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Abstract—We introduce Crocoddyl (Contact RObot COntrol
by Differential DYnamic Library), an open-source framework
tailored for efficient multi-contact optimal control. Crocoddyl
efficiently computes the state trajectory and the control policy for
a given predefined sequence of contacts. Its efficiency is due to the
use of sparse analytical derivatives, exploitation of the problem
structure, and data sharing. It employs differential geometry
to properly describe the state of any geometrical system, e.g.
floating-base systems. We have unified dynamics, costs, and
constraints into a single concept — action — for greater efficiency
and easy prototyping. Additionally, we propose a novel multiple-
shooting method called Feasibility-prone Differential Dynamic
Programming (FDDP). Our novel method shows a greater glob-
alization strategy compared to classical Differential Dynamic
Programming (DDP) algorithms, and it has similar numerical
behavior to state-of-the-art multiple-shooting methods. However,
our method does not increase the computational complexity
typically encountered by adding extra variables to describe the
gaps in the dynamics. Concretely, we propose two modifications
to the classical DDP algorithm. First, the backward pass accepts
infeasible state-control trajectories. Second, the rollout keeps the
gaps open during the early “exploratory” iterations (as expected
in multiple-shooting methods). We showcase the performance
of our framework using different tasks. With our method, we
can compute highly-dynamic maneuvers for legged robots (e.g.
jumping, front-flip) in the order of milliseconds.

I. INTRODUCTION

Multi-contact optimal control promises to generate whole-
body motions and control policies that allow legged robots
to robustly react to unexpected events in real-time. It has
several advantages compared with state-of-the-art approaches
in which a whole-body controller compliantly tracks an op-
timized centroidal trajectory [1], [2], [3], [4], [5], [6]. For
instance, they cannot properly handle the angular momentum
produced by the extremities of the limbs. In other words,
the angular momentum conservation in a multibody system
creates nonholonomic constraints on the dynamics [7], and it
is well-known that instantaneous time-invariant control cannot
properly track these systems. Indeed, in our previous work [8],
we have shown these advantages by producing more efficient
motions, with lower forces and impacts.

Recent work on optimal control have shown that nonlinear
Model Predictive Control (MPC) is plausible for controlling
legged robots in real-time [9], [10], [11]. All these methods
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Fig. 1. Crocoddyl: an efficient and versatile framework for multi-contact
optimal control. Highly-dynamic maneuvers needed to traverse an obstacle
with the ANYmal robot.

have in common that they solve the nonlinear Optimal Control
(OC) problem by iteratively building and solving a Linear-
Quadratic Regulator (LQR) problem. These frameworks use
numerical or automatic differentiation which is inefficient
compared to sparse and analytical derivatives [12]. Further-
more, they do not handle geometrical systems, typically found
in legged systems as the floating-base is a SE(3) element.
DDP has proven to efficiently solve nonlinear MPC problems
due to its intrinsic sparse structure. However, it has poor
globalization strategy and struggles to handle infeasible warm-
start. In this vein, Giftthaler et al. [13] proposed a variant of the
DDP algorithm for multiple-shooting OC, which has a better
convergence rate than DDP. Nonetheless, it does not match
exactly the numerical behavior of classical multiple-shooting
methods [14]. In this work, we address these drawbacks found
in the literature with our framework called Crocoddyl (Fig. 1).

A. Contribution

We propose a novel and efficient framework for multi-
contact OC called Crocoddyl. Our framework efficiently solves
this problem by employing sparse and analytical derivatives of
the contact and impulse dynamics. It also handles any kind of
geometrical system by employing a dedicated algebra and its
derivatives in our optimal control solver. Indeed, we model the
floating-base as a SE(3) element, needed for example for the
generation of front-flip motions. Additionally, we propose a
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variant of the DDP algorithm that exactly matches the behavior
of direct multiple-shooting methods. Our algorithm is called
Feasibility-prone Differential Dynamic Programming (FDDP)
as it handles infeasible guesses that occur whenever there is
a gap between subsequent nodes in the trajectory. FDDP has
a greater globalization strategy compared to classical DDP,
allowing us to solve very complex maneuvers in few iterations
and milliseconds. Our framework exceeds the computational
performance and the convergence rate of state-of-the-art meth-
ods [10], [11], [13].

II. MULTI-CONTACT OPTIMAL CONTROL

In this section, we first introduce the multi-contact optimal
control problem for multibody systems under any physical
constraints (Section II-A). This problem can be seen as a
bilevel optimization problem, where the lower-level formulates
the system dynamics based on the Gauss principle of least
constraint. However, this problem is hard to solve in real-time,
and there is no clear way of doing it. For that, we simplify
the problem by modeling the contacts as holonomic constraints
(Section II-B). With this method, we derive tailored analytical
and sparse derivatives for fast computation. The calculation of
derivatives typically represents the main computation carried
out by optimal control solvers.

A. Formulation of the optimal control problem
We focus on an efficient formulation of the multi-contact

optimal control problem. One can formulate this problem as
follows:{

x∗0, · · · ,x∗N
u∗0, · · · ,u∗N−1

}
= arg min

X,U
lN (xN ) +

N−1∑
k=0

∫ tk+∆tk

tk

l(x,u)dt

s.t. v̇,λ = arg min
v̇,λ
‖v̇ − v̇free‖M,

x ∈ X ,u ∈ U
(1)

where the state x = (q,v) ∈ X lies in a differential manifold
formed by the configuration point q and its tangent vector v
and is described by a nx-tuple, the control u = (τ ,λ) ∈ Rnu

composed by the input torque commands τ and contact forces
λ, ẋ ∈ TxX lies in the tangent space of the state manifold
and it is described by a ndx-tuple, and X , U represent the
state and control admissible sets, respectively, v̇free is the
unconstrained acceleration in generalized coordinates, and M
is the joint-space inertia matrix.

This problem can be seen as a bilevel optimization where
the lower-level optimization uses the Gauss principle of least
constraint to describe the physical constraints as described
in [15]. State and control admissible sets can belong to the
lower-level optimization (e.g., joint limits and force friction
constraints) as well as to the upper-level one (e.g., task-related
constraints and collision with the environment).

B. Contacts as holonomic constraints
To solve this optimization problem in real-time, we need to

efficiently handle (a) the high-dimensionality of the search-
space and (b) the instabilities, discontinuities, and non-
convexity of the system dynamics (lower-level optimization),

among others. One way of reducing the complexity of the
problem is by solving the lower-level optimization analytically.
In our previous work [16], we have derived the contact
model using holonomic rheonomic constraints on the frame
placement, (i.e. φ(q) = 0 where Jc = ∂φ

∂q is the contact
Jacobian) as:[

v̇
−λ

]
=

[
M J>c
Jc 0

]−1 [
τ b
−a0

]
=

[
y(x, τ )
−g(x, τ )

]
, (2)

where Jc is expressed in the local frame, and a0 ∈ Rnf is the
desired acceleration in the constraint space. Eq. (2) allows us
to express the contact forces in terms of the state and torques,
and this problem has a unique solution if Jc is full-rank. To
improve stability in the numerical integration, we define PD
gains that are similar in spirit to Baumgarte stabilization [17]:

a0 = aλ(c) − α oMref
λ(c) 	

oMλ(c) − βvλ(c), (3)

where vλ(c), aλ(c) are the spatial velocity and acceleration at
the parent body of the contact λ(c), respectively, α and β are
the stabilization gains, and oMref

λ(c) 	
oMλ(c) is the SE(3)

inverse composition between the reference contact placement
and the current one [18]. We use the logarithmic map to
transform elements of SE(3) to their Lie algebra.

If we neglect the friction-cone constraints or the joint limit
inequality constraints, then the problem only has the equality
constraint for the forward dynamics under rigid contacts [16].
This kind of problem can easily be solved through DDP,
i.e., by solving a set of smaller and simpler unconstrained
Quadratic Programming (QP) subproblems [19].

1) Efficient rollout and derivative computation: We do not
need to invert the entire Karush-Kuhn-Tucker (KKT) matrix,
in Eq. (2), during the numerical integration of the dynamics.
Indeed, the evolution of the system acceleration and contact
can be described as:

y(x, τ ) = M−1
(
τ b + J>c g(x, τ )

)
,

g(x, τ ) = M̂−1(a0 − JcM
−1τ b), (4)

and, for instance, we can use the Cholesky decomposition for
efficiently computing M−1 and M̂−1 =

(
JcM

−1J>c
)−1

. We
can interpret M̂ as the apparent inertial matrix which lies in
contact space, and it is usually called operational space inertia
matrix [20]. For these operations, we exploit the structure of
the inertial matrix and contact Jacobian using Pinocchio, for
further detail see [12].

If we analytically derive Eq. (2) by applying the chain
rule, then we can describe the Jacobians of y(·) and g(·)
with respect to the derivatives of the Recursive Newton-Euler
Algorithm (RNEA) algorithm and kinematics, i.e.:[

δv̇
−δλ

]
= −

[
M J>c
Jc 0

]−1([ ∂τ
∂x
∂a0

∂x

]
δx +

[
∂τ
∂u
∂a0

∂u

]
δu

)
=

[
yx

−gx

]
δx +

[
yu

−gu

]
δu, (5)

where ∂τ
∂x , ∂τ

∂u are the RNEA derivatives, and ∂a0

∂x , ∂a0

∂u are
the kinematics derivatives of the frame acceleration [21]. We
employ an efficient method to invert this blockwise matrix.
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Using the LDU decomposition, we can write this matrix
inversion as:

L−1 =

[
M−1 −M−1J>c M̂−1JcM

−1 M−1J>c M̂−1

M̂−1JcM
−1 −M̂−1

]
(6)

where we reuse the computation of the inertia matrix and
apparent inertia matrix inversions computed during the rollout
of the dynamics. In case that Jc is not full-rank, then we damp
the Cholesky decomposition of M̂. The damping value can be
carefully hand-tuned, depending on the contact configuration,
for each node of the OC problem. For instance, we use 10−12

as a damping factor in many of our results.
2) Impulse dynamics: Transitions from non-contact to con-

tact condition are called contact gain in the literature [22]. In
these instantaneous phases, the system encounters very high
forces acting instantaneously (i.e., impulses). We can similarly
describe the impulse dynamics of multibody system as:[

M J>c
Jc 0

] [
v+

−Λ

]
=

[
Mv−

−eJcv−
]
, (7)

where e ∈ [0, 1] is the restitution coefficient that considers
compression / expansion, Λ is the contact impulse and, v− and
v+ are the discontinuous changes in the generalized velocity
(i.e., velocity before and after impact, respectively). Perfect
inelastic collision produces a contact velocity equal to zero,
i.e., e = 0. Similarly, we use the Cholesky decomposition to
efficiently compute the impulse dynamics and its derivatives.

III. FEASIBILITY-PRONE DIFFERENTIAL DYNAMIC
PROGRAMMING

In this section, we describe our novel solver for multiple-
shooting OC called Feasibility-prone Differential Dynamic
Programming (FDDP). First, we introduce a brief description
of the DDP algorithm (Section III-A). Then, we analyze
the numerical behavior of classical multiple-shooting meth-
ods (Section III-B). With this in mind, we propose a modifi-
cation of the forward and the backward passes in Section III-C
and III-D, respectively. Our method entirely matches the
numerical behavior of multiple-shooting algorithm in contrast
to [13]. Finally, we propose a new model for the expected re-
duction cost and line-search procedure based on the Goldstein
condition (Section III-E).

A. Differential dynamic programming

DDP belongs to the family of OC and indirect trajectory
optimization methods [19]. It locally approximates the optimal
flow (i.e., the Value function) as

Vk(δxk) = min
δuk

lk(δxk, δuk) + Vk+1(fk(δxk, δuk)), (8)

which breaks the OC problem into a sequence of simpler
subproblems by using “Bellman’s principle of optimality”, i.e.:

δu∗k(δxk) = (9)

arg min
δuk

1

2

 1
δxk
δuk

T  0 QT
xk

QT
uk

Qxk
Qxxk

Qxuk

Quk
QT

xuk
Quuk

 1
δxk
δuk

 .

Note that lk(·), fk(·) are the Linear Quadratic (LQ) approxi-
mation of the cost and dynamics functions, respectively; δxk,
δuk reflects the fact that we linearize the problem around a
guess (xik,u

i
k). This remark is particularly important (1) to

understand our FDDP algorithm and (2) to deal with geomet-
rical systems,1 for instance, formed by the SE(3) element of
the floating-base.

The Q terms represent the LQ approximation of the Hamil-
tonian function. The solution of the entire OC problem is
computed through the Riccati recursion formed by sequentially
solving Eq. (9). This procedure provides the feed-forward term
kk and feedback gains Kk at each discretization point k.

B. The role of gaps in multiple-shooting

The multiple-shooting OC formulation introduces interme-
diate states xk (i.e., shooting nodes) as additional decision
variables to the numerical optimization problem [14]. The
difference between the rollout state and the shooting state
forms a gap in the dynamics:

f̄k+1 = f(xk,uk)− xk+1, (10)

where f̄k+1 represents the gap in the dynamics, f(xk,uk) is
the rollout state at interval k+1, and xk+1 is the next shooting
state (decision variable). For the remainder of this letter, we
assume that, along the trajectory, there is a shooting node for
each integration step.

By approaching the direct multiple-shooting formulation as
a Sequential Quadratic Programming (SQP) problem, one can
describe a single QP iteration as

min
δX,δU

lN (δxk) +

N−1∑
k=0

lk(δxk, δuk)

s.t. δx0 = x̃0,

δxk+1 = fxkδxk + fukδuk + f̄k+1,

(11)

where the SQP sequentially builds and solves a single QP
problem until it reaches the convergence criteria. The solution
of Eq. (11) provides us with a search direction. Then, we can
find a step length α for updating the next guess (Xi+1,Ui+1)
as [

Xi+1

Ui+1

]
=

[
Xi

Ui

]
+ α

[
δXi

δUi

]
(12)

where the new guess trajectory (Xi+1,Ui+1) does not neces-
sary close the gaps as we explain below.

1) KKT problem of the multiple-shooting formulation: To
understand the behavior of the gaps, we formulate the KKT
problem in Eq. (12) for a single shooting interval k as:

Hk︷ ︸︸ ︷[
lxxk

lxuk

lTxuk
luuk

] δwk︷ ︸︸ ︷[
δxk
δuk

]
+

[∇g−
k ∇g+

k ]︷ ︸︸ ︷[
I −fTxk

−fTuk

] [
λk

λk+1

]
= −

∇Φk︷ ︸︸ ︷[
lxk

luk

]
, (13)[

I
−fxk

−fuk

] [
δxk
δuk

]
=

[
f̄k

f̄k+1

]
, (14)

1A geometrical system has a configuration point that lies on a manifold Q,
e.g., a Lie group.
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where Eq. (13), (14) are the dual and primal feasibility of
the First-order Necessary Condition (FONC) of optimality,
respectively. The Jacobians and Hessians of the cost function
(LQ approximation) are lx, lu, and lxx, lxu, luu, respectively.
The Lagrangian of the problem is (λk,λk+1).

We obtain the search direction (δXi, δUi) by solving the
FONC as follows: δwk

δλk
δλk+1

 =

 Hk ∇g−k ∇g+
k

∇g−
T

k

∇g+T

k


−1 ∇Φk

f̄k
f̄k+1

 , (15)

in which we note that a α-step closes the gap at k by a factor
of (1−α)f̄k, while only a full-step (α = 1) can close the gap
completely. Below, we explain how to ensure this multiple-
shooting behavior in the forward-pass.

C. Nonlinear rollout avoids merit function
SQP often requires a merit function to compensate the errors

that arise from the local approximation of the classical line-
search. Defining a suitable merit function is often challenging,
which is why we do not follow this approach. Instead, we
avoid (a) the linear-prediction error of the dynamics with a
nonlinear rollout and (b) the requirement of a merit function.
Furthermore, the nonlinear rollout is often faster to compute2

than the linear-predicted dynamics; fx, fu are large matrices
with few, albeit known, non-zero coefficients — a predictable,
sparse structure.

For a nonlinear rollout, the prediction of the gaps after
applying an α-step is:

f̄ i+1
k = f̄ ik + α(δxk+1 − fxkδxk − fukδuk)

= (1− α)(f(xk,uk)− xk+1), (16)

and we suggest to maintain the same gaps of the linear line-
search. Therefore, we have the following rollout:

x̂0 = x̃0 − (1− α)f̄0,

ûk = uk + αjk + Kk(x̂k − xk), (17)
x̂k+1 = fk(x̂k, ûk)− (1− α)f̄k.

Note that the forward pass of the classical DDP always closes
the gaps. In contrast to [13], we fully match the numerical
behavior of the gaps such as in the standard multiple-shooting
formulation.

D. Backward pass under an infeasible guess trajectory
Gaps in the dynamics and infeasible warm-start generate

derivatives at different points. The Riccati recursion updates
the Value and Hamiltonian functions based on these deriva-
tives. The classical DDP algorithm overcomes this problem
by first performing an initial forward pass. However, from a
theoretical point, it corresponds to only being able to warm-
start the solver with the control trajectory U0, which is not
convenient in practice.3

2In robotics, we often use efficient and recursive rigid-body algorithms
based on spatial algebra.

3It is straight-forward to obtain a state trajectory X0 to provide as an
initial guess to an OC solver, however, establishing a corresponding control
trajectory U0 beyond quasi-static maneuvers is a limiting factor.

We adapt the backward pass to accept infeasible guesses.
For that, we observe that for a LQ model the Hessian is
constant and the Jacobian varies linearly. We use this fact to
map the Jacobians and Hessian of the Value function from the
next shooting-node to the current one. Therefore, the Riccati
recursions are modified as follows:

Qxk
= lxk

+ fTxk
V +

xk+1
,

Quk
= luk

+ fTuk
V +

xk+1
,

Qxxk
= lxxk

+ fTxk
Vxxk+1

fxk
, (18)

Qxuk
= lxuk

+ fTxk
Vxxk+1

fuk
,

Quuk
= luuk

+ fTuk
Vxxk+1

fuk
.

where V +
xk+1

= Vxk+1
+ Vxxk+1

f̄k+1 is the Jacobian of the
Value function after the deflection produced by the gap f̄k+1,
and the Hessian of the Value function remains unchanged.
With this approach, we can also include adaptive integration
schemes.

E. Accepting a step

The expectation of the total cost reduction proposed by [9]
does not consider the deflection introduced by the gaps. This
is a critical point to evaluate the success of a trial step during
the numerical optimization. From our line-search procedure,
we know that the expected reduction on the cost has the form:

∆J(α) = ∆1α+
1

2
∆2α

2, (19)

where, by closing the gaps as predicted in Eq. (15) in the
linear rollout, we obtain:

∆1 =

N∑
k=0

k>k Quk
+ f̄>k (Vxk

− Vxxk
xk),

∆2 =

N∑
k=0

k>k Quuk
kk + f̄>k (2Vxxk

xk − Vxxk
f̄k). (20)

Note that if all gaps are closed, then this expectation model
matches the one reported in [9].

We use the Goldstein condition to check for the trial step,
instead of the Armijo condition typically used in classical
DDP algorithms, e.g., [9]. The reason is due to the fact
that ∆ might be an ascent direction, for instance, during the
infeasible iterations. Therefore, FDDP accepts the step if the
cost reduction is:

l′ − l ≤

{
b1∆(α) if ∆(α) ≤ 0

b2∆(α) otherwise
(21)

where b1, b2 are adjustable parameters. This critical mathe-
matical aspect has not been considered neither in [13].

F. Regularization and search direction

We employ two regularization schemes: the Tikhonov regu-
larization over Quu, and the Tassa regularization over Vx [9].
The Tikhonov regularization changes the search-direction from
Gauss-Newton to steepest descent. We exploit this fact to
ensure a good progress towards the (local) optimal solution.



MASTALLI et al.: CROCODDYL: AN EFFICIENT AND VERSATILE FRAMEWORK FOR MULTI-CONTACT OPTIMAL CONTROL 5

Roughly speaking, we increase both regularizations whenever
the backward pass fails or the applied step length is too short;
otherwise we reduce them.

IV. CROCODDYL FRAMEWORK

Crocoddyl [23] has been written in C++ for efficiency and
uses the Eigen library [24] for linear algebra routines. It
comes with Python bindings for easy prototyping. Crocoddyl
is currently supported for most Linux distributions, with plans
to release on Mac OS X and Windows. The project is fully
open-source under the permissive BSD-3-Clause license and
is hosted on GitHub: https://github.com/loco-3d/crocoddyl. In
the rest of this section, we introduce the main features of
Crocoddyl.

A. Analytical and sparse derivatives

Crocoddyl uses Pinocchio to efficiently compute analytical
and sparse derivatives [12]. Pinocchio has dedicated algo-
rithms to compute analytical derivatives of rigid-body algo-
rithms (e.g. RNEA and Articulated Body Algorithm (ABA))
using spatial algebra [21]. Crocoddyl employs these routines
to derive the analytical derivative of contact dynamics as
described in Section II-B, as well as the ones of cost func-
tions, e.g., Center of Mass (CoM) tracking, frame placement
tracking, etc. Crocoddyl shares the computation load required
for the dynamics, costs, and constraints by storing the data in
a common container.

B. Model and data

One of the main design concepts of Crocoddyl is the strict
separation between model and data. A model describes a
system or procedure, e.g. action, cost, and activation models.
Any model has been abstracted to easily derive new systems
in both C++ and Python. By data, we refer to a container
that stores computed and intermediate values used during the
calculation routine performed by a model. Each model creates
its own data, and with this, we avoid any temporary memory
allocation produced by algebraic expressions in Eigen. To
improve efficiency, especially in systems with dimensions
lower than 16, the Eigen members inside a data object can
be defined with fixed dimensions. It allows for efficient use
of modern CPU features by using vectorization and Same
Instruction Multiple Data (SIMD) operations.

1) Action models: The most important model is the action
one. An action model combines dynamics, cost, and constraint
models. Each node, in our OC problem, is described through
an action model. With this plain description, we can easily
model hybrid optimal control problems (or logic-based prob-
lem formulations) that typically arise in robots with legs and
arms.

To numerically solve the nonlinear OC problem, we have
to compute a search direction and a step length. The former
procedure is typically computed from the derivatives of the
action models — Jacobians and Hessians. The latter requires
to rollout the dynamics, cost, and constraints along different
step lengths. We have divided both procedures into two main

functions: calcDiff and calc, respectively. The results of
these functions (i.e., Jacobians, Hessians, next state, cost value,
etc.) are stored inside their corresponding action data. The fact
that the memory required for a data object is only allocated
once, at the start-up/initialization phase, enhances the time-
predictability and parallelizability of the code. Finally, some
of our action models use Pinocchio [12] to efficiently compute
rigid-body algorithms and their analytical derivatives. We can
easily use numerical and automatic differentiation routines for
debugging and prototyping of action models.

2) Differential and integrated action models: It is often
convenient to implement action models in continuous time,
which we call it differential action model. Together with a
predefined integrated action models, it is possible to retrieve
the time-discrete action model. Our integrated action models
(i.e. integration schemes) conserve the geometrical properties
of the system, e.g., the properties of the SE(3) manifold in a
floating-base system.

C. Dealing with geometrical systems

Generally speaking, the state of the system lies in a manifold
X where its rate of change lies in the tangent space TxX (see
Section II-A). Each manifold obeys to its own algebra, i.e.,
there are specific rules for the following operations:

x′ = x⊕ δx,
δx = x1 	 x0, (22)

where x ∈ X and δx ∈ TxX and can be described by a nx-
and ndx-tuples, respectively. These operations are encoded by
integrate and difference, respectively. We also need
to define the Jacobians of these operators which are needed
for our optimal control solver, i.e.

∂x⊕ δx
∂x

,
∂x⊕ δx
∂δx

= Jintegrate(x, δx),

∂x1 	 x0

∂x0
,
∂x1 	 x0

∂x1
= Jdifference(x0,x1), (23)

where they return the Jacobians for the first and second
arguments of the method. In addition, we have developed
efficient and dedicated routines for computing these operations
and Jacobians given the URDF model of a multibody system.
Note that for systems that lie in the Euclidean space, these
operations are described using linear algebra and Jacobians
are the identity matrix.

V. RESULTS

In this section, we show the capabilities of our multi-contact
optimal control framework. We first compute various legged
gaits for both quadruped and biped robots (Section V-A). The
computation of the gait motion and commands is solved in few
iterations and milliseconds. As our formulation is simple and
does not depend on a good initial guess, it can be used easily
with different legged robots. Next, we analyze the performance
of the FDDP with the generation of highly-dynamic maneuvers
such as jumps and front-flips. These motions are computed
within a few iterations and milliseconds, and thanks to the
dedicated Lie algebra developed in Crocoddyl, our framework

https://github.com/loco-3d/crocoddyl
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does not suffer from orientation singularity. The accompanying
videos4 highlight different motions generated by Crocoddyl.

A. Various legged gaits
We computed different gaits — walking, trotting, pacing,

and bounding — with our FDDP algorithm in the order of
milliseconds (Fig. 2). All these gaits are a direct outcome
of our algorithm, we only need to predefine the sequence of
contacts and the step timings. These motions are computed in
around 12 iterations with the exception of the bounding gait
which takes at least 18 iterations. We used the same weight
values and cost functions for all the quadrupedal gaits, and
similar weight values for the bipedal walking. Indeed, we
noticed that these weight values and cost functions might work
out of the box for other legged robots, e.g., the HyQ and the
ICub robots. We report the used values in Fig. 3.

The cost function is composed of the CoM and the foot
placement tracking costs together with regularization terms
for the state and control. We used piecewise-linear functions
to describe the reference trajectory for the swing foot. Ad-
ditionally, we strongly penalize footstep deviation from the
reference placement. We warm-start our solver using a linear
interpolation between the nominal body postures of a sequence
of contact configurations. This provides us a set of body
postures together with the nominal joint postures as state
warm-start X0. Then, the control warm-start U0 is obtained
by applying the quasi-static assumption5 along X0.

In each switching phase6, we use the impulse dynamics
to ensure the contact velocity equals zero, see Eq. (7). We
observed that the use of impulse models improves the algo-
rithm convergence compared to penalizing the contact velocity.
We used a weighted least-square function to regularize the
state with respect to the nominal robot posture, and quadratic
functions for the tracking costs and control regularization.

Fig. 2. Different legged gaits optimized by our FDDP algorithm. (top) from
left to right, walking and trotting gaits on the ANYmal robot, respectively;
(bottom) biped walking gait using the Talos’ legs. You can run these results
in our repository [23].

B. Highly-dynamic maneuvers
Our FDDP algorithm is able to compute highly-dynamic

maneuvers such as front-flip and jumping in the order of

4https://youtu.be/rZ135Dw92No.
5The quasi-static torques are numerically computed through Newton steps

using the reference posture as an equilibrium point.
6In this work, with “switching phases” we refer to contact gain.
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Fig. 3. Weight values for each cost function used in the generation of the
legged gaits. The cost functions are (a) CoM: CoM tracking of the interpolated
postures; (b) Swing: swing tracking of the reference foot trajectory; (c)
footstep deviation from the predefined placement; (d) state regularization; (e)
control regularization. Note that the values are in logarithmic scale.

milliseconds (Fig. 4). These motions are often computed
between 12–36 iterations with a naive and infeasible X0,U0

warm-start. We used the same initialization, weight values and
cost functions reported in Section V-A, with a slightly incre-
mented weight for the state regularization during the impact
phases (i.e. wxReg = 10). Additionally, and for simplicity, we
included a cost that penalizes the body orientation in the ICub
jumps. Similarly to other cost functions, we used a quadratic
penalization with a weight value of 104. Note that a more
elaborate cost function could be incorporated: arm motions,
angular momentum regulation, etc.

The real advantage of our FDDP algorithm is clearly evident
in the generation of highly-dynamic maneuvers, where feasible
rollouts might produce trajectories that are unstable and far
from the solution. The classical DDP has a poor globalization
strategy that comes from inappropriate feasible rollouts in the
first iterations; it struggles to solve these kind of problems.
To overcome this limitation in the DDP, we need to properly
warm-start the solver, in particular the state trajectory. This
limits our solver to problems for which a suitable warm-
start can be provided, e.g., from optimized centroidal trajec-
tories [8].

C. Runtime, contraction, and convergence

We analyzed the gaps contraction and convergence rates
for all the presented motions: quadrupedal and bipedal gaits,
and highly-dynamic maneuvers. To easily compare the results,
we normalize the gaps and cost values per each iteration as
shown in Fig. 5. For the case of the gaps plot Fig. 5 (top),
we use the L2-norm of the total gaps. These results show that
keeping the gaps open is particularly important for highly-
dynamic maneuvers such as jumping. Indeed, the FDDP solver
immediately closes the gaps for all the legged gaits. The reason
is that the solver can apply a full-step in the first iteration
with simply using a big initial regularization value7 (10−2).
ANYmal and ICub jumps are computed with a sequence of
OC problems, where each jump formulates a single problem.
Additionally, we observed in practice super-linear convergence
of FDDP algorithm after closing the gaps. This is expected
since FDDP behaves as DDP when the gaps are closed.

Highly-dynamic maneuvers have a lower rate of improve-
ment in the first iterations Fig. 5 (bottom). The same occurs

7A big regularization value changes the search-direction from Newton to
steepest-descent.

https://youtu.be/rZ135Dw92No?t=12
https://youtu.be/rZ135Dw92No?t=12
https://youtu.be/rZ135Dw92No?t=6
https://youtu.be/rZ135Dw92No
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Fig. 4. Snapshots of generated highly-dynamic maneuvers in legged robots using the feasibility-prone differential dynamic algorithm. (top) jumping obstacles
in a humanoid robot; (middle) front-flip maneuver in a biped robot; (bottom) jumping obstacles in a quadruped robot.
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Fig. 5. Gaps contraction and convergence rates for different motions. (top)
Gaps are closed in the first iteration for simpler motions such as biped walking
and quadrupedal gaits. Instead, the FDDP solver chooses to keep the gaps open
for the early iterations for highly-dynamic maneuvers. Note that we use the
L2-norm of the total gaps, i.e., gaps for all the nodes of the trajectory. (bottom)
The required iterations increases mainly with the dynamics of the gait and
numbers of nodes. For instance, we can see lower rate of improvement in the
first nine iterations in the ANYmal (jump-4f) and ICub jumps (jump-2f). In
case of the quadrupedal walking, we have very short durations in the four-feet
support phases, making it a dynamic walk.

in the quadrupedal walking case (walk-4f), in which the four-
feet support phases have a very short duration (∆t = 2 ms).
Our FDDP algorithm together with the impact models shows

better and similar convergence rates compared to Sequential
Linear Quadratic (SLQ) solvers for whole-body and centroidal
OC control [11], [25], respectively.

The motions converge within 10 to 34 iterations, with an
overall computation time of less than 0.5 s. The numerical
integration step size is often δt = 10−2 s, with the exception
of the biped walking δt = 3−2 s, and the number of nodes
are typically between 60 to 115. Therefore, the optimized
trajectories have a horizon of between 0.6 s to 3 s. For more
details please refer to the accompanying videos.8

We also benchmark the computation time for a single
iteration using our solver. The number of contacts does not
affect the computation time; it scales linearly with respect to
the number of nodes. Without multi-threading, our efficient
implementation of contact dynamics achieves computation
rates up to 859.6 Hz for the quadrupedal gaits with 60 nodes
(jump-4f on i9-9900K). We parallelize only the computation of
the derivatives. For this case, roughly speaking, we reduce the
computation time in half using four to eight threads (cf. Fig. 6).
To understand the performance of Crocoddyl, we have run
5000 trials for each of the motions presented in this letter on
four different Intel PCs with varying levels of parallelization:
PC1: i7-6700K @ 4.00GHz×8 with 32 GB 2133MHz RAM,
PC2: i7-7700K @ 4.20GHz×8 with 16 GB 2666MHz RAM,
PC3: i9-9900K @ 3.60GHz×16 with 64 GB 3000MHz RAM,
and PC4: i7-9900XE @ 3.00GHz×36 with 128 GB 2666MHz
RAM. We used the optimal number of threads for each PC
as identified in Fig. 6. The computation frequency per one
iteration is reported in Fig. 7.

8See footnote 5.

https://youtu.be/rZ135Dw92No?t=74
https://youtu.be/rZ135Dw92No?t=26
https://youtu.be/rZ135Dw92No?t=49
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Fig. 7. Computation frequency per iteration for different motions for different
PCs. PC1 has specifications typical for on-board computers found on robots,
while PC3 uses high-performance CPU and RAM. The reported values use
the optimal number of threads as identified in Fig. 6.

VI. CONCLUSION

We presented a novel and efficient framework for multi-
contact optimal control that outperforms state-of-the-art meth-
ods. We have shown that our novel FDDP algorithm is able
to match the exact behavior of multiple-shooting methods.
However, and in contrast to these methods, the FDDP does not
add extra computation complexity. With the FDDP algorithm,
we improve the poor globalization strategy of classical DDP
methods. This allows us to solve highly-dynamic maneuvers
such as jumping and front-flip in the order of milliseconds.
Thanks to our efficient method for computing the contact dy-
namics and their derivatives, we can solve the optimal control
problem at high frequencies. Finally, we demonstrated the
benefits of using impact models for contact gain phases. Future
work will focus on including efficient and computationally
inexpensive procedures for including inequality constraints
such as torque limits, friction cone, and self-collision.
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