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On shakedown analysis in hardening plasticity
Quoc-Son Nguyen∗

Laboratoire de Mecanique des Solides, CNRS-umr7649, Ecole Polytechnique, 91128 Palaiseau,
Paris, France

Abstract

The extension of classical shakedown theorems for hardening plasticity is interesting from both
theoretical and practical aspects of the theory of plasticity. This problem has been much discussed
in the literature. In particular, the model of generalized standard materials gives a convenient
framework to derive appropriate results for common models of plasticity with strain-hardening.
This paper gives a comprehensive presentation of the subject, in particular, on general results
which can be obtained in this framework. The extension of the static shakedown theorem to hard-
ening plasticity is presented at 3rst. It leads by min–max duality to the de3nition of dual static
and kinematic safety coe4cients in hardening plasticity. Dual static and kinematic approaches are
discussed for common models of isotropic hardening of limited or unlimited kinematic hardening.
The kinematic approach also suggests for these models the introduction of a relaxed kinematic
coe4cient following a method due to Koiter. Some models for soils such as the Cam-clay model
are discussed in the same spirit for applications in geomechanics. In particular, new appropriate
results concerning the variational expressions of the dual kinematic coe4cients are obtained.

Keywords: A. Plasticity; Strain hardening; B. Shakedown; C. Duality; Variational principles

1. Introduction

The elastic shakedown phenomenon is related to the long-term behaviour of a
solid under variable loads and expresses the fact that the mechanical response of
solids becomes purely elastic if the load amplitude is small enough or if the hard-
ening e<ect is strong enough, especially in cyclic plasticity, immaterial of the initial
state of the evolution. The possibility of shakedown is interesting in the analysis of
quasi-static or dynamic response of elastic–p1astic solids under cyclic loads. Indeed, in
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cyclic plasticity, an uncontrolled progressive or alternating plastic deformation is often
the origin of undesirable e<ects for the resistance of a solid. For example, the existence
of shakedown will prevent the fatigue phenomenon under plastic strains, which results
in failure under a small number of cycles, in contrast with the fatigue under elastic
strain with much higher number of cycles (cf. Dang Van and Papadopoulos, 1999).
For this reason, shakedown conditions are discussed in a large number of papers, for
di<erent applications in the design of structures. Classical shakedown theorems in a
quasi-static deformation takes its de3nitive form from the pioneering works of Bleich
(1932), Melan (1936) and Koiter (1960). Its generalization to dynamics has been
discussed (cf. Corradi and Maier, 1974). Further extensions to hardening plasticity,
non-standard plasticity, to visco-plasticity or to damage mechanics and poroplasticity
can be found in a large number of references (e.g. Maier, 1972; Konig, 1987; Polizzotto
et al., 1991; Debordes, 1976; Weichert and Maier, 2000; Maier, 2001; BodovillHe and
de SaxcHe, 2001). In particular, the reader can refer to Martin (1975), Polizzotto (1982),
Corigliano et al. (1995) for a rather complete presentation of the theory and historical
survey, to Maier (2001), Ponter and Chen (2001) and Hachemi and Weichert, 1998
for new directions on the related subjects.

The objective of this paper is to give a presentation of shakedown theorems in
hardening plasticity, available for common models of strain hardening. Since the ex-
tension of shakedown theory into hardening plasticity has been much discussed (e.g.
Maier, 1972; Mandel, 1976; Nguyen, 1976; Polizzotto et al., 1991; Pycko and Mroz,
1992; Corigliano et al., 1995; Fuschi, 1999 etc.) a complete survey on general re-
sults for hardening plasticity in the spirit of Koiter’s discussion (Koiter, 1960) is
certainly useful. However, because of the complexity and the diversity of harden-
ing laws, it is clear that such a task is di4cult and it will be easier to give only
a less ambitious presentation on general theorems which can be derived within some
description. In this spirit, our attention is focussed on the framework of generalized
standard models of plasticity. This framework is a straightforward extension of per-
fect plasticity, with the same ingredients of convexity and normality and has been
shown to be large enough to cover most common models of hardening plasticity
(Halphen and Nguyen, 1975; Nguyen, 2000). As in perfect plasticity (Koiter, 1960;
Debordes, 1976; Pycko and Mroz, 1992), the method of min–max duality can be
followed within this framework. The starting point is a static shakedown theorem,
given previously in Nguyen (1976); Polizzotto et al. (1991). This theorem leads to
the de3nition of the safety coe4cient with respect to shakedown and, by a min–max
duality, to dual expressions of the safety coe4cient obtained respectively from static
and kinematic approaches. This method is then applied to the particular cases of strain
hardening materials for which hardening parameters are the plastic strain or equivalent
plastic strain.

This discussion also suggests the introduction of a relaxed kinematic safety coe4-
cient, following a method due to Koiter, in the so-called Koiter’s second shakedown
theorem (Koiter, 1960). Some of the obtained results have been announced in Nguyen
and Pham (2001). Min–max duality is also considered for common models of ge-
omechanics such as the Cam-clay model. Finally, a simple example is given in the
last section to illustrate the kinematic approach in limited kinematic hardening. Our
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principal goal is to obtain appropriate theorems for common models of limited isotropic
or kinematic hardening or for pressure-dependent geomaterials.

2. Static shakedown theorems

The quasi-static evolution of an elastic plastic solid under variable loads on the
interval [0;+∞[ is considered here. For dynamic-conditions, it is well known that
additional terms due to the inertial forces can be taken into account and the same
conclusion remains valid as it has been shown in the literature. Let (u(t); �(t); �p(t))
be the elastic–plastic response of the solid starting from a given initial state on the
interval t¿ 0. By de3nition, this response will shake down if the existence of the limit

lim
t→∞ �p(t) (1)

is ensured. It can be noted that this property also ensures that limt→∞u(t) − uel(t)
and limt→∞�(t)−�el(t) exist, under certain additional assumptions (e.g. Debordes and
Nayroles, 1976), where �el(t); uel(t) denote the 3ctitious response of the same solid,
assumed to be purely elastic, to the same loading. The proof of this statement is clear
for discrete systems while for continua, some di4culties remain concerning the choice
of a relevent functional space in the case of perfect plasticity (Debordes, 1976).

2.1. Perfect plasticity

The classical static theorem of shakedown in perfect plasticity, also known as Melan’s
theorem, states that:

Static shakedown theorem. If there exists a self-stress 6eld s∗(x), a safety coe7cient
m¿ 1 and a time � such that the stress 6eld m(s∗ + �el(t)) satis6es everywhere and
for all t¿ � the plastic criterion

f(m(s∗(x) + �el(x; t)))6 0 ∀x; ∀t ¿ �

then there is shakedown, immaterial of the initial conditions.

The proof of Melan’s theorem can be obtained in two steps. In the 3rst step, it is
shown that under the assumptions of the theorem, the dissipated energy W d is neces-
sarily bounded. In the second step, this property ensures the existence of limt→∞�p(t).

To prove the 3rst step, it is useful to note that for all plastically admissible stress
3elds �̃, the following inequality holds:∫

�
(� − �̃): �̇p d�¿ 0:
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By taking �̃ =m(s∗ + �el(t)) which is plastically admissible by assumption, it follows
that ∫

�
(� − �∗): �̇p¿

m− 1
m

∫
�
din d�

with �∗ = s∗ + �el, where din = �: �̇p. Since � − �∗ is a self-stress 3eld and since
u̇− u̇ el = 0 on Su, one obtains

0 =
∫
�

(� − �∗): (�̇− �̇el) d� =
∫
�

(� − �∗): �̇p +
∫
�

(� − �∗): L−1: (�̇ − �̇∗) d�:

It follows that

−
∫
�

(� − �∗): L−1: (�̇ − �̇∗) d�¿
m− 1
m

∫
�
din d�;

which leads, after a time integration on the interval [�; t], to

I(�) − I(t)¿
m− 1
m

W d (2)

with

I(t) =
∫
�

1
2

(� − �∗): L−1: (� − �∗) d�:

The dissipated energy W d(t) =
∫ t
�

∫
� �: �̇p d� d� thus remains bounded for all initial

conditions.
The second step consists of proving that �p(t) tends to a limit. The fact that the

dissipated energy remains bounded already ensures the existence of a limit of �p(t) for
any appropriate functional space which is complete with respect to the norm associated
with the dissipation, since there exists a constant c¿ 0 such that �: �̇p¿ c‖�̇p‖. This
inequality follows from the fact that the origin of stress is strictly inside the elastic
domain.

This convergence ensures immediately the existence of the limits limt→∞u(t) −
uel(t) and limt→∞�(t)−�el(t) for discrete systems. A mathematical di4culty, however,
remains for continuous media and concerns an appropriate choice of the norm. A
method due to Nayroles (1977) can be applied concerning the stress 3eld when the
plastic criterion is symmetric with respect to the origin of stress. It consists of proving
that the sequence si = �(ti) − �el(ti) is a Cauchy sequence with the energy norm

‖s‖2
e =

∫
�
s: L−1: s d�

and thus converges. Indeed, for all t2 ¿t1 ¿t0, we have

1
2
‖s1 − s2‖2

e =
∫ t2

t1

∫
�
ṡ: L−1: (s− s1) d� dt = −

∫ t2

t1

∫
�
�̇p: (s− s1) d� dt:

The last integrand can also be written as

−�̇p: (s− s1) = −�̇p: ((� − �∗) − (�1 − �∗1 ))

= −�̇p: (� − �∗) + �1: �̇p − �̇p: �∗1 :
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In this expression, the 3rst term is non-positive and the second is bounded by din=�: �̇p.
If the plastic criterion is symmetric with respect to the origin of stress, such as in the
case of Mises or of Tresca’s criterion, the stress −�∗1 is also plastically admissible,
thus the third term is also bounded by din. It follows that

�= ‖s1 − s2‖2
e 6 4(W d(t2) −W d(t1)):

Since the dissipated energy is bounded and cannot decrease, si is a Cauchy sequence
and so this sequence converges. It follows that �(t) − �el(t) tends to a limit when
t → ∞.

In the presentation of the shakedown theorem in perfect plasticity, it can be assumed
equivalently that there exists a particular plastic strain 3eld �p∗ generating a self-stress
s∗ such that the stress 3eld m�∗ is plastically admissible. It should be also emphasized
that two principal ingredients are involved in the proof of Melan’s theorem. Firstly,
the property of contraction of the distance separating two solutions starting from two
initial states holds in perfect plasticity. Secondly, the possibility to have a constant
solution for the plastic response exists by assumption.

2.2. Hardening plasticity

This discussion is limited to the case of generalized standard models of hardening
plasticity. A generalized standard material is de3ned by the following conditions:

• State variables are (�; �), which represent, respectively, the strain tensor and a set of
internal parameters. Internal parameters � include the plastic strain and other hard-
ening variables. There exists an energy potential W (�; �) which leads to associated
forces

� =W;� ; A = −W;� (3)

and to a dissipation per unit volume din

din = A�̇: (4)

• The force A must be plastically admissible, this means that physically admissible
forces A∗ must remain inside a convex domain C, called the elastic domain and
de3ned by the plastic criterion f(A∗)6 0.

• Normality law is satis3ed for �:

�̇ = �
9f
9A ; �¿ 0; �f = 0: (5)

Thus, the following maximum dissipation principle is satis3ed:

A∗�̇6A�̇ = D(�̇) = max
A∗∈C

A∗�̇ (6)

in the spirit of Hill’s maximum principle in perfect plasticity. Finally, as in perfect
plasticity, the notions of convexity, normality, energy and generalized forces are four
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principal ingredients of the generalized standard models. The dissipation potential D(�̇)
is convex, positively homogeneous of degree 1. This function is state independent, i.e.
independent of the present value of state variables (�; �), if the plastic criterion is state
independent.

The following result has been obtained under some additional assumptions.

Proposition 1 (static shakedown theorem in hardening plasticity). It is assumed that
the plastic criterion is state-independent and that

W =W1(�; �) +W2(�); (7)

where W1 is quadratic and non-negative with respect to (�; �) and W2(�) is an arbi-
trary convex and di;erentiable function. Then there is shakedown whatever the initial
state if there exists a time �, a constant internal parameter 6eld �∗ and a safety co-
e7cient m¿ 1 such that the force 6eld mA∗(t) is plastically admissible for all t ¿ �,
where A∗=−W;� (�∗; �∗) denotes the force de6ned from the associated response u∗(t).

The associated response u∗ denotes the response of a corresponding elastic solid
admitting the linear elastic relationship

� =W;� =W1; � = L: � + Y� = L: (�− �p∗) with �p∗ = −L−1: Y�∗:

under the same loading (prescribed forces and displacements) and under the inherent
plastic strain �p∗. In particular, the associated stress is �∗(t) = �el(t) + s∗ where s∗

denotes the self-stress due to the inherent plastic strain �p∗.
The proof of this proposition is relatively straightforward. Indeed, let (u(t); �(t)) be

a solution of the evolution problem starting from a given initial condition. Since under
the assumptions introduced, mA∗ is plastically admissible for all t¿ �, the following
inequality holds:∫

�
(A− A∗)�̇ d�¿

m− 1
m

∫
�
A�̇ d�:

From the fact that

(� − �∗): (�̇− �̇∗) − (A− A∗)(�̇− �̇∗)

=
d
dt
{W1(�− �∗; �− �∗) +W2(�) −W2(�∗) −W2; �(�∗)(�− �∗)}

since �̇∗ = 0, and that∫
�

(� − �∗): (�̇− �̇∗) d� = 0;

the following equation results:

− d
dt

∫
�
{W1(�− �∗; �− �∗) +W2(�) −W2(�∗) −W2; �(�∗)(�− �∗)} d�

¿
m− 1
m

∫
�
din d�:
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Thus estimate (2) is again obtained with

I(t) =
∫
�
{W1(�(t) − �∗(t); �(t) − �∗)

+W2(�(t)) −W2(�∗) −W2; �(�∗)(�(t) − �∗)} d�:

Since I(t) is non-negative as a sum of two non-negative terms, the dissipated energy
W d(t) is bounded by I(�) for all t ¿ �. Repeating the same arguments, the existence
of the limit

lim
t→∞�(t) − �∗

is ensured again from this estimate on the dissipated energy. In the same spirit as
Melan’s theorem, Proposition 2 gives a su4cient condition ensuring the shakedown of
a solid subjected to a given loading path.

If the plastic criterion is symmetric with respect to the origin in the force space,
Nayroles’ method is still valid and leads then to the convergence of the stress 3eld
�(t) in the elastic energy norm. Indeed, the following expression holds:

�: �̇p = A�̇ + �(X − Y TL−1Y )�̇ +W2; ��̇

with the notation W1 = 1=2(�: L: � + �: Y� + �X�). Thus

−�̇p: (� − �∗) + �1: �̇p − �∗1 �̇
p = −�̇: (A− A∗) + A1�̇− A∗

1 �̇

−W2; ��̇−W2; �1�̇− (�− �1)(X − Y TL−1Y )�̇

and the same argument leads to

�6 4(W d(t2) −W d(t1)) − (W2(�2) −W2(�1) −W2; �1)(�2 − �1))

−1
2

(�2 − �1)(X − Y TL−1Y )(�2 − �1)6 4(W d(t2) −W d(t1))

since the two last terms of the middle expression are non-positive after the assumptions
of Proposition 2.

3. Min–max duality and dual safety coe cients

In the spirit of the min–max duality method, developed by Debordes and Nayroles
(1976) or Pycko and Mroz (1992) for shakedown theorems in perfect plasticity, the
de3nition of a safety coe4cient with respect to shakedown is now introduced and dual
static and kinematic approaches are considered.

3.1. Static approach and safety coe7cient

The de3nition of a safety coe4cient with respect to shakedown can be given from
the previous results. For a given loading history on the time interval [0 + ∞[,
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Proposition 2. Let ms be the safety coe7cient de6ned by the maximum

ms(�) = max
�∗

m (8)

among all constant 6elds �∗ such that

∀t¿ �; u∗(t)CA; �∗(t)SA; mA∗PA;

�∗ =W;� (�(u∗); �∗); A∗ = −W;� (�(u∗); �∗); (9)

where CA, SA, PA, respectively, stand for kinematically, statically and plastically
admissible 6elds. Then there is shakedown if there exists �¿ 0 such that ms(�)¿ 1
while no conclusion is available if ms(�)¡ 1 for all �¿ 0.

Indeed, if ms¿ 1 then there exists a constant 3eld �∗ in the spirit of
Proposition 1 and the conclusion holds. In perfect plasticity, this statement reduces to
Melan’s theorem. In kinematic hardening for example, the linear Zieger–Prager model
is often adopted. It is de3ned by state variables �; �p with �pkk = 0. The energy potential
W= 1

2 (�−�p): L: (�−�p)+ 1
2 �

p: h: �p leads to associated force A=−W;�p =�′−h: �p. The
plastic criterion (Mises) is ‖A‖− k6 0 and the dissipation potential is D(�̇p) = k‖�̇p‖
with the notation ‖A‖ =

√
AijAij: From Proposition 2, Proposition 3 follows.

Proposition 3. In linear kinematic hardening, the static safety coe7cient is de6ned
as the maximum

ms(�) = max
�p∗

m (10)

among constant plastic strain 6elds �p∗ satisfying �p∗kk = 0 such that

‖m(s∗′(�p∗) + �′el − h: �p∗)‖6 k (11)

for all x∈� and t¿ �.

It is well known in linear elasticity that the self-stress associated with a given initial
strain s(�I) is obtained from the resolution of a linear elastic problem with initial
strain. In particular, the self-stress associated with a given 3eld of initial strains �I is
the solution of the minimization problem of total complementary energy of the elastic
solid

min
s self -stress

‖s + L: �I‖2;

where ‖s‖ denotes the elastic energy norm

‖s‖2 =
∫
�
s: L−1: s d�:

Thus, the associated self-stress can be schematically written in the form

s(�I) = −Z(�I) (12)
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where the linear and symmetric operator Z is a projection in the sense of the energy
norm. In particular, this linear operator is non-negative since

〈Z(�I)|�I〉 =
∫
�
−s(�I): �I d� = ‖s(�I)‖2¿ 0:

Let us assume that there exists a state of stress deviator &∗ such that

‖�′el(t) − &∗‖¡k ′¡k ∀t¿ �: (13)

Then the plastic criterion ‖A∗‖¡k is always satis3ed if a 3eld �p∗ is such that

(Z + hI)�p∗ = &∗ (14)

could be found. Since this equation admits a solution for all &∗ from the fact that the
linear, symmetric operator Z + hI is positive-de3nite when h¿ 0. Thus, a particular
3eld �p∗ satisfying the static theorem can then be obtained and there is shakedown.
Finally, in linear kinematic hardening, the shakedown problem leads to the discussion
of conditions (13) which can be easily solved as it has been shown in the literature
(cf. Gittus and Zarka, 1986 for example). It is well known that there is shakedown if
the amplitude of the elastic stress does not exceed the diameter of the yield surface.

3.2. Min–max duality

Eqs. (8) or (10) are convex optimization problems. The dual approach consists of
considering dual problems obtained by relaxing some constraints. For this, the initial
problem (8) is 3rst written as the search of maximum of m in the set of constant 3elds
�∗ and time-dependent 3elds Ã(t) and of coe4cients m such that

∀t¿ �; u∗(t)CA; �∗(t)SA; mÃ(t)PA;

�∗ =W;� (�(u∗); �∗); A∗ = −W;� (�(u∗); �∗); Ã(t) = A∗(t): (15)

The last constraint is relaxed by the introduction of Lagrange multipliers '(t) associated
with the constraint m(Ã(t) − A∗(t)) = 0 and the Lagrangian

�('; m; �∗; Ã) = m +
∫ ∞

�

∫
�
m(Ã− A∗)' d� dt (16)

The saddle-point problem

max
�∗ ;Ã;m

min
'
� (17)

in the set of arbitrary 3elds '(t) and �∗; Ã(t); m such that

∀t¿ �; u∗(t)CA; �∗(t)SA; mÃ(t)PA;

�∗ =W;� (�(u∗); �∗); A∗ = −W;� (�(u∗); �∗); (18)

9



leads to the initial problem since the result of the minimization with respect to ' then
gives min' �= m if Ã(t) = A∗(t) for all t¿ � and min' �= −∞ otherwise.

Proposition 4. The dual problem

mk = min
'

max
�∗ ;Ã;m

� (19)

in the set of arbitrary 6elds '(t) and �∗; Ã(t) such that

∀t¿ �; u∗(t)CA; �∗(t)SA; mÃ(t)PA;

�∗ =W;� (�(u∗); �∗); A∗ = −W;� (�(u∗); �∗); (20)

de6nes the dual approach to compute the safety coe7cient. It is clear that

ms(�)6mk(�); (21)

according to general results of saddle-point duality.

In particular, if mk ¡ 1, then it is not possible to 3nd a self-stress satisfying the
condition of the previous propositions.

4. Dual kinematic approach

In the following sections, the dual kinematic approach will be considered for strain
hardening models admitting as internal parameters � the plastic strains or the equivalent
plastic strain in view of common models in hardening plasticity.

4.1. Perfect plasticity

In this case, Eq. (10) leads to the strain rate history ' = dp and to the Lagrangian

�= m+
∫ ∞

�

∫
�
m(�̃ − �∗): dp d� dt; (22)

where m�̃ must be plastically admissible and �∗=s∗+�el. The operation maxs∗� leads
to the calculation of

max
s∗

∫ ∞

�

∫
�
−s∗: dp d� dt (23)

and of

max
m�̃ PA

∫ ∞

�

∫
�
m�̃: dp d� dt: (24)
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The last problem is trivial:

max
m�̃ PA

∫ ∞

�

∫
�
m�̃: dp d� dt =

∫ ∞

�

∫
�
D(dp) d� dt

with D(dp) = maxm�̃ PA m�̃: dp. The 3rst problem leads to

max
s∗ self -stress

∫
�
−s∗:

∫ ∞

�
dpdt d�

= 0 if Ep =
∫ ∞

�
dp dt is a compatible 3eld;

+∞ if Ep is not a compatible 3eld:

A compatible 3eld means that there exists a displacement 3eld up with up = 0 on Su
such that Ep = (∇up). It follows that

max
�p∗ ;�̃

�= m
(

1 −
∫ ∞

0

∫
�
�el: dp d� dt

)
+
∫ ∞

�

∫
�
D(dp) d� dt:

when dp is admissible and Ep =
∫∞
� dp dt is compatible. Admissible rates dp must be

considered in order to ensure a 3nite value of D(dp). For example, if Mises criterion is
satis3ed, the plastic rate is admissible if dpkk =0. It is concluded after the maximization
with respect to m that the following result holds (cf. Koiter, 1960; Debordes, 1976;
Pycko and Mroz, 1992):

In perfect plasticity, the dual kinematic approach leads to a coe4cient mk¿ms,
de3ned as the minimum

mk = min
dp

∫ ∞

�

∫
�
D(dp) d� dt (25)

among the plastic rates dp satisfying

dp admissible; Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (26)

It is useful to note that mk¿ 1 if the following inequality holds:∫ ∞

�

∫
�
D(dp) d� dt¿

∫ ∞

�

∫
�
�el: dp d� dt (27)

for all plastic strain rate dp admissible and satisfying the condition Ep =
∫∞
� dp dt

compatible. This result is classically known as Koiter’s shakedown theorem (Koiter,
1960).

As usually established in min–max duality, equality ms =mk is generically satis3ed.
In particular, this equality holds if the plastic domain is bounded in the stress space as
it has been shown by Debordes and Nayroles (1976). It is expected that this equality
always holds although a rigorous proof is lacking for continuum solids.

4.2. Isotropic hardening

The isotropic hardening model with Mises criterion is de3ned by state variables
�; �p; e−p with energy W = 1

2 (� − �p): L: (� − �p) + V (e−p) and plastic criterion

11



Fig. 1. A model for isotropic hardening.

‖�′‖ − R(e−p) − k6 0 where R(y) = V ′(y). Since V (y) is a convex function, its
derivative R(y) is a non-decreasing function. The associated force is A= (�′;−R) and
the dissipation is din = �′: �̇p − R(e−p)‖�̇p‖ = D = k‖�̇p‖:

If R(y) is bounded and attains its maximum R(y) = Rmax for y¿ymax as shown in
Fig. 1, the static coe4cient ms will be bounded. Let K = k +Rmax, the calculation can
be done in the same spirit and leads to

max
�p∗ ;e−p∗

�= m
(

1 −
∫ ∞

�

∫
�
�el: dp d� dt

)
+
∫ ∞

�

∫
�

(k + Rmax)‖dp‖d� dt

if Ep =
∫∞
� dp dt is a compatible 3eld, while the result is in3nite otherwise. It is

concluded that

Proposition 5. In isotropic hardening with Mises criterion, the dual kinematic ap-
proach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp

∫ ∞

�

∫
�
K‖dp‖ d� dt (28)

among the plastic rates dp satisfying

dpkk = 0; Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dpd� dt = 1: (29)

This result is quite natural in the sense that the behaviour of the solid is the same
as in perfect plasticity with yield stress K . As in perfect plasticity, this discussion is
given here as a simple illustration of the method.

4.3. Linear kinematic hardening

If Zieger–Prager’s model is considered, it is not di4cult to establish that

max
�p∗

−
∫
�

(s∗ − h: �p∗):
∫ ∞

�
dp dt d� =




0 if Ep =
∫ ∞

�
dp dt = 0;

+∞ if Ep �= 0:

The same method then leads to Shakedown theorem (cf. for example to Koiter
(1960), Pham (2001))
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Proposition 6. In linear kinematic hardening with Mises criterion, the dual kinematic
approach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp

∞∫
�

∫
�
D(dp) d� dt (30)

among the plastic rates dp satisfying

dpkk = 0; Ep =
∫ ∞

�
dp dt = 0;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (31)

Thus, closed cycles of plastic rates must be considered instead of compatible plastic
cycles as in perfect plasticity or in isotropic hardening.

It is clear from this proposition that the result does not depend on the hardening
tensor h, the only restriction is its positiveness. The fact that closed cycles must be
considered leads to the consideration of the amplitude of the elastic stress and to the
trivial result that there is shakedown if this amplitude is smaller than the diameter of
the yield surface.

Combined isotropic and linear kinematic hardening models can also be discussed in
the same spirit. Again, closed cycles of plastic rates must be considered. This result,
to the knowledge of the author, has not been given in the literature and deserves to
be underlined although shakedown analysis in linear kinematic hardening is a trivial
problem.

4.4. Limited kinematic hardening

The model of nonlinear and limited kinematic hardening of Fig. 2 is considered. For
this model, the state variables are �; �p with �pkk = 0. The energy potential is W = 1

2 (�−
�p): L: (� − �p) + V (‖�p‖) where R(y) = V ′(y) is the monotone function previously
introduced in Fig. 1. Thus the generalized force is A = −W;�p = �′ − C with C =
R(‖�p‖)�p=‖�p‖. With Mises criterion ‖A‖ − k6 0, the elastic domain is a sphere of
radius k and with center C in the force space. This center C remains near the origin

Fig. 2. A model for limited kinematic hardening.

13



since ‖C‖6Rmax. It is not di4cult to establish that

max
�p∗

−
∫
�

(
s∗ − R(‖�p∗‖)

�p∗

‖�p∗‖
)

:
∫ ∞

�
dp dt d�

=
∫
�
Rmax‖Ep‖ if Ep is compatible;

+∞ if Ep is not compatible:

The same method then leads to

Proposition 7. For this limited kinematic hardening model, the dual kinematic ap-
proach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp

∫
�
Rmax‖Ep‖ d� +

∫ ∞

�

∫
�
k‖dp‖ d� dt (32)

among plastic rates dp satisfying

dpkk = 0; Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (33)

Again, compatible plastic cycles must be considered as in perfect plasticity or in
isotropic hardening.

In particular, if m0
k ; m

lkh
k and mnkh

k denote, respectively, the kinematic safety coef-
3cients in perfect plasticity, in linear kinematic hardening and in nonlinear kinematic
hardening with the same yield stress k, it follows from their de3nition that

m0
k(�)6mnkh

k (�)6mlkh
k (�) for all �: (34)

The case of limited hardening (Proposition 7) appears as the penalization of the unlim-
ited case (Proposition 6), Rmax is the penalty parameter associated with the constraint
‖Ep‖ = 0.

4.5. A relaxed kinematic coe7cient

If incompressible plastic strains and Mises yield criterion are assumed, the plastic
rates dp to be considered in the dual kinematic approach must satisfy both compatibility
and admissibility conditions:

dpkk = 0 and Ep =
∫ ∞

�
dp dt compatible:

A relaxation of the 3rst condition has been introduced by (Koiter, 1960) in order to
replace in perfect plasticity the computation of mk by a smaller coe4cient de3ned as
the minimum. A translation following the p-axis can also be introduced in order to
include the origin of stresses inside the elastic domain

m‘ = min
dp

∫ ∞

�

∫
�
D(dp

′
) d� dt (35)

14



among the rates ' satisfying

Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dp

′
d� dt = 1 (36)

where dp is a symmetric second order tensor and dp
′

its deviatoric part. From this
de3nition and from the expression of mk in Proposition 5, it is clear that m‘, denoted
as the relaxed kinematic safety coe4cient, must satisfy

m‘6mk: (37)

Moreover, the following result has been established and known as Koiter’s second
shakedown theorem.

Koiter’s second shakedown theorem. If m‘¿ 1, then the plastic dissipated energy is
necessarily bounded for any elastic–plastic evolution of a solid submitted to a given
loading path from any initial condition. Thus, there is shakedown.

This theorem can be easily understood under the assumption of the generic equal-
ity ms = mk . Indeed, it follows that ms¿m‘¿ 1, thus there is shakedown from the
static approach. However, a direct proof has been given by (Koiter, 1960) without this
assumption.

The same theorem also holds for the limited kinematic hardening model.

Proposition 8 (relaxed kinematic coe4cient). In the case of the previous limited kine-
matic hardening model, the dissipated energy is necessarily bounded and there is
shakedown if there exists �¿ 0 such that the relaxed safety coe7cient m‘6mk ,
de6ned by

m‘ = min
dp

∫
�
Rmax‖Ep′‖ d� +

∫ ∞

�

∫
�
k‖dp′‖ d� dt (38)

among the symmetric rates dp(x; t) such that

Ep =
∫ ∞

�
dp dt compatible

∫ ∞

�

∫
�
�el: dp

′
d� dt = 1; (39)

satis6es m‘¿ 1.

A direct proof is given here without the assumption ms = mk following Koiter’s
method. Indeed, the response of a hardening solid obeying this model under a given
loading path is considered starting from any initial condition. A special compatible rate
history dp is now constructed on [�;+∞[ from the plastic strain rate �̇p(t); t ∈ [�; T ]
for a chosen time T ¿�. With the notation � = �el + �r + �p where �r = L−1s, the
following rate is considered:

dp(t) = �̇p(t) if �6 t6 T;

dp(t) = 1
T ��r(T ) if 2T ¿ t¿T;

dp(t) = 0 if t¿ 2T

15



with ��(t) = �(t) − �(�). It is clear that

Ep =
∫ ∞

�
dp(t) dt = ��p(T ) + ��r(T ) = ��(T ) − ��el(T )

is a compatible but not necessarily admissible 3eld. We are interested in the expression
of the quantity

∫∞
�

∫
� �el: dp

′
d� dt. Since for all t ∈ [0; T ]∫

�
(�: �̇p + s: �̇r − �el: �̇p) =

∫
�

(� − �el)(�̇− �̇el) d� = 0;

∫
�
�el: dp

′
d� =

∫
�

(�: �̇p + s: �̇r) d�;

it follows that∫ 2T

�

∫
�
�el: dp

′
d� dt =

∫ T

�

∫
�
�: �̇p + s: L−1: ṡ d� dt

+
1
T

∫ 2T

T
dt

∫
�
�el: ��′r(T ) d�:

This rate history satis3es necessarily after the de3nition of m‘∫ +∞

�

∫
�
�el: dp

′
d� dt6

1
m‘

∫ +∞

�

∫
�
k‖dp′‖ d� dt +

1
m‘

∫
�
Rmax‖Ep′‖ d�:

It follows that

m‘ − 1
m‘

∫ T

�

∫
�
A: �̇p d� dt6

∫
�
{W c(s(�)) −W c(s(T )) + V (‖�p(�)‖)

−V (‖�p(T )‖) +
1
m‘

(k + Rmax)‖��′r(T )‖

+
1
m‘

Rmax‖�p(�)‖ +
1
m‘

Rmax‖�p(T )‖
}

d�

− 1
T

∫
�

∫ 2T

T
�el: ��′r(T ) dt d�; (40)

where A: �̇p = k‖�̇p‖ and W c(s) = 1
2 s: L

−1: s. The next step of the proof is to check
that the second member of this inequality remains bounded. On the one hand, after the
introduced assumption on the function V (y) as shown in Fig. 1, the estimate

V (‖�p‖)¿Rmax (‖�p‖ − ymax)

holds and gives

1
m‘

Rmax‖�p(T )‖ − V (‖�p(T )‖6ymax Rmax +
1 − m‘

m‘
Rmax‖�p(T )‖6ymax Rmax:
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On the other hand, �′r remains bounded from the fact that

‖A‖ = ‖s′ + �′el − C‖6 k ⇒ ‖s′‖6 k + Rmax + ‖�′el‖:
It is thus concluded that the second member of Eq. (40) is bounded for all T and
Proposition 8 holds.

5. Pressure-dependent models of geomaterials

In particular, the min–max duality method can be discussed for some common models
of soil mechanics.

5.1. Cam-clay model

This model, proposed by the Cambridge school (Burland and Roscoe, 1968; Scho3eld
and Wroth, 1968), is very popular in soil mechanics since it describes correctly the
plastic dilatation or contraction observed experimentally.

A generalized standard version of Cam-clay model is considered here. If p denotes
the mean pressure, p = �kk=3 and q = ‖�′‖, the plastic criterion is given by the yield
function

((p + R)2 + bq2)1=2 − R6 0;

where R¿ 0 is a critical pressure denoted as the consolidation pressure and b¿ 0 is
a material constant.

The elastic domain is thus a family of growing ellipses as shown in Fig. 3. This
family is homothetical with respect to the origin and there is isotropic hardening.
Hardening e<ects are described by the variation of the consolidation pressure R. For
example, the following relation holds:

R= R0 exp(y);

where y is the consolidation parameter, a non-decreasing variable with the plastic de-
formation to ensure that the consolidation pressure is non-decreasing. It can be de3ned

Fig. 3. Cam-clay model of geomaterials: the elastic domain is limited by a family of ellipses in the stress
space (p× q) and represented by a cone in the force space (A0 × A′ × A7).
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by the di<erence between an equivalent plastic strain 7 and the plastic dilatation �pkk
y = 7− �pkk :

This choice will be shown to be appropriate. It also ensures that the consolidation is
possible in compression and not in tension. This is a generalized standard model with
internal parameters �p; 7 and energy

W = 1
2 (�− �p): L: (�− �p) + V (y) with V ′(y) = R thus V (y) = R0 exp(y):

The generalized forces associated with the plastic dilatation and plastic deviator are
A0 =p+R and A′=�′, respectively. The generalized force associated with 7 is A7=−R.
The elastic domain is state-independent since it is de3ned by the convex cone√

A2
0 + bA′: A′ + A76 0:

Normality law gives

�̇pkk = �
A0√

A2
0 + bA′: A′

= �
(p + R)

R
;

�̇p
′
= �b

A′√
A2

0 + bA′: A′
= �b

�′

R
;

7̇= �¿ 0:

It follows that the plastic volume rate is dilative if p¿−R and contractive if p¿−R
and that

7̇=
{
|�̇pkk |2 +

1
b
‖�̇p′‖2

}1=2

:

This relation gives the physical interpretation of 7 as a measure of equivalent plastic
strain. In particular, the consolidation parameter and the consolidation pressure are
non-decreasing since ẏ¿ 0.

The consolidation pressure R is not limited in the previous description since R(y)
varies from 0 to +∞ when y varies from −∞ to +∞. Its expression can be in
fact replaced and de3ned from any suitable monotone increasing curve such that
limy→−∞ R(y) = 0 and limy→+∞ R(y) =Rmax ¡+∞. In this case, a model of limited
consolidation is obtained.

For such a model, Eq. (16) is now considered with Ã7 = A∗
7 . It is clear that

max
�p∗

−
∫
�

(s∗ + R∗I):
∫ ∞

�
dp dt d� =




−
∫
�
R∗Epkk d� if Ep is compatible;

+∞ if not:

Finally, R∗ must maximise the quantity∫ ∞

�

∫
�
R∗

{
(dpkk)

2 +
1
b
‖dp′‖2

}1=2

d� dt d� dt −
∫
�
R∗Epkk d�¿ 0:

Thus the following result holds from min–max saddle method.
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Proposition 9. For a Cam-clay model with limited consolidation, the kinematic
approach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp

R
max

{∫ ∞

�

∫
�

{
(dpkk)

2 +
1
b
‖dp′‖2

}1=2

d� dt d� dt −
∫
�
Epkk d�

}

=
∫ ∞

�

∫
�
Dm(dp) d� dt with Dm(dp) = max

�∈Cmax

�: dp (41)

among the plastic rates dp satisfying

Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (42)

As expected, the result is the same as an elastic perfectly-plastic material with a
elastic domain Cmax associated with the extreme ellipse.

5.2. Kinematic hardening

In the spirit of the previous Cam-clay model, a particular model of kinematic harden-
ing can also be introduced. Here, the consolidation parameter can increase or decrease
and is taken simply as

y = −�pkk
with the plastic criterion

((p + R)2 + bq2)1=2 − k6 0;

where k ¿ 0 is a constant and R(y)¿ 0 is a given non-decreasing function satisfying

lim
y→−∞R(y) = Rmin¿ 0 and lim

y→+∞R(y) = Rmax ¿ 0:

The elastic domain is now a family of ellipses of the same size, centered on axis p6 0
of the (p× q)-plane. This is a generalized standard model of kinematic hardening, in
the same spirit as Ziegler–Prager’s model, with internal parameter �p. The translation
of the center of ellipse in the interval [ − Rmax;−Rmin] is due to the variation of the
plastic dilatation.

When Rmax ¡+∞, there is limited kinematic hardening. In this case, the choice of
R∗ must maximize −R∗Epkk thus R∗=Rmax if Epkk ¡ 0 and R∗=Rmin if Epkk ¿ 0. Finally,
the following proposition holds.

Proposition 10. For the Cam-clay model of limited kinematic hardening, the kine-
matic approach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp




∫ ∞

�

∫
�
k
{

(dpkk)
2 +

1
b
‖dp′‖2

}1=2

d� dt

+
∫
�

(Rmax〈Epkk〉− − Rmin〈Epkk〉+) d�




(43)
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among the plastic rates dp satisfying

Ep =
∫ ∞

�
dp dt compatible;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (44)

In this expression, the notations 〈Epkk〉− and 〈Epkk〉+ mean, respectively, the negative
part and the positive part of Epkk , for example,

〈Epkk〉+ =

{
Epkk if Epkk ¿ 0;

0 if Epkk6 0:

When Rmax =+∞, there is unlimited kinematic hardening and the following proposition
holds.

Proposition 11. For the Cam-clay model of unlimited kinematic hardening, the kine-
matic approach leads to a coe7cient mk¿ms, de6ned as the minimum

mk = min
dp

∫ ∞

�

∫
�
k
{

(dpkk)
2 +

1
b
‖dp′‖2

}1=2

d� dt −
∫
�
RminE

p
kk d� (45)

among the plastic rates dp satisfying

Ep =
∫ ∞

�
dp dt compatible; Epkk¿ 0;

∫ ∞

�

∫
�
�el: dp d� dt = 1: (46)

This result is easily understood in the spirit of Propositions 6 and 7 since the
back-stress is a pressure in this particular case. Again, the limited case (Proposition
10) appears as a penalization of the unlimited case (Proposition 11), Rmax is a penalty
parameter associated with the constraint Epkk¿ 0. In particular, if Rmin = k, the expres-
sion to be minimized (45) is exactly the dissipated energy associated with the yield
surface de3ned by the ellipse of center −k.

6. Shakedown conditions for a domain of load values

In the classical presentation of shakedown theorems, the load history in conveniently
presented by the elastic response �el(t) for t ∈ [0;+∞[. It is well known that instead
of a load history, a set of possible values �el(9) depending on n load parameters
9= (91; : : : ; 9n) for 9∈ S can be introduced in the case of cyclic loads. The conditions
of safety with respect to shakedown for such a domain of loads can be easily written
by adapting the previous theorems. Such a condition means that there is shakedown
for any load history de3ned by a curve 9 = 9(t) taking values in S for all t¿ 0.

Let uel(9); �el(9) be the elastic response in displacement and stress under the load 9.
The associated response u∗; �∗ is given by u∗ = uel(9) + u∗p and �∗ = �el(9) + s∗.
Static shakedown theorem Proposition 1 can be written in this case under the form of
Proposition 1′:
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Proposition 1′. For generalized standard materials obeying assumptions (7), there is
shakedown under any load path 9(t)∈ S whatever the initial state if there exists an
internal parameter 6eld �∗ and a safety coe7cient m¿ 1 such that the force 6eld
mA∗(9) is plastically admissible for all 9∈ S, where A∗(9) = −W;�(�∗(9); �∗).

The particular case of a domain S such that the associated convex domain Sc de3ned
from S by convexi3cation is a bounded polyhedral domain with corners :r; r = 1; q,
can be considered for practical situations. Since A∗(9) = −Y T�el(9) − X�∗ −W2; �(�∗),
the dependence of A∗ on �el is linear and leads to a simpler statement.

Proposition 1′′. For generalized standard materials obeying assumptions (7), there is
shakedown under any load path 9(t)∈ Sc whatever the initial state if there exists an
internal parameter 6eld �∗ and a safety coe7cient m¿ 1 such that the force 6eld
mA∗(:r) is plastically admissible for all r = 1; q, where A∗(9) = −W;�(�∗(9); �∗).

In the same spirit, for a limited kinematic hardening model, Proposition 7 leads to
the following statement

Proposition 7′. For the limited kinematic hardening model, the dual kinematic ap-
proach leads to the computation of a coe7cient mk , de6ned as the minimum

mk = min
dp

Rmax

∫
�

∣∣∣∣∣
∣∣∣∣∣

q∑
r=1

dpr

∣∣∣∣∣
∣∣∣∣∣ d� +

q∑
r=1

k
∫
�
‖dpr ‖ d� (47)

among the plastic strains dpr ; r = 1; q satisfying the constraints

Tr(dpr ) = 0; Ep =
q∑
r=1

dpr compatible;
q∑
r=1

∫
�
�el(:r): dpr d� = 1: (48)

7. Illustrative example

The simple case of a symmetric three-bar system is considered here as an illus-
trative example. The system is composed of three elastic–plastic bars (2,1,2) con-
nected by rigid bars as shown in Fig. 4. It is submitted to a central force F which
is maintained constant while the temperature elevation T − T0 of the central bar is
varied and takes its values in the interval [ − RT;+RT ]. The shakedown condi-
tion with respect to thermo-mechanical cyclic loading inside this domain of values is
discussed.

Taking account of the symmetry, static and kinematic equations are reduced to

�1 + 2�2 = f;

� = �p1 + �T + �1 = �p2 + �2;
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Fig. 4. A symmetric three-bar system and shakedown domains in perfect plasticity, limited kinematic hard-
ening and linear kinematic hardening.

in dimensionless variables f=F=k; �i =Fi=k; �=E�̃=k; �T =E'(T −T0)=k. The elastic
response associated with the extreme loads �T = ±� is

�el±
1 =

f ∓ 2�
3

; �el±
2 =

f ± �
3

:

For this system, a self-stress state respecting the symmetry has the form (<;−2<; <)
and a compatible state of strain respecting the symmetry the form (�; �; �).

In perfect plasticity, the shakedown is ensured if there exists a self-stress state
(<;−2<; <) such that the plastic criterion is satis3ed for the extreme loads, i.e. such
that ∣∣∣∣−2<+

f ∓ 2�
3

∣∣∣∣6 1;
∣∣∣∣<+

f ± �
3

∣∣∣∣6 1:

It is well known that the resulting shakedown domain is a convex domain OABC in
Fig. 4, completed by symmetry with respect to axes f and �.

The kinematic approach consists of 3nding the safety coe4cient mk of the loads
f;±�. For this, plastic increments (d+

1 ; d
−
1 ) and (d+

2 ; d
−
2 ) in bars 1 and 2, associ-

ated with the extreme loads, are introduced. The kinematic approach gives mk as the
minimum of the dissipated work

mk = min
d

2|d+
2 | + 2|d−2 | + |d+

1 | + |d−1 | (49)

among compatible increments i.e.

d+
2 + d−2 = dp1 + d−1 = Ep

satisfying

2�el+
2 d+

2 + 2�el−
2 d−2 + �el+

1 d+
1 + �el−

1 d−1 = 1:
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This condition gives
4
3�(d+

2 − d+
1 ) + Epf = 1:

Shakedown is ensured if mk ¿ 1.
In linear kinematic hardening, the shakedown domain can be found easily. There is

shakedown if the amplitude of the elastic response is small enough to satisfy the plastic
criterion. Thus, there is shakedown if |�|¡ 3=2 as shown in Fig. 4 and no shakedown if
|�|¿ 3=2. In the last cases, the responses are elastic–plastic and periodic for periodic
loadings. The kinematic approach in kinematic hardening leads to the search of the
minimum of the same expression (49) under the last condition among closed plastic
increments

d+
2 + d−2 = dp1 + d−1 = 0:

It follows that

mk = min
d

4|d+
2 | + 2|d+

1 | such that 4
3�(d+

2 − d+
1 ) = 1

and thus, mk = 3=2�. Thus, mk ¿ 1 if �¡ 3
2 which is the result obtained by the static

approach as shown in Fig. 4.
In limited kinematic hardening, from the static shakedown theorem (Proposition 1),

there is shakedown if a plastic strain state (�p∗1 ; �p∗2 ) can be found such that the asso-
ciated self-stresses (<∗2 ; <

∗
1 ; <

∗
2), de3ned by

<∗1 + 2<∗2 = 0;

�∗ = �p∗2 + <∗2 = �p∗1 + <∗1
lead to plastically admissible stress states. This means that the inequalities∣∣∣∣23(�p∗2 − �p∗1 ) +

f ± �
3

− r(�p∗1 )
∣∣∣∣6 1;

∣∣∣∣13(�p∗1 − �p∗2 ) +
f ± 2�

3
− r(�p∗2 )

∣∣∣∣6 1;

must be satis3ed, where r(�p)=(1=k)R(�p). The kinematic approach consists of solving
the problem

mk = min
d; Ep

m(d; Ep) with m(d; Ep) = 3rmax|Ep| + 2|d+
2 | + 2|d−2 | + |d+

1 | + |d−1 |

among increments (d±2 ; d
±
1 ; d

±
2 ) and amplitudes Ep such that

Ep = d+
2 + d−2 = d+

1 + d−1 (compatibility);

2�el+
2 d+

2 + 2�el−
2 d−2 + �el+

1 d+
1 �

el−
1 d−1 = 1:

To compute mk , it is then necessary to consider two possibilities:

• If Ep = 0, it is already shown that mind m(d; 0) = 3=2�.
• If Ep �= 0, since mind m(d; Ep) = (3rmax + 3)|Ep| is attained when d+

2 and d+
1 are

arbitrary in the interval [0; Ep] if Ep¿ 0 or in the interval [Ep; 0] if Ep6 0, it
follows that minEp �=0 m(d; Ep)¿ 1 if 3rmax + 3¿ |f|+ 4

3 |�|. The shakedown domain
is thus given by the conditions |�|¡ 3

2 and 3rmax + 3¿ |f|+ 4
3 |�| as shown in Fig.

4 where = = rmax + 1.
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8. Conclusion

In this paper, new results concerning the expression of kinematic safety coe4cients,
available for common models of limited isotropic and kinematic hardening, are given.
The expressions obtained from the min–max duality such as (19), (30), (32), (38),
(41) and (45) provide a useful complement to the static approach. Propositions 7–11
are new compared to the existing results of the literature in shakedown analysis since
they deal principally with the kinematic approach. They are particularly simple and can
be easily exploited to approximate by upper bounds the theoretical values in hardening
plasticity as it is usually done for shakedown and limit analyses in perfect plasticity.
In particular, the amplitude of the plastic rate path, denoted as Ep in this discussion,
3gures explicitly in the expression of the kinematic safety coe4cients.

For the models considered here, it should be emphasized that the material always
o<ers its maximum allowable resistance given by the saturation limit of the yield sur-
face. It is true that this remarkable capability holds only for appropriate Sow laws of
the plastic strain and internal parameters, as it has been emphasized in the literature
(cf. for example, Fuschi, 1999). However, this conclusion could possibly remain avail-
able for a class of hardening materials larger than the generalized standard models.
It may be then interesting to discuss the least restrictive assumption on constitutive
equations ensuring this result and the validity of the static and kinematic approaches.
For non-associated Sow laws, it is already known that no general variational principle
or dual theorems could be derived for shakedown analysis or for limit analysis.
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