A computational approach to design new tests for viscoplasticity characterization at high strain-rates - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Computational Mechanics Année : 2019

A computational approach to design new tests for viscoplasticity characterization at high strain-rates

Résumé

Rate-dependent behaviour characterization of metals at high strain rate remains challenging mainly because of the strong hypotheses when tests are processed with statically determinate approaches. As a non-standard methodology, Image-Based Inertial Impact (IBII) test has been proposed to take advantage of the dynamic Virtual Fields Method (VFM) which enables the identification of constitutive parameters with strain and acceleration fields. However, most of the test parameters (e.g. projectile velocity, specimen geometry) are not constrained. Therefore, an FE-based approach is addressed to optimize the identification over a wide range of strain and strain-rate, according to two design criteria: (1)-the characterized viscoplastic spectra (2)-the identifiability of the parameters. Whereas the first criterion is assessed by processing the FEA simulations, the second is rated extracting material parameters using synthetic images to input the VFM. Finally, uncertainties regarding the identification of material constants are quantified for each IBII test configuration and different camera performances.
Fichier principal
Vignette du fichier
DMAS19010.1568293739_postprint.pdf (6.12 Mo) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02293111 , version 1 (20-09-2019)

Identifiants

Citer

Pascal Bouda, Bertrand Langrand, Delphine Notta-Cuvier, Eric Markiewicz, Fabrice Pierron. A computational approach to design new tests for viscoplasticity characterization at high strain-rates. Computational Mechanics, 2019, 64, pp.1639-1654. ⟨10.1007/s00466-019-01742-y⟩. ⟨hal-02293111⟩
63 Consultations
63 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More