
2 . Then for each subset, these vectors are fed

to a base classifier allowing to obtain a decision. In the end,



Fig. 4: Influence of the number N of subsets and the number
k of selected features in each subset on the classification
accuracy.

a majority vote is performed to select the most represented
decision among the N subsets.

As explained, two parameters should be tuned: the number
N of subsets and the number k of selected features in each
subset. In order to evaluate the sensitivity of the proposed
ELCP approach, an experiment is conducted. Fig. 4 draws the
evolution of the classification accuracy as a function of k for
different values of N (N = 10 to N = 30). As observed, the
best results are obtained when N = 20 and k = 170. These
parameters are set to these values in the following.

IV. EXPERIMENTS

This section introduces an application to large scale scene
remote sensing image classification. For that, two challenging
dataset are considered to evaluate the performance of the
proposed supervised classification algorithm: the UC Merced
Land Use and the AID datasets. The first one is composed
of 21 classes (e.g. forest, beach, sparse residential, etc) where
each class contains 100 images of dimension 256×256 pixels.
The second one, named AID dataset, contains 10 000 aerial
images of dimension 600 × 600 pixels partitioned into 30
classes. Fig. 5 illustrates some images from each dataset. For
each dataset, images are randomly separated into training and
testing sets according to a fixed rate. 50 % of images are
retained for training for the UC Merced dataset while for AID
dataset, due to its large size, only 10 % of samples are selected
for training. In the following, two CNN models pretrained on
ImageNet are considered: AlexNet [6] and Vgg-vd-16 [23].
Note also that the final classification step in Fig. 3 is performed
by the linear SVM classifier.

A. Classification results for a single convolutional layer

In this part, the proposed ELCP approach is tested when
CNN feature maps are issued from a single layer. Some
comparisons are carried out with two other strategies: (1) an
hybrid architecture based on the FV encoding of CNN features
(Hybrid FV) [9] and (2) the MSCP algorithm [21] detailed
in Section II-B. Table I summarizes the classification results

(a) UC Merced Land Use dataset

(b) AID dataset

Fig. 5: Samples from the datasets used in the classification
experiments.

obtained on the UC Merced dataset for three convolutional
layers for AlexNet and Vgg-vd-16 CNN models.

TABLE I: Classification performance obtained on UC Merced
dataset using Hybrid FV, MSCP and the proposed ELCP
approaches.

AlexNet

Conv3 Conv4 Conv5

Hybrid FV [9] 92.5 ± 0.2 % 93.9 ± 0.3 % 94.1 ± 0.7 %

MSCP [21] 93.7 ± 0.2 % 94.6 ± 0.6 % 93.6 ± 0.7 %

ELCP 95.1 ± 0.4 % 95.4 ± 0.4 % 95.2 ± 0.4 %

Vgg-vd-16

Conv3,3 Conv4,3 Conv5,3

Hybrid FV [9] 91.8 ± 0.5 % 96.1 ± 0.6 % 94.1 ± 0.4 %

MSCP [21] 87.6 ± 1.1 % 94.6 ± 0.6 % 95.1 ± 0.2 %

ELCP 95.4 ± 0.6 % 97.0 ± 0.3 % 95.1 ± 0.5 %

As observed in Table I, the proposed ELCP architecture
allows to improve the classification accuracy compared to
Hybrid FV and MSCP architectures when a single layer is
considered. A mean average gain of about 1.5 % and 2.6 %
are respectively observed for AlexNet and Vgg-vd-16 models.
Note also that the best results are obtained for the Vgg-vd-
16 model. In the following, only this CNN model will be
considered.

B. Classification results for multilayer features

Now that the proposed ELCP approach has successfully
been validated for a single layer, the potential of a multilayer
version is investigated. Table II shows the classification results
in terms of overall accuracy (mean ± sd) obtained on the
UC Merced and AID datasets for five strategies. The first
two ones (CNN and Hybrid FV [9]) exploit only first order
statistics computed on the CNN feature maps. The former
consists on SVM classifier applied on the fully connected
features of the Vgg-vd-16 model pretrained on ImageNet. The
two multilayer architectures presented in Section II, namely
Hybrid LE FV [20] and MSCP [21], are also compared with
the proposed ELCP approach.



TABLE II: Classification performance obtained on UC Merced
(50 %) and AID (10 %) datasets using CNN, Hybrid FV,
Hybrid LE FV, MSCP and the proposed ELCP approaches

Method UC Merced AID

CNN 84.2 ± 2.8 % 76.2 ± 0.4 %

Hybrid FV [9] 96.2 ± 0.7 % 85.8 ± 0.1 %

Hybrid LE FV [20] 96.7 ± 0.2 % 87.6 ± 0.1 %

MSCP [21] 96.7 ± 0.3 % 87.9 ± 0.2 %

ELCP 97.4 ± 0.3 % 88.5 ± 0.4 %

As observed in Table II, the use of second order statistics
allows to increase the classification performance. On the
two datasets, a significant gain of 0.7% is observed for the
proposed ELCP approach compared to the best state-of-the-art
strategy. This clearly illustrates the benefit of exploiting jointly
an ensemble learning strategy and second order statistics in the
feature space of a CNN model.

V. CONCLUSION AND PERSPECTIVES

This paper has introduced a novel supervised classification
algorithm based on second-order statistics (i.e. covariance
matrix descriptors) computed on the output of a deep neural
network. Inspired from the principle of ensemble learning
techniques, it consists in splitting the CNN features maps into
k subsets selected randomly with replacement. Then, a co-
variance pooling strategy is adopted allowing the modeling of
second order statistics. Next, by exploiting the log-Euclidean
(LE) metric, these covariance matrices are represented by their
LE vector representation that are fed to an SVM classifier.
In the end, a majority vote is done to obtain the final
decision. The proposed approach has been validated for an
application in remote sensing scene classification. For that,
two challenging datasets have been considered: the UC Merced
and AID datasets. Some comparison with two state-of-the-art
algorithms, namely hybrid LE FV and MSCP, have proved
the potential of the proposed method. It allows to obtain
competitive classification performances while maintaining a
reasonable computation time. Future works may include the
proposition of an ensemble learning technique which will
exploit jointly first and second-order statistics.
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