, Wind Turbines -Part 1 Design Requirements, International Standard IEC 61400-1 ed. 4, 2019.

, General principles on reliability for structures, 2015.

R. M. Slot, L. Svenningsen, J. D. Sørensen, and M. L. Thøgersen, Importance of Shear in Site Assessment of Wind Turbine Fatigue Loads, J. Sol. Energy Eng, vol.140, p.41012, 2018.

H. Toft, L. Svenningsen, W. Moser, J. Sørensen, and M. Lybech-thøgersen, Wind Climate Parameters for Wind Turbine Fatigue Load Assessment, J. Sol. Energy Eng, vol.138, 2016.

, International Standard IEC 61400

P. A. Graf, G. Stewart, M. Lackner, K. Dykes, and P. Veers, High-throughput computation and the applicability of Monte Carlo integration in fatigue load estimation of floating offshore wind turbines, Wind Energy, vol.19, pp.861-872, 2016.

,

N. Dimitrov, M. Kelly, A. Vignaroli, and J. Berg, From wind to loads: wind turbine sitespecific load estimation using databases with high-fidelity load simulations, Wind Energy Sci, vol.3, pp.767-790, 2018.

H. S. Toft, L. Svenningsen, J. D. Sørensen, W. Moser, and M. L. Thøgersen, Uncertainty in wind climate parameters and their influence on wind turbine fatigue loads, Renew. Energy, vol.90, pp.352-361, 2016.

A. Morató, S. Sriramula, and N. Krishnan, Kriging models for aero-elastic simulations and reliability analysis of offshore wind turbine support structures, Ships Offshore Struct, pp.1-14, 2018.

R. Teixeira, A. O'connor, M. Nogal, N. Krishnan, and J. Nichols, Analysis of the design of 23 experiments of offshore wind turbine fatigue reliability design with Kriging surfaces, Procedia Struct. Integr, vol.5, pp.951-958, 2017.

J. P. Murcia, P. Réthoré, N. Dimitrov, A. Natarajan, J. D. Sørensen et al., Uncertainty propagation through an aeroelastic wind turbine model using polynomial surrogates, Renew. Energy, vol.119, pp.910-922, 2017.

,

W. Hu, K. K. Choi, and H. Cho, Reliability-based design optimization of wind turbine blades for fatigue life under dynamic wind load uncertainty, Struct. Multidiscip. Optim, vol.54, pp.953-970, 2016.

N. Dimitrov, A. Natarajan, and M. Kelly, Model of wind shear conditional on turbulence and its impact on wind turbine loads, Wind Energy, vol.18, pp.1917-1931, 2015.

M. Shoaib, I. Siddiqui, S. Rehman, S. Khan, and L. M. Alhems, Assessment of wind energy potential using wind energy conversion system, J. Clean. Prod, vol.216, pp.346-360, 2019.

L. Svenningsen, R. M. Slot, and M. L. Thøgersen, A novel method to quantify atmospheric stability, J. Phys. Conf. Ser, p.1102, 2018.

M. Kelly, G. Larsen, N. K. Dimitrov, and A. Natarajan, Probabilistic Meteorological Characterization for Turbine Loads, J. Phys. Conf. Ser, vol.524, p.12076, 2014.

M. A. Miner, Cumulative damage in fatigue, J. Appl. Mech, vol.12, pp.159-164, 1945.

J. M. Jonkman, S. Butterfield, W. Musial, and G. Scott, Definition of a 5-MW reference wind turbine for offshore system development, 2009.

E. J. Novaes-menezes, A. M. Araújo, N. S. Bouchonneau, and . Silva, A review on wind turbine control and its associated methods, J. Clean. Prod, vol.174, pp.945-953, 2018.

J. Jonkman, FAST An aeroelastic computer-aided engineering (CAE) tool for horizontal axis wind turbines, 2015.

N. K. Jonkman, TurbSim A stochastic, full-field, turbulence simulator primarialy for use with InflowWind/AeroDyn-based simulation tools, 2016.

, International Electrotechnical Commission, Wind turbines, incl. Amendment, vol.3, pp.61400-61401, 2005.

A. Astm and . No, Standard Practice for Cycle Counting in Fatigue Analysis, 2011.

J. D. Sørensen, S. Frandsen, and N. J. Tarp-johansen, Effective turbulence models and fatigue reliability in wind farms, Probabilistic Eng. Mech, vol.23, pp.531-538, 2008.

,

, Safety Factors -IEC 61400-1 ed. 4 -background document, pp.61400-61401, 2014.

S. Marelli and B. Sudret, UQLab: A Framework for Uncertainty Quantification in Matlab, pp.2554-2563, 2014.

T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer Experiments, 2018.

B. Sudret, Polynomial chaos expansions and stochastic finite element methods, Risk Reliab. Geotech. Eng, pp.265-300, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01449883

L. Kocis and W. J. Whiten, Computational investigations of low-discrepancy sequences, ACM Trans. Math. Softw, vol.23, pp.266-294, 1997.

D. Xiu and G. E. Karniadakis, The Wiener--Askey Polynomial Chaos for Stochastic Differential Equations, SIAM J. Sci. Comput, vol.24, pp.619-644, 2002.

M. Rosenblatt, Remarks on a Multivariate Transformation, Ann. Math. Stat, vol.23, pp.470-472, 1952.

G. Blatman and B. Sudret, Adaptive sparse polynomial chaos expansion based on least angle regression, J. Comput. Phys, vol.230, pp.2345-2367, 2011.

,

S. Marelli and B. Sudret, UQLab user manual -Polynomial Chaos Expansions, 2017.

C. Lataniotis, S. Marelli, and B. Sudret, UQLab user manual -Kriging (Gaussian Process Modelling), 2017.

. Cen/tc and . En, Eurocode -Basis of structural design, 1990.

W. J. Morokoff and R. E. Caflisch, Quasi-Monte Carlo Integration, J. Comput. Phys, pp.218-230, 1995.

R. Schöbi, B. Sudret, and J. Wiart, Polynomial-chaos-based Kriging, Int. J. Uncertain. Quantif, vol.5, pp.171-193, 2015.

S. Marelli and B. Sudret, UQLab user manual -PC-Kriging, 2017.

I. Andrianakis and P. G. Challenor, The effect of the nugget on Gaussian process emulators of computer models, Comput. Stat. Data Anal, vol.56, pp.4215-4228, 2012.