
HAL Id: hal-02293730
https://hal.science/hal-02293730

Preprint submitted on 21 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ASYMPTOTICS OF SIGNED ENTIERE SERIES
Luc Abergel

To cite this version:

Luc Abergel. ASYMPTOTICS OF SIGNED ENTIERE SERIES. 2019. �hal-02293730�

https://hal.science/hal-02293730
https://hal.archives-ouvertes.fr


ASYMPTOTICS OF SIGNED ENTIERE SERIES.

Luc Abergel1

Abstract:
This article focuses on the effects of several pertubations that would be applied to the exponential for large
negative values. It’s about identifying which ones are important and what are their effects.
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Introduction

The purpose of this work is to study some perturbations in the series e−x =

∞∑
n=0

(−1)nxn

n!
.

So we want to give an asymptotic at +∞ of

∞∑
n=0

(−1)nxn

n!
u(n) for explicit sequences made using expressions

such as (n+ a)k ou lnk(n+ a).

The basic difficulty lies in the fact that an error on a term un gives a perturbation of the sum whose
order of magnitude is xn. The case of the e−x series shows that such an error then hides the asymptotic of
the sum .
We therefore do not expect a priori to obtain any meaningful results for this question. We can even think
that in fact such series have erratic behavior in +∞.
It turns out that this is not the case for the sequenses envisaged, and that on the contrary, there are very
regular results, with even a simple and regular dependence on the parameters (a and k in the examples
cited). We will see that if the serie un is not defined for all n, choosing to look at the sum from a certain
rank or for the n values for which the terms un are defined does not change anything about asymptotics.
Another surprising result, we will also see that there is an order structure on successive perturbations that
could be applied to the e−x series. For example, we can give an infinite number of terms for a perturbation
such as (n+ a)k and that in the case of 2 perturbations (n+ a1)k1 and (n+ a2)k2 , only one of them plays a
role on an asymptotic of the sum, the other contributing only through a constant by which the effect of the
major peeturbation is multiplied.

The working method is to give an integral representation of un then the sum

∞∑
n=0

(−1)nxn

n!
u(n). It is

not so obvious to do, for example by the fact that we could not treat sequences that would not tend towards
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0 by this method stricto sensu.

We’ll start with a case that’s very simple to obtain and motivates the work that follows, then we’ll present
definitions that allow for the full development of certain sequences, then we’ll deal with concrete examples,
and we will end with the study of the case of superposition of perturbations which is the essence of this
article, as well as examples illustrating the effectiveness of this approach.

Notations : We will note indifferently Γ(a) = (a− 1)! for a /∈ −N and B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt.
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1 Case of a rational fraction.

We’re going to study here

∞∑
n=0

(−1)nxn

n!
R(n) where R is a rational fraction. We will note here that if u is

polynmial, then Fu(x) = O(ρx)
(this being done by treating the case of the polynomial X(X − 1) · · · (X − k + 1)).

1.1 A first case.

We’re studying the case u(x) = 1
x+a with <(a) > 0.

On the one hand, we write

∫ ∞
x

ta−1e−t dt = O(xa−1e−x),

on the other hand

∫ x

0

ta−1e−t dt =

∞∑
n=0

(−1)nxn+a

n!(n+ a)
.

This shows the formula :
∞∑
n=0

(−1)nxn

n!(n+ a)
= x−aΓ(a) +O(xa−1e−x).

The error term is well in O(ρx).

1.2 Generalization to the case a /∈ −N.

Proposition : The case u(x) = 1
(x+a) with a /∈ −N.

We have the following asymptotic :

∞∑
n=0

(−1)nxn

n!(n+ a)
∼
∞

Γ(a)

xa
si a /∈ −N.

Proof :
As example, we will only deal with the case of −1 < <(a) ≤ 0.
Let a = −1 + b with <(b) > 0.

We write

∞∑
n=0

(−1)nxn

n!(n+ a)
=

∞∑
n=0

(−1)nxn

n!(n− 1 + b)
=

1

−1 + b
+

∞∑
n=0

−(−1)nxn+1

(n+ 1)!(n+ b)
.

Then

∞∑
n=0

(−1)nxn

n!(n+ a)
=

1

b− 1
− x

∞∑
n=0

(−1)nxn

n!

1

(n+ 1)(n+ b)
=

1

b− 1
− x

∞∑
n=0

(−1)nxn

n!

[
1

n+ 1
− 1

n+ b

]
1

b− 1
.

Let

∞∑
n=0

(−1)nxn

n!(n+ a)
=

1

b− 1
− x

b− 1

[
Γ(1)

x
− x−bΓ(b) +O(ρx)

]
, and we deduce :

∞∑
n=0

(−1)nxn

n!(n+ a)
= x−b+1 Γ(b)

b− 1
+O(ρx).

This is the formula for 1.1 but in the more general case <(a) > −1.
The case a /∈ −N is also written in the same way.

1.3 Case of a multiple pole.

Case u(x) = 1
(x+a)k

with a /∈ −N and p ∈ N.

We have the following asymptotic :

∞∑
n=0

(−1)nxn

n!(n+ a)k
∼
∞

Γ(a)

xa
lnk−1(x)

(k − 1)!
si a /∈ −N.

Proof :
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Again, we will only deal with one case, the k = 2 case, the working method becoming generalized with-
out any difficulty for the other values of k.

We star with

∞∑
n=0

(−1)nxn+a−1

n!(n+ a)
=

Γ(a)

x
+O(ρx) that we integrate on [0, x].

1.4 Case of a rational fraction.

The case of a rational fraction is now available.
Note the case where u is polynomial :

We’re dealing with the case uk(x) = x(x− 1)...(x− k + 1) that gives Fuk(x) =

∞∑
n=0

(−1)nxn

(n− k)!
.

And so Fuk(x) = (−x)ke−x = O(ρx).

The case of a rational fraction.

If we give u(x) =
P (x)

Π
1≤i≤p

(x+ ai)pi
with P polynomial, with integer exponents pi strictly positive,

if we have <(a1) < <(ai) pour tout i 6= 1, and if we finally notice p = p1, a = a1 so

∞∑
n=0

(−1)nxn

n!
u(n) ∼

∞
A

Γ(a)

xa
lnp−1(x)

(p− 1)!
.

with A = P (−a)
Π

1≤i≤p
(ai−a)pi .

Proof :
It’s enough to decompose into simple elements and apply the previous results.

Generalization in the case of a rational fraction that may have negative integer poles.

Again by decomposition into simple elements, it is enough to treat the case of a monome.

Le cas

∞∑
n=p+1

(−1)nxn

n!(n− p)k
.

We have the asymptotic
∞∑

n=p+1

(−1)nxn

n!(n− p)k
∼
∞

(−1)k+1x
p

p!

lnk(x)

k!
.

Proof :

We therefore want to study, for example, the case of

∞∑
n=p+1

(−1)nxn

n!(n− p)k
= (−x)p+1

∞∑
n=0

(−1)nxn

n!(n+ 1)k+1(n+ 2) · · · (n+ p+ 1)

According to the case of a rational factorized fraction, we obtain an equivalent by looking at the part relating
to the pole 1

(n+1)k+1 :
1

(n+1)k+1(n+2)···(n+p+1)
= 1

p!
1

(n+1)k+1 + · · · .

The equivalent sought is therefore (−x)p+1 1
p!

lnk(x)
k!

Γ(1)
x .

So

∞∑
n=p+1

(−1)nxn

n!(n− p)k
∼
∞

(−1)p+1x
p

p!

lnk(x)

k!
.

It should be noted, given the equivalent obtained, that the result is the same for
∑
n6=p

(−1)nxn

n!(n− p)k
.

An example where several poles have even real parts. Let’s deal with the case F (x) =

∞∑
n=0

(−1)nxn

n!(n2 + 1)
.
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We write 1
n2+1 = i

2

[
1
x+i −

1
x−i

]
. This gives us F (x) = i

2

[
Γ(i)x−i − Γ(−i)xi

]
+O(ρx),

or, by writing Γ(i) = ρeiθ :

F (x) =
+∞

ρ sin(ln(x)− θ) +O(rx) avec r < 1.

2 Integral form and applications.

Notations and working context :

- We consider functions defined from a certain rank n0 and we will talk about sequences by looking at
the values of such functions over fairly large integers.

- For a given sequence u we note Fu(x) =

∞∑
n≥n0

(−1)nxn

n!
u(n).

For a given sequence u :

- If we can write u(x) =

∫ 1

0

txπ(t) dt for a function π and for any x ≥ 0, then we’ll say that the u is

density sequence. It will be said to be associated with π that we will note πu.

- If we can write u(x) =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
π(t) dt for an integer p, then we will say that u is

deduced from a density sequence.

In practice we will assume π monotonous around 0.

The working context will be that of density sequences or suites that are deduced from them. We will
naturally see these last ones appear by operations on density sequences.

It should be noted that the case of a defined sequence, for example for x ≥ 1, is not that of a density
sequence, but only of a sequence that is deduced from it, as will be seen later.

In the case of a density sequence, Fu(x) =

∫ 1

0

e−txπu(t) dt, it is then the study of this integral that gives an

asymptotic of Fu in + +∞. So we’ll look for an asymptotic at O(ρx) with ρ < 1.

Therefore, sometimes we will write’=’ for two terms that differ by a O(ρx) (always with ρ < 1).

Finally, let’s note that the values of u(x) for x large essentially involve the behavior of π in 1, while those of
Fu in +∞ that of π in 0.

3 First properties.

- Derivation :

If u is a density sequence associated to πu, then u′ also is, associated to πu′ = ln(t)πu(t).

- Primitivation :

If U(x) =

∫ x

0

u(t) dt, then U(t) =

∫ 1

0

(1− tx)
πu(t)

ln(1/t)
dt. This sequence is therefore deduced from

a density sequence.
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- Truncation :

The truncated sequence Tu(0) = 0 et Tu(n) = u(n) for n ≥ 1 verifies

FTu(x) =

∫ 1

0

(e−xt − 1)πu(t) dt.

If π is integrable in 0 (so that u(0) is defined), noting Πu the primitive of πu which is vanishes in 1,

FTu(x) = x

∫ 1

0

e−xtΠu(t) dt.

We will see just after that that it means that this sequence is deduced from a density sequence.

This is immediate after an integration by parts.

- Shift :

We note Sα the operator who has a sequence u associates the sequence x → u(x + α) where α is
real. If u is a density sequence, then Sα(u) is associated to tαπu(t).

And so FSα(u)(x) =

∫ ∞
0

e−xttαπu(t) dt.

Proof :

We write Sα(u)(x) =

∫ 1

0

txtαπu(t) dt.

This then gives FSα(u)(x) =

∫ ∞
0

e−xttαπu(t) dt.

Remark :

For example, if we consider the sequence u(x) = 1
ln(x+2) defined for x ≥ 0, the sequence S−1(u) is only

defined from the rank 1. It is therefore not a priori a density sequence, but it is deduced by truncation from
the u sequence from the rank 1.

It is therefore necessary to consider FTS−1(u)(x) = x

∫ 1

0

e−xtΠu(t) dt with Πu(t) = −
∫ 1

t

πu(s)

s
ds.

Cases of sequences that are deduced from density sequences.

We also want to study sequences that do not tend towards 0 in +∞. We will be able to show them as
sequences deduced from density sequences.

given a density of π, we’re interested in the sequence u(x) =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
π(t) dt and we want

to study Fu in +∞.
This will require some definitions.

We recall the notation ∆(P ) = P (X + 1)− P (X) for a polynomial.

- For a function π that can be integrated on ]0.1[, we define the operator Φ by

Φ(π)(t) =
1

t

∫ t

0

π(s) ds.

- For a positive integer p, we note Qα,p the polynomial defined by Sα,p(X) =

p∑
i=0

bα,i
(−X)i

i!

with bα,i = ∆i((X + α)p)(0). In the case of α = 0, we will simply note bi = bα,i and Sp = S0,p.
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Let us note a remark that will be used later :

Note on coefficients bα,i :
p∑
i=0

(−1)ibα,i

(
α+ i

i

)
= (−1)p.

Proof :

This comes from
(−α−1

i

)
= (−1)i

(
α+i
i

)
and from (X + α)p =

p∑
i=0

bα,i

(
X

i

)
which is applied in X = −α− 1.

Let be π an integrable function on ]0, 1[.

If u(x) =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
π(t) dt, then :

- u(x) = (−x)p
∫ 1

0

txΦp(π)(t) dt.

- Fu(x) = (−1)p
∫ 1

0

e−xtSp(xt)Φ
p(π)(t) dt.

Proof :

First point :

We integrate by parts

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
π(t) dt.

We then obtain[(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
tΦ(π)(t)

]1

0

−
∫ 1

0

x

(
tx−1 −

p−1∑
i=1

(x ln(t))i−1

t(i− 1)!

)
tΦ(π)(t) dt,

then (−x)

∫ 1

0

(
tx −

p−2∑
i=0

(x ln(t))i

i!

)
Φ(π)(t) dt,

and we conclude by induction.

Second point :

Note Ni(X) = X(X−1)···(X−i+1)
i! =

(
X
i

)
.

We write Xp =

p∑
i=0

biNi(X) avec bi = ∆i(Xp)(0).

So we have u(x) = (−1)p
p∑
i=0

biNi(x)

∫ 1

0

txΦp(π)(t) dt.

For vi(x) = Ni(x)

∫ 1

0

txΦp(π)(t) dt, we have

Fvi(x) =
∑
n≥0

(−1)nxn

n!
Ni(n)

∫ 1

0

tnΦp(π)(t) dt =
∑
n≥i

(−1)nxn

i!(n− i)!

∫ 1

0

tnΦp(π)(t) dt, and then

Fvi(x) =

∫ 1

0

∑
n≥i

(−1)n(xt)n

i!(n− i)!
Φp(π)(t) dt =

∫ 1

0

e−xt
(−xt)i

i!
Φp(π)(t) dt.

So Fu(x) = (−1)p
∫ 1

0

e−xt
p∑
i=0

bi
(−xt)i

i!
Φp(π)(t) dt = (−1)p

∫ 1

0

e−xtSp(xt)Φ
p(π)(t) dt.

Application to an integral representation of Sαu and of FSαu.
For such a sequence u, per shift we have :

- Sα(u)(x) = (−1)p(x+ α)p
∫ 1

0

tx+αΦp(π)(t) dt.
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- FSαu(x) = (−1)p
∫ 1

0

e−xtSα,p(xt)t
αΦp(π)(t) dt.

Proof :

First point is obvious.

For the second, we must write (X + α)p =

p∑
i=0

aα,i

(
X

i

)
with aα,i = ∆p((X + α)p)(0).

Thus we obtain the result by the relation Sα,p(X) =

p∑
i=0

aα,i
(−X)i

i!
.

4 Some technical results.

Let us mention here some asymptotics that will be used, without dwelling on the demonstrations.

Si tαπ(t) is integrable on ]0, 1] et si ρ < 1, so ρx = o (Fu(x)).
Furthermore, if π1 ∼

0
π2 in 0, then Fu1

∼
+∞

Fu2
.

For the first point :∫ 1

0

e−xtπ(t) dt =

∫ 1

0

t−αe−xttαπ(t) dt ≥ a−αe−xa
∫ 1

a

tαπ(t) dt for a > 0,

this leading term ρx if we choose a small enough.

For the second :

If a(t) = o(π(t)) in 0, let’s check that

∫ 1

0

e−xta(t) dt = o

(∫ 1

0

e−xtπ(t) dt

)
.

We write |a(t)| ≤ επ(t) over ]0, α] and so

∫ 1

0

e−xta(t) dt ≤ ε
∫ 1

0

e−xtπ(t) dt+ e−αx
∫ 1

α

a(t) dt.

The increase in the first point then makes it possible to conclude.

And finally for a > 0 (voir [2]):

∗
∫ 1

0

e−xtta−1 lnb(1/t) dt ∼
∞

Γ(a)
lnb(x)

xa

=
1

xa

p∑
i=0

(
i

b

)
lnb−i(x)(−1)iΓ(i)(a) + o

(
lnb−p

xa

)

∗ ∗
∫ 1/e

0

e−xtta−1 lnb(1/t) lnc(ln(1/t)) dt ∼
∞

Γ(a)
lnb(x) lnc(ln(x))

xa

=
1

xa

∑
0≤i+k≤p and j≤q

(
i

b

)
lnb−i−k(x) lnc−j(ln(x))(−1)iΓ(i+k)(a) + o

(
lnb−p lnc−q(ln(x))

xa

)

5 Practical calculations.

5.1 Case u(x) = 1
(x+a)k

with a and k positive.

For u(x) = 1
x+1 we have πu(t) = 1[0,1]. We notice π or even πu this function.

By calculating the derivative, we have
(−1)kk!

(x+ 1)k+1
=

∫ 1

0

tx lnk(t) dt.

That is, for uk(x) = 1
(x+1)k

, πuk(t) = (−1)k−1 lnk−1(t)
(k−1)! on the interval ]0, 1].

The case of a positive integer exponent k was treated as such.

This is widespread in : if uk(x) = 1
(x+1)k

with k ∈ R+, then πuk(t) = lnk−1(1/t)
(k−1)! 1]0,1].
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This relation is easily verified by puting t = e−u in
1

(k − 1)!

∫ 1

0

tx lnk−1(1/t) dt,

remembering the rating (k − 1)! = Γ(k).

This results in the following formula Fuk(x) =
1

(k − 1)!

∫ 1

0

e−xt lnk−1(t) dt.

We will now present here the case vk(x) = 1
(x+a)k

with a > 0.

We just saw that if uk(x) = 1
(x+1)k

, then πuk(t) = lnk−1(1/t)
(k−1)! 1]0,1].

By the shift operator we obtain vk = Sa−1(uk).

So πvk(t) = ta−1 lnk−1(1/t)
(k−1)! 1]0,1],

and then Fvk(x) =
1

(k − 1)!

∫ 1

0

e−xtta−1 lnk−1(1/t) dt.

For real positive a and k, we have the asymptotic

∞∑
n=0

(−1)nxn

n!(n+ a)k
= x−a

p∑
i=0

(
k − 1

i

)
lnk−1−i(x)(−1)iΓ(i)(a) + o

(
lnk−p(x)

xa

)
.

And in particular
∞∑
n=0

(−1)nxn

n!(n+ a)k
∼
∞

Γ(a)

xa
lnk−1(x)

(k − 1)!
.

This is directly deduced from the integral expression and the ∗ relation.

Important remark :

It should be noted that everything that has been mentioned is true for an exponent k > −1 since the
functions that appear to be integrable on ]0.1[.

In conclusion :

Pour u(x) = 1
(x+a)k

with k > −1 and a > 0, we have

πu(t) = ta−1 lnk−1(1/t)

(k − 1)!

Fu(x) ∼
∞

Γ(a)

xa
lnk−1(x)

(k − 1)!

5.2 Case x−k with k positive.

We will present here the case u(x) = x−k et u(0) = 0.

So we’re looking at Fu(x) =

∞∑
n=1

(−1)nxn

n!nk
.

Here the shift and truncation operators will intervene.

We know that for v(x) = (x+ 1)−k we have

- v(x) =

∫ 1

0

tx
lnk−1(1/t)

(k − 1)!
dt.

- Fv(x) =

∫ 1

0

e−xt
lnk−1(1/t)

(k − 1)!
dt.

By shifting and then truncation (see page 5), we have Fu(x) = x

∫ 1

0

e−xtΠ(t) dt with Π(t) = −
∫ 1

t

lnk−1(1/s)

s(k − 1)!
ds.

By truncation, we have thus shown Fu(x) = −x
∫ 1

0

e−xt
lnk(1/t)

k!
dt.
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For k real positive, we have the asymptotic

+∞∑
n=1

(−1)nxn

n!nk
= − 1

k!

p∑
i=0

(
k

i

)
lnk−i(x)(−1)iΓ(i)(1) +O

(
lnk−p(x)

)
.

And in particular
∞∑
n=1

(−1)nxn

n!nk
∼
∞
− lnk(x)

k!
.

This is directly deduced from the integral expression and the relation ∗

In conclusion :

For u(x) = 1
nk

with k real positive and x > 0, we have

Fu(x) = −x
∫ 1

0

e−xt
lnk(1/t)

k!
dt

Fu(x) ∼
∞
− lnk(x)

k!

5.3 Case of a negative exponent.

We will study the case u(x) = (x+ a)k with k > 0.

We will start with the case u(x) = (x+ 1)k then conclude with the shift operator.

Integral representation of u(x) = (x+ 1)p−k :

If 0 < k < 1 and if p is a positive integer, then

(x+ 1)p−k =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
lnk−p−1(1/t)

(k − p− 1)!
dt+ Pk(x).

where Pk is polynomial.

Proof :

It should be noted first that t→

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
lnk−p−1(1/t)

(k − p− 1)!
is integrable over ]0, 1[.

Let us note up(x) = (x + 1)p−k and vp(x) =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
lnk−p−1(1/t)

(k − p− 1)!
dt + Qk(x) with Qk a

polynomial whose derivative is Pk.
A derivation calculation left to the reader shows that u

′

p(x) = (p−k)up−1(x) et v
′

p(x) = (p−k)vp−1(x)+Pk(x).

The case p =0 corresponds to u(x) = 1
(x+a)−k

with −k > −1 which has been treated in section 5.1 (under

the title important remark).
It is then sufficient to adjust Pk(0) to state that uk = vk.
We can therefore conclude by induction that the Proposition is verified for any p ∈ N .

Remark :

We have already reported that for a polynomial u function, Fu(x) = O(ρx).
The appearance of the polynomials Pk is therefore of no importance to the asymptotics sought, even if clearly
we could calculate these polynomials.
The general case uk(x) = (x+ a)k.

For k /∈ N∗ we have

Fuk(x) ∼
∞

Γ(a)

xa
ln−k−1(x)

(−k − 1)!
.
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Proof :

We’ll actually take 0 < k < 1 and process the case u(x) = (x+ a)k−p.

Let’s pose πk(t) = lnk−p−1(1/t)
(k−p−1)! .

In the case a = 1 as u is deduced from a density sequence, we know that

Fu(x) = (−1)p
∫ 1

0

e−xtSp(−xt)Φp(πk)(t) dt.

So by the shift operator (see page 4)

Fu(x) = (−1)p
∫ 1

0

e−xtSa−1,p(−xt)ta−1Φp(πk)(t) dt.

We clearly have the implication : If π(t) ∼
0

lnα(1/t)
α! then Φ(π)(t) ∼

0

lnα(1/t)
α! .

So here, Φp(πk)(t) ∼
0

lnk−p−1(1/t)
(k−p−1)! .

Let’s write Sa−1,p(X) =

p∑
i=0

ba−1,i
(−X)i

i!
.

As

∫ 1

0

e−xt(xt)ita−1Φp(πk)(t) dt ∼
∞
xi

Γ(a+ i)

xa+i

lnk−p−1(x)

(k − p− 1)!
,

we thus obtain Fu(x) = (−1)p
p∑
i=0

(−1)iba−1,i
Γ(a+ i)

i!xa
lnk−p−1(x)

(k − p− 1)!
+ o

(
lnk−p−1(x)

xa

)
at +∞.

We write Γ(a+i)
i! = (a+i−1)···a

i! Γ(a) =
(
i+a−1
i

)
Γ(a).

The relation

p∑
i=0

(−1)iba−1,i

(
i+ a− 1

i

)
= (−1)p quoted and established in page 5 then makes it possible to

conclude.

In conclusion :

u(x) = (x+ a)k with k > 0,

u(x) =

∫ 1

0

(
tx −

p−1∑
i=0

(x ln(t))i

i!

)
lnk−p−1(1/t)

(k − p− 1)!
dt+Qk(x) with Qk polynomial

For k /∈ N∗ we have Fu(x) ∼
∞

Γ(a)

xa
ln−k−1(x)

(−k − 1)!

5.4 Case of a negative pole a.

Asymptotic of Fu(x) =
∑
n≥n0

(−1)nxn

n!
(n+ a)k avec k > 0.

Let n0 − 1 < a ≤ n0 and let u(x) = 1
(x−a)k

If n0 − 1 < a < n0 then Fu(x) ∼
∞

(−1)n0xaΓ(−a) ln−k−1(x)
(−k−1)!

If a = n0 then

Fu(x) ∼
∞

(−1)n0+1x
n0

n0!

ln−k(x)

(−k)!

Proof :

We put a = n0 − ε with 0 ≤ ε < 1.
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If we note n = m+ n0, we rewrite Fu(x) as Fu(x) = (−x)n0

∑
m≥0

(−1)mxm

m!(m+ 1) · · · (m+ n0)(m+ ε)k
. If k is an

integer, by the case of a rational fraction treated at the beginning, we have

Fu(x) ∼
∞

(−x)n0KFv(x) where v(x) = 1
(x+ε)k

and K = [(1− ε)(2− ε)) · · · (n0 − ε)]−1
.

For the other values of k, we will find this result by the principle of no superposition of perturbations in the
example paragraph.

- Cas n0 − 1 < a < n0 :

As Fv(x) ∼
∞

Γ(ε)
xε

ln−k−1(x)
(−k−1)! and by the relation Γ(ε) = (ε− 1) · · · (ε− n0)Γ(ε− n0),

we thus obtain the relation Fu(x) ∼
∞

(−1)n0xaΓ(−a) ln−k−1(x)
(−k−1)! .

- Case a = n0 :

In this case v(x) = 1
xk

and Fv(x) ∼
∞
− ln−k(x)

(−k)!
.

So Fu(x) ∼
∞

(−1)n0+1 xn0

n0!
ln−k(x)
(−k)! .

It should be noted that, as in the case of rational fractions, we have the same equivalent if we study

Fu(x) =
∑
n 6=n0

(−1)nxn

n!
u(n).

5.5 Conclusion.

We consider u(x) = 1
(x+a)k

with x and k real

We define n0 = 0 if a > 0 and n0 − 1 < a ≤ n0 if a ≤ 0

Fu(x) ∼
∞

(−1)n0
Γ(a)

xa
lnk−1(x)

(k − 1)!
si a /∈ −N

Fu(x) = O(ρx) si a ∈ −N

6 Logarithmic cases.

6.1 Cas ln(x+ a).

We will present here the case u(x) = ln(x+ a).

Case u(x) = ln(x+ a).

If u(x) = ln(x+ a), then

Fu(x) ∼
∞
− Γ(a)

xa ln(x)

Proof :

Let u(x) = ln(x+ 1).

Clearly, by primitization, u(x) =

∫ 1

0

tx − 1

ln(t)
dt.

Let Li(t) =

∫ t

0

ds

ln(s)
.

Because u is deduced from a density sequence, we then have Fu(x) = −
∫ 1

0

e−xtS1(xt)Φ(Li)(t) dt.

We have the asymptotic Li(t) ∼
0

t
ln(t) ,
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and then Φ(Li)(t) ∼ 1
ln(t) ,

so,

∫ 1

0

e−xtLi(t) dt ∼
∞
x

∫ 1

0

e−xt
t

ln(1/t)
dt (Remember S1(X) = −X).

Thus, by the relation ∗, Fu(x) ∼
∞
− 1
x ln(x) .

Let us treat the case a 6= 1 in the same way :

For v(x) = ln(x+ a), by shifting u by Sa−1, Fv(x) = −
∫ 1

0

e−txta−1S1,a−1(xt)Φ(Li)(t) dt,

and then Fv(x) = −
∫ 1

0

e−xt(a− 1− xt)Li(t)ta−1 dt,

and finally, after calculations left to the reader, Fv(x) ∼
∞
− Γ(a)
xa ln(x) .

In conclusion :

u(x) = ln(x+ a)

Fu(x) = −
∫ 1

0

e−xt(a− 1− xt)Li(t)ta−1 dt

Fu(x) ∼
∞
− Γ(a)

xa ln(x)

6.2 Case lnk(x+ a) with k integer.

Case u(x) = lnk(x+ a) with k positive integer.

If vk(x) = lnk(x+ a) for a positive integer k, then

Fvk(x) ∼
∞

(−1)kk
a!

xa
lnk−1(ln(x))

ln(x)
.

Proof :

We’re going to proceed in 3 steps.

1) Study of Ik(x) =

∫ 1

0

(1− tx)
lnk(ln(1/t))

ln(1/t)
dt.

In this paragraph we will note ck = Γ(k)(1) =

∫ ∞
0

lnk(t)e−t dt.

By changing the variable e−t = u we get Γ(k)(1) =

∫ 1

0

lnk(ln(1/u)) du.

We clearly have I ′k(x) =

∫ 1

0

tx lnk(ln(1/t)) dt.

We write I ′k(x) =

∫ x

0

tx−1t lnk(ln(1/t)) dt that we integrate by parts :

I ′k(x) =

[
(tx − 1)

x
t lnk(ln(1/t))

]1

0︸ ︷︷ ︸
0

−
∫ 1

0

(tx − 1)

x

(
lnk(ln(1/t))− kt lnk−1(ln(1/t))

−1/t

ln(1/t)

)
︸ ︷︷ ︸

lnk(ln(1/t))+k
lnk−1(ln(1/t))

ln(1/t)

dt.

Thus xI ′k(x) = −I ′k(x) + ck − kIk−1(x).
We then obtain the relation (x+ 1)I ′k(x) = ck − kIk−1(x).
We then define Pk by Ik(x) = Pk(ln(x+ 1)).
The recurrence relation is written as P ′k = ck−kPk−1 with Pk(0) = 0 and also P0 = X since I0(x) = ln(x+1).

Let’s check by induction the relation

13



(k + 1)Pk(X) =

∫ ∞
0

e−t
[
lnk+1(t)− (ln(t)−X)

k+1
]
dt :

Note Jk(X) the integral
1

k + 1

∫ ∞
0

e−t
[
lnk+1(t)− (ln(t)−X)

k+1
]
dt.

For k = 0 we clearly have J0(X) = X.
As Jk(0) = 0, to check the relation to the k rank by induction, just check that Jk satisfies the relation
J ′k(X) = ck − kJk−1(X) :

J ′k(X) =

∫ ∞
0

e−t(ln(t)−X)k dt = −kJk−1(X) + k

∫ ∞
0

e−t lnk(t) dt = −kJk−1 + ck−1.

Thus∫ 1

0

(1− tx)
lnk(ln(1/t))

ln(1/t)
dt =

1

k + 1

∫ ∞
0

e−t
[
lnk+1(t)− (ln(t)− ln(x+ 1))

k+1
]
dt = Pk(ln(x+ 1)).

We will remember that Pk a polynomial of degree k + 1 verifying Pk(0) = 0 and leading coefficient (−1)k

k+1 .

2) Calculation of the density associated with lnk(x+ a).

Let’s write Xk+1 = a0,kP0(X)+a1,kP1(X)+ ...+ak−1,kPk(X), and pose Qk(X) = a0,k+a1,kX...+ak−1,kX
k.

By looking at the leading coefficient we have ak−1,k = (−1)k(k + 1).

By taking X = ln(x+ 1) we have lnk+1(x) =

∫ 1

0

(1− tx)

k−1∑
i=0

ai,k
lni(ln(1/t))

ln(1/t)
.

So we have

lnk+1(x+ 1) =

∫ 1

0

(1− tx)
Qk(ln(ln(1/t)))

ln(1/t)
dt.

Thus, for uk(x) = lnk(x+ 1), we have πuk(t) = Qk−1(ln(ln(1/t)))
ln(1/t) , that we’ll write πk in the following.

In particular πuk(t) ∼
0

(−1)k−1k lnk−1(ln(1/t))
ln(1/t) .

3) Equivalent of Fvk at +∞ with vk(x) = lnk(x+ a).

We so have uk(x) = −
∫

(tx − 1)
Qk−1(ln(ln(1/t)))

ln(1/t)
dt,

and then, for vk(x) = lnk(x+ a) :

Fvk(x) =

∫ 1

0

e−xS1,a−1(xt)ta−1Φ(πk) dt

As Φ(πk)(t) ∼ πk(t) ∼ (−1)k−1k lnk−1(ln(1/t))
ln(1/t) ,

so we have Fvk(x) ∼
∫ 1

0

e−xt(a− 1− xt)ta−1(−1)k−1k
lnk−1(ln(1/t))

ln(1/t)
dt,

which gives as equivalent

(−1)k−1k(a− 1)

∫ 1

0

e−xtta−1 lnk−1(ln(1/t))

ln(1/t)
dt+ (−1)kkx

∫ 1

0

e−xtta
lnk−1(ln(1/t))

ln(1/t)
dt

(provided that the main parts are not simplified)

or, after using the relation ∗∗ :

Fvk(x) ∼ (−1)k−1k lnk−1(ln(x))
xa ln(x) ((a− 1)Γ(a)− Γ(a+ 1)),

which shows that Fu(x) ∼
∞

(−1)kkxΓ(a)
xa

lnk−1(ln(x))
ln(x) .

In conclusion :
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u(x) = lnk(x+ a)

πu(t) = ta−1Qk−1(ln(ln(1/t)))

ln(1/t)

πu(t) ∼
0

(−1)k−1kta−1 lnk−1(ln(1/t))

ln(1/t)

Fu(x) ∼
∞

(−1)kkx
Γ(a)

xa
lnk−1(ln(x))

ln(x)

7 Principle of superposition of perturbations.

7.1 Preliminaries.

Product of two density sequences.

Proposition :
Let ui two density sequences πi.

The sequence u1u2 admits π = π1 ? π2 as density with π(z) =

∫ 1

z

π1(s)π2(z/s)
ds

s
.

Proof :

u1(x)u2(x) =

∫ 1

0

∫ 1

0

txsxπ1(t)π2(s) dsdt.

By puting u = st we obtain

∫ 1

0

∫ t

0

ux
1

t
π1(t)π2(u/t) dt du =

∫ 1

0

∫ 1

u

1

t
π1(t)π2(u/t) dt du =

∫ 1

0

zxπ(z) dz,

with π(z) =

∫ 1

z

π1(s)π2(z/s)
ds

s
.

Properties of the ? operator :

1 ? is assoiative and commutative.

2 Under conditions of derivability, (π1 ? π2)
′
(z) = − 1

zπ1(z)π2(1) +

∫ 1

z

1

s2
π1(s)π′2(z/s) ds.

3 Equivalent formulas :

π1 ? π2(z) =

∫ √z
z

1

s
(π1(s)π2(z/s) + π1(z/s)π2(s)) ds.

z (π1 ? π2)
′
(z) = −π1(

√
z)π2(

√
z) +

∫ √z
z

(π1(z/s)π′2(s) + π′1(s)π2(z/s)) ds.

Proof :

The first point is left to the reader.

The second is obtained by considering G(x, y) =

∫ 1

x

π1(s)π2(y/s)
ds

s
.

For the third one :

We consider

∫ 1

√
z

1

s2
π1(s)π′2(z/s) ds

where the variable change u = z/s is performed, which gives∫ √z
z

π1(z/s)π′2(s) ds which is integrated by parts and gives the result.

Some examples :

- For π1(t) = ta et π2(t) = tb :

We have π1 ? π2(z) = zb−za
b−a if a 6= b, za ln(1/z) if a = b.
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- For π1(t) = lna(1/t) et π2(t) = lnb(1/t), we have π1 ? π2(z) = B(a + 1, b + 1) lna+b+1(1/z), B desig-
nating the Euler function.

Indeed: The definition gives

∫ 1

z

lna(t/z) lnb(1/t)
dt

t

u=ln(1/t)
=

∫ ln(1/z)

0

(ln(1/z)− u)aub du,

the change of variable u = v ln(1/z) giving the result.

- For π1(t) = ta et π2(t) = tb lnc(1/t), we have π1 ? π2(z) =

∫ 1

z

tb−a−1 lnc(1/t) dt ∼
+∞

zb−a−1 lnc(1/z).

- For π(t) = ta−1 on a π ? · · · ? π
k fois

(t) = ta−1 lnk−1(1/t)
(k−1)! (by an easy induction),

which makes it possible to find the case u(x) = 1
(x+a)k

.

7.2 Power part of a function.

Definition :
If f is a given function over ]0, 1] and under the condition of existence, we will talk about the

power part of f , noted a(f) = lim
t→0

tf ′(t)
f(t) .

Remarks :

If f admits a power part a, then F (x) =

∫ x

0

f(t) dt admits a power part a+ 1.

If f and g admit a power part then a(fg) = a(f) + a(g).

If f admits a power part then we have c1t
a(f)+ε ≤ f(t) ≤ c2ta(f)−ε over ]0, 1].

Proof:

- a(f) = a is equivalent to a(g) = 0 for g(t) = t−af(t).

- If a(f) = 0, then f(t) = eα(t) where α′(t) = o(1/t).

If F (x) =

∫ x

0

f(t) dt, then∫ x

0

eα(t) dt =
[
teα(t)

]x
0
−
∫ x

0

tα′(t)eα(t) dt︸ ︷︷ ︸
=o(F (x))

.

Thus xF ′(x)
F (x) → 1.

The other two points are immediate.
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7.3 Problem of overlapping perturbations.

Theorem :

We give ui with density πi i = 1, 2, so monotonous around 0.

1 Principle of non-superposition of perturbations :

If π2(t) = O
(
tb
)

with b > a(π1)
and if π′1 admits a power part, then

π1 ? π2 ∼
0
C(π1, π2)π1

and therefore

Fu1.u2
∼
∞
CFu1

where

C(π1, π2) =

∫ 1

0

t−a(π1)−1π2(t) dt

2 Principle of superposition of perturbations :

If π1 and π2 admit a power part with a(π1) = a(π2)
then

a(π1) = a(π2) = a(π1 ? π2)

Let’s mention two very important applications before giving the proof :

If a(π1) < a(π2), · · · , a(πk) with π′1 admitting a power part, then
for 2 ≤ i ≤ k, we have πi(t) = O(tb) for one b > a(π1),
so π2 ? · · · ? πk(t) = O(tb),
and thus

Fu1···uk ∼+∞ C(u1, u2 ? · · · ? πk)Fu1

If a(π1) = a(π2) < a(π3), · · · , a(πk), meanwhile

Fu1···uk ∼+∞ C(u1 ? u2, π3 ? · · · ? πk)Fu1u2

Proof :

First case :
Let a = a(π1) > b, π1(t) = taπ(t).
We thus know that a(π) = 0 and t−aπ2(t) = O(tα) with α > 0.
put f(t) = t−a−1π2(t) whitch is integrable over ]0, 1].

π1 ? π2(z) = = za
∫ 1

z

f(s)π(z/s) ds.

It is therefore sufficient to show

∫ 1

z

f(s)π(z/s) ds ∼
0
π(z)

∫ 1

0

f(s) ds.

To do this, we integrate by parts by puting F (z) =

∫ z

0

f(s) ds :∫ 1

z

f(s)π(z/s) ds = F (1)π(z)− F (z)π(1) +

∫ 1

z

z

s2
F (s)π′(z/s) ds.

a(f) > −1 thus a(F ) > 0 and so we have an inequality such as F (z) ≤ czε,
which shows that F (z)π(1) = o(π(z)).
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By z/s = u, the last integral is equal to

∫ 1

z

F (z/s)π(s) ds,

and we have to show that it’s negligible in front of pi(z).
a(f) > −1 so a(F ) > 0 and we have an inequality such as F (t) ≤ Ctα.

The last integral is therefore increased by

∫ 1

z

(z
s

)α
π′(s) ds = H(z).

H(z) = zα
∫ 1

z

s−α+1sπ′(s) ds =
zα

α

[
−s−αsπ′(s)

]1
z

+
zα

α

∫ 1

z

s−α(sπ′(s))′ ds

= O(zα) +
1

α
zπ′(z)︸ ︷︷ ︸
o(π(z))

+
zα

α

∫ 1

z

s−α(sπ′(s))′ ds.

But as a(sπ′(s)) = 0, (sπ′(s))′ = o(π′(s)) there are two cases.

- If π′(s)
sα is integrable over ]0, 1], then

zα

α

∫ 1

z

s−α(sπ′(s))′ ds = O(zα).

- Else,
zα

α

∫ 1

z

s−α(sπ′(s))′ ds = o

(
zα
∫ 1

z

π′(s)

sα
ds

)
= o(H(z)).

Finally, the relation a(π) = 0 provides zα = o(π(z)).

Enfin la relation a(π) = 0 fournit zα = o(π(z)).

Second case :

Let’s start with a lemma :

Lemma :

If π1, π2 are locally positive and monotonous around 0, from part to zero power, then

π1(
√
z)π2(

√
z) = o

(∫ √z
z

π1(s)π2(z/s)
ds

s

)
.

Proof of the lemma :

Let’s note π(z) for the integral. First of all, let’s notice the equality:∫ √z
z

π1(s)π2(z/s)
ds

s
=

∫ 1

√
z

π1(z/s)π2(s)
ds

s

Case π1 decreasing and π2 increasing :∫ √z
z

1

s
π1(s)π2(z/s) ds ≥ π1(

√
z)

∫ √z
z

π2(z/s)
ds

s
= π1(

√
z)

∫ 1

√
z

π2(s)
ds

s
≥ π1(

√
z)π2(

√
z) ln(1/

√
z).

Cas π1 increasing et π2 decreasing :∫ 1

√
z

π1(z/s)π2(s)
ds

s
≥ π2(

√
z)

∫ 1

√
z

π1(z/s)
ds

s
= π2(

√
z)

∫ √z
z

π1(s)
ds

s
≥ π1(

√
z)π2(

√
z) ln(1/

√
z).

Cas π1 et π2 decreasing :

If π2(0) = 0, by monotony and positivity we would have the trivial case π2 = 0,

so

∫ 1

0

π2(s)

s
ds diverge.

But because a(π2) = 0, we have π2(1/2)− π2(z) =

∫ 1/2

z

π′2(s) ds = o

(∫ 1

z

π2(s)

s
ds

)
and π2(z) = o

(∫ 1

z

π2(s)

s
ds

)
.

Thus π2(
√
z) = o

(∫ 1

√
z

π2(s)

s
ds

)
.

The inequality π(z) =

∫ √z
z

1

s
π1(s)π2(z/s) ds ≥ π1(

√
z)

∫ 1

√
z

π2(s)

s
ds allows us to conclude.
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Cas π1 et π2 increasing :

π2(
√
z)− π2(z) =

∫ √z
z

π′2(s) ds = o

(∫ √z
z

π2(s)

s
ds

)
.

Futhermore,

∫ √z
z

π2(s)

s
ds ≥ π2(z) [ln(t)]

√
z

z = π2(z) ln(1/z),

so π2(z) = o

(∫ √z
z

π2(s)

s
ds

)
, puis π2(

√
z) = o

(∫ √z
z

π2(s)

s
ds

)
.

Finally π(z) ≥
∫ 1

√
z

π1(s)π2(z/s)
ds

s
≥ π1(

√
z)

∫ 1

√
z

π2(z/s)

s
ds = π1(

√
z)

∫ √z
z

π2(s)

s
ds, hence the result.

Remark :
A proof of this lemma not using monotony would be welcome.

Proof of the second case :

If a(π1) = a(π2) = a :
By puting πi(s) = taπ∗i (s), and by π1 ? π2(z) = zaπ∗1 ? π

∗
2(z), we’ll come back in case a = 0.

We will therefore assume a(πi) = 0 and note π = π1 ? π2.
We have

zπ′(z) = −π1(
√
z)π2(

√
z) +

∫ √z
z

(π1(z/s)π′2(s) + π′1(s)π2(z/s)) ds

The relations π′i(z) = o(πi(z)/z) as well as the nature of the integration interval then show that
the integral is negligeable in front of pi(z),
and so it remains to show π1(

√
z)π2(

√
z) = o(π(z)), which is ensured by the lemma.

7.4 Exemples.

Fisrt example

As promised, we will give an equivalent of
∑
m≥0

(−1)mxm

(m+ n0)!(m+ ε)
si 0 ≤ ε < 1

thanks to the principle of non-superposition of perturbations.

We write
[
(m+ 1) · · · (m+ n0)(m+ ε)k

]−1
=

1

(m+ ε)k

n0∑
i=1

ai
m+ i

.

For v(x) = 1
(x+ε)k

we have πv(t) = tε−1 lnk−1(1/t)
(k−1)! and for ui(x) = 1

x+i we have πi(t) = ti−1.

As a(πv) = ε− 1 < a(πi) = i− 1, by non-superposition, we have

πv ? πi ∼ Ciπv avec Ci =

∫ 1

0

t−(ε−1)−1ti−1 dt =
1

i− ε
.

Thus for u(x) =
[
(x+ 1) · · · (x+ n0)(x+ ε)k

]−1
, we have

πu ∼ πv
n0∑
i=1

ai
i− ε

=
1

(1− ε) · · · (n0 − ε)
,

whitch gives Fu(x) ∼
∞

(−x)n0KFv(x) ou v(x) = 1
(x+ε)k

and K = [(1− ε)(2− ε)) · · · (n0 − ε)]−1
as wished.

Second example

We’re going to focus on wn = ln(n+a)
(n+b)k

.

We want an equivalent at +∞ of

Fw(x) =

+∞∑
n=0

(−1)nxn ln(n+ a)

(n+ b)k
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It should be noted that this is not the product of two density sequences.

We therefore pose w(x) = ln(x+a)
(x+b)k

.

We know that ln(x+ a) = x

∫ 1

0

txta−1Li(t) dt.

So we’re going to pose u(x) =

∫ 1

0

txta−1Li(t) dt, and v(x) = 1
(x+b)k

=

∫ 1

0

txtb−1 lnk−1(1/t)

(k − 1)!
dt,

let πu(t) = ta−1Li(t) ∼ ta

ln(t) and πv(t) = tb−1 lnk−1(1/t)
(k−1)! , and finally π = π1 ? π2.

We know that Fw(x) =

∫ 1

0

e−xtS1(xt)Φ(π)(t) dt with S1(X) = −X,

a(πu) = a and a(πv) = b− 1.

There are therefore three cases.

First case a < b− 1 :

πu.v ∼ C(πu, πv)πu with C =

∫ 1

0

t−a−1tb−1 lnk−1(1/t)

(k − 1)!
dt,

Φ(π)(t) ∼ C ta

(a+1) ln(t) .

Thus Fw(x) ∼ −C
∫ 1

0

e−xtxt
ta

(a+ 1) ln(t)
dt,

or Fw(x) ∼ − CΓ(a+2)x
(a+1)xa+2 ln(x) ,

or even

Fw(x) ∼
+∞
−CΓ(a+ 1)

xa+1 ln(x)

Second case a > b− 1 :

This time, C = C(πv, πu) =

∫ 1

0

t−(b−1)−1ta− 1Li(t) dt,

and πu.v ∼ Cπv, Φ(πv)(t) ∼ btb−1 lnk−1(1/t)
(k−1)!

Thus Fw(x) ∼ −Cbx
∫ 1

0

e−xttb
lnk−1(1/t)

(k − 1)!
dt

and finally

Fw(x) ∼ −CbΓ(b+ 1) lnk−1(x)

(k − 1)!xb

Third case a = b− 1 :

π(z) =

∫ 1

z

ta−1Li(t)(z/t)b−1 lnk−1(t/z)

(k − 1)!

1

t
dt.

This gives π(z) ∼ za lnk−1(1/z)

(k − 1)!

∫ 1

z

Li(t)

t2
dt ∼ −za lnk−1(1/z)

(k − 1)!
ln(ln(1/z))

(we will not justify here the first equivalent),
puis φ(π) ∼ 1

a+1π.

In this way Fw(x) ∼ x
∫ 1

0

e−xtt
ta

a+ 1

lnk−1(1/t)

(k − 1)!
ln(ln(1/t)) dt,

and at last

Fw(x) ∼
+∞

Γ(a+ 1) lnk−1(x) ln(ln(x))

(a+ 1)xa(k − 1)!
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Third example

We’re going to treat the example u(x) = 1
(xα−aα)k

with 0 < a < 1, α > 0 and k ∈ N.

First method with the principle of non-superposition of perturbations :

Put u(x) = 1
(xα−aα)k

, v(x) = 1
(x−a)k

and w(x) =
(

x−a
xα−aα

)
.

We assume that v, and therefore w, are deduced from density sequences admitting a power part.

By truncation, Fv(x) = x

∫ 1

0

e−xtπV (t) dt avec πV (t) = −
∫ 1

t

πv(s) ds,

so πv = −π′V , and the same is true for w.

We have the relations a(πV ) = a(πv) + 1, a(Φ2(πV )) = a(πV ).

In addition, by practical calculations, πV (t) = t−a−1 lnk−1(1/t)
(k−1)! .

Since W is defined for some x < a, by holomorphy, f(t) = ta−επW (t) is can be integrated in 0.

Having a power part, tf ′(t) is also
and by an integration by parts, it is easy to see that
f(t) = O(1/t), whitch gives πW (t) = O(t−1−a+ε).

So a(πW ) > a(πV ) and by non-superposition, πV πW ∼ CπV .

Thus u(x) ∼ Cx2

∫ 1

0

txπV (t) dt, and then Fu(x) ∼
∫ 1

0

e−xtS2(xt)Φ2(πV )(t) dt.

S2(X) = X2 +X and Fu(x) ∼
∫ 1

0

e−xt(xt+ x2t2)t−a−1 lnk−1(1/t) dt.

This gives Fu(x) ∼ C ′ lnk−1(x)(xΓ(−a+1)
x−a+1 + x2 Γ(−a+2)

x−a+2 )
(because main parts don’t simplifie).
After simplification we find

Fu(x) ∼
+∞

Kxa lnk−1(x)

Second method, by direct work :

It’s more delicate.

If we give 0 < a < 1 et α > 0 and if we put u(x) = 1
(xα−aα)k

, then

Fu(x) ∼
∞
α−kak(1−α)Γ(−a)xa

lnk−1(x)

(k − 1)!

Proof : We write u(x) =

∞∑
i=0

(
−k
i

)
(−1)iaαi

xα(k+i)
.

The case v(x) = x−p gives Fv(x) = −x
∫ 1

0

e−xt
lnk(1/t)

k!
dt.

By this formula, we obtain here

Fu(x) = −x
∫ 1

0

e−xt
∑
i≥0

(
−k
i

)
(−1)i

aαi lnα(k+i)(1/t)

(α(k + i))!
dt = −x

∫ 1

0

lnαk(1/t)ϕ(t)e−xt dt

with ϕ(t) =

∞∑
i=0

(
−k
i

)
(−1)i(a ln(1/t))αi

(α(k + i))!
.

Let’s note ci =
(−k
i

)
(−1)i (αi)!

(α(k+i))! =
(
k+i−1
i

) (αi)!
(α(k+i))! ,

so that ϕ(t) =

∞∑
i=0

ci
(a ln(1/t))αi

(αi)!
.

As (x+a)!
x! ∼

x→∞
xa, so we have here ci = (k+i−1)!(αi)!

i!(k−1)!(αi+αk)! ∼∞
ik−1

(k−1)!(αi)αk
.
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We note b = (1− α)k − 1 and K = α−αk

(k−1)! , so that ci ∼∞ Kib.

Because of the equivalent for ci, we have ϕ(t) ∼
0
K
∑
i≥0

ib
(a ln(1/t))αi

(αi)!
.

But we have
∑
i≥0

ib
(a ln(1/t)αi

(αi)!
∼
0

(a ln(1/t))b

αb+1ta
(see [2] averaging page 7).

And so ϕ(t) ∼
∞

K

α
α−b(a ln(1/t))bt−a =

α−k

(k − 1)!
(a ln(1/t))(1−α)k−1t−a after simplification.

so Fu ∼∞ −x
α−k

(k − 1)!

∫ 1

0

e−xt lnαk(1/t)a(1−α)k−1 ln(1−α)k−1(1/t)
1

ta
dt.

Here again, after simplification, we have Fu(x) ∼
∞
−x α−k

(k − 1)!
a(1−α)k−1

∫ 1

0

e−xt lnk−1(1/t)
1

ta
dt,

the, by the relation ∗, Fu(x) ∼
∞
α−kak(1−α)Γ(−a)xa

lnk−1(x)

(k − 1)!
.

8 Generalizations.

There are two possible generalizations.

If u satisfies u(x) =

∞∑
i=1

c(i)

(x+ 1)i
alors πu(t) =

∞∑
i=1

c(i)
(−1)i−1 lni−1(t)

(i− 1)!
.

For example, if c is a regular (and therefore positive) sequence, that means c′

c (x) =
∞
o( 1√

x
), then we have

the asymptotic πu(t) ∼
0

c(ln(1/t))
t (see [1]).

Example :

Let u(x) = − ln(1− 1

x+ a
) =

∑
k≥1

1

k(x+ a)k
with a > 1,

πu(t)ta−1
∑
k≥1

lnk−1(1/t)

k(k − 1)!
=

ta−1

ln(1/t)
(
1

t
− 1) ∼ ta−2

ln(1/t)
,

and Fu(x) ∼
∫ 1

0

e−xt
ta−2

ln(1/t)
dt, then

Fu(x) ∼
+∞

Γ(a− 1)

xa−1 ln(x)
.

If u satisfies u(x) =

∞∑
i=1

(−1)i−1c(i)

(x+ 1)i
alors πu(t) =

∞∑
i=1

c(i)
lni−1(t)

(i− 1)!
.

This requires an asymptotic of

∞∑
i=1

c(i)
lni−1(t)

(i− 1)!
in 0 to get one of Fu. This can be done, again in the case

where c(k) is a positive sequence, with the techniques proposed in this article.

First example :

If πu(t) =
ta−1

ln(t)

∑
k≥1

(−1)k−1 lnk(1/t)

kαk!
.

We use

∞∑
n=1

(−1)nxn

n!nα
∼
∞
− lnα(x)

α!
,

and so πu(t) ∼ ta−1 lnα(ln(1/t))
α! ln(1/t) ,
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and finally

Fu(x) ∼
+∞

Γ(a) lnα−1(x)

α!xa

Second example :

We’ll shamefully add up equivalents (but we’ll say where the crimes take place),
by studying u(x) = 1

x+a , which will validate the calculations on the logarithms.

We write :

u(x) =
∑
k≥0

(−1)k

k!
lnk(x+ a)︸ ︷︷ ︸

uk

.

We know that πuk(t) ∼ (−1)k−1kta−1 lnk−1(ln(1/t))
ln(1/t) .

So we’re going to assume that we have (it’s here !) :

πu(t) ∼
∑
k≥0

(−1)k

k!
(−1)k−1kta−1 lnk−1(ln(1/t))

ln(1/t)
,

whitch gives πu(t) ∼ − ta−1

ln(1/t)

∑
k≥1

lnk−1(ln(1/t))

ln(1/t)
= ta−1.

Furthermore, Fuk(x) ∼ (−1)kk Γ(a) lnk−1(ln(x))
xa ln(x) .

We’ll also assume (it’s also here !):

Fu(x) ∼
∑
k≥1

(−1)kk
Γ(a) lnk−1(ln(x))

xa ln(x)
,

whitch gives Fu(x) ∼
∑
k≥0

Γ(a) lnk−1(ln(x))

(k − 1)!xa ln(x))
.

We find well Fu(x) ∼
+∞

Γ(a)
xa .

Finally, it would remain to treat the case lnk(x+ a) with k and a real.
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