N

N

VNF-AAP: Accelerator-aware Virtual Network Function
Placement

Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, Mario Pickavet

» To cite this version:

Gourav Prateek Sharma, Wouter Tavernier, Didier Colle, Mario Pickavet. VNF-AAP: Accelerator-
aware Virtual Network Function Placement. 2019. hal-02292930

HAL Id: hal-02292930
https://hal.science/hal-02292930

Preprint submitted on 20 Sep 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02292930
https://hal.archives-ouvertes.fr

VNF-AAP: Accelerator-aware Virtual Network
Function Placement

Gourav Prateek Sharma, Wouter Tavernier,
Didier Colle, Mario Pickavet
IDLab, Department of Information Technology
Ghent University - IMEC,
Email: {gouravprateek.sharma, wouter.tavernier, didier.colle, mario.pickavet} @ugent.be

Abstract—Network Function Virtualization aims to migrate
packet-processing tasks from special-purpose appliances to Vir-
tual Network Functions (VNFs) running on x86 or ARM servers.
However, achieving the line-rate packet-processing for VNFs
running on CPUs can be a challenging task. External hardware
accelerators can be used to offload heavy-lifting tasks (e.g.
en/decryption and hashing) from performance-critical VNFs.
State-of-the-art VNF placement algorithms only consider com-
pute resources while assigning VNFs on server nodes. We propose
a placement algorithm which takes into consideration hardware
accelerator resources in addition to compute resources. For
evaluation, we compare the performance of our approach with
the Integer Linear Program (ILP) method and also with the
state-of-the-art best-fit method of VNF placement.

Index Terms—NFV, hardware accelerator, FPGA, placement
algorithm, allocation

I. INTRODUCTION

With Network Function Virtualisation (NFV), telecom op-
erators are making a transition in the manner with which
network services are created and managed. Network services
are normally composed of multiple network functions (NFs)
chained together in a specific topology, each NF perform-
ing a specific packet-processing task. NFs are traditionally
implemented using specialized application-specific integrated
circuits (ASICs) called middleboxes. However, network ser-
vices based on middleboxes result in inflexibility and high
CAPEX and OPEX [1]. But significant cost-savings can be
achieved by performing packet-processing tasks using virtual
network functions (VNFs) running on commercial-off-the-
shelf (COTS) servers (e.g. x86 or ARM) instead of doing
it using expensive middleboxes. However, softwarization of
network functions accompanied by virtualization overhead
leads to performance degradation of several network functions,
e.g. processing latency of a firewall VNF can go up to 10x as
of hardware firewall [1]. Use of external hardware accelerators
(e.g. FPGAs, NPUs, GPUs), for offloading CPU intensive
tasks from VNFs, has therefore been proposed. The massive
parallelism available in hardware accelerators results in a
significant throughput and latency improvement. Moreover,
hardware accelerators are more efficient in terms of (Number
of Operations)/Watt as compared to CPUs.

Placement of network functions across the multiple server-
nodes of NFV infrastructure (NFVI) in a fast and scalable
manner has been a major research challenge. Various models

have been proposed to describe the VNF placement problems
[1] [2]. These models consider parameters such as available
computational and network resources along-with bandwidth
and latency requirements of VNF chains.
With the availability of hardware accelerators in NFVI, VNF
placement has made the placement problem even more compli-
cated. This is illustrated via a simple example. Fig. 1 shows a
scenario when it is required to place two VNF chains on three
server-nodes. CPU requirements (cores) and percentage CPU
reduction of VNFs are provided. Let us assume each server-
node has 8 units of CPU resources available. All three nodes
will be required for the placement of VNFs in case (a) when no
acceleration is available on any node. In case (b), we assume
the first node is attached with an FPGA board over PCle bus.
VNFs f11 and f21; now can offload their computational tasks to
dedicated accelerators running on the FPGA. Cost-saving can,
therefore, be achieved if VNF placement of (b) is followed
instead of (a).

In order to optimize the use of resources in NFVI, place-

VNFs f11 f12 f13 f21 f22
CPU requirement 5 3 4 4 3

CPU reduction (%) 60 0 0 50 0

\ 4 \

/ |
/ / (a)
\V; N/ |
node1 node2 node3
8CPUL. 8CPUU, 8CPUL.
f11 f12 f13
\ / \
\ 7/ T 1 fn (b)
\L-— \ -
nodet node2 node3
8CPUU. 8CPUU. 8CPUL.
Fig. 1. Comparison of VNF placement without and without accelerator
availability.

ment algorithms must take into consideration the presence of
accelerators in NFVI nodes. We refer to this problem as VNF-

AAP, the accelerator-aware VNF placement problem. First,
we describe the Integer Linear Programming (ILP) model
for VNF-AAP problem in section II. Next, we propose an
algorithm based on the best-fit method to solve the VNF-AAP
problem in section III. Last, we compare the performance of
our algorithm with ILP and the usual best-fit method in section
V.

II. PROBLEM FORMULATION

We formulate the accelerator-aware VNF placement prob-
lem as an integer linear program (ILP). Various parameters
and decision variables involved in the ILP formulation are
described in Table I.

TABLE I
DESCRIPTION OF PARAMETERS AND DECISION VARIABLES
Notation Description
C set of all requested chains.
Fe set of all VNF constituting chain ¢ € C'
N set of all available server nodes.
Repu(n) maximum CPU resources (cores) available on n €
N.
Race(n) maximum accelerator resources (logic elements)
available on n € N.
Rius(n) maximum bus bandwidth (Mbps) on n € N.
A a set of all the available accelerator types.
co(f°) CPU requirement (cores) of VNF f of chain c.
¢ (f€) CPU reduction (cores) for VNF f of chain c.
atype(f¢) | Type of accelerator required for offloading VNF f¢.
te throughput demand (Mbps) of chain c.
r(a) accelerator resource (logic elements) requirement of
the accelerator a € A.
Tn 1 iff atleast one VNF is placed on n
a}lc 1 iff VNF f of chain c is placed on n.
6;}6 1 iff VNF f of chain c is accelerated on n.
R 1 iff accelerator type a is instantiated on the node n
obj : min Z T @))
neN

>

eco(f) = Beci(f9) < Repu(n) ¥n €N (2)

ceC, feeFe
Z r(a)d] < Race(n) VYneN 3)
acA
> 2Bfte < Rpus(n) ¥ne N)
ceC, feeFe

B%. =0 Vne€ N,Vee CVf° e F°:if atype(f°) ¢ A

)]

d afe=1 VeeC\Vf e F° (6)
neN

Bje <afe Vn € N,Vee CVf° e F* @)

L, if > BR>1
VeeCNVfeeEF®,

63 = a=atype(f°) Vn € N, Va € A
0, otherwise
®)
rn< Y. af VneN (9a)
ceC, feeFe
> aj <Mz, VneN (9b)
ceC, feeFe

Ty, e, Bfe, 0q € {0,1} Vn € N,Vce C,Vf° € F° (10)

The objective (1) of the ILP is to minimize the total number

of server-nodes utilized to place a set of given VNF chain
requests. The first constraint (2) ensures that the sum of the
effective CPU demands of all VNFs placed on any node does
not surpass its maximum CPU capacity. The constraint in
(3) indicates the availability of the finite amount of hardware
accelerator resources for the instantiation of accelerators.
The rate of communication between VNFs and accelerators
running is bounded by the maximum bandwidth of the PCle
bus, as indicated in (4). A VNF can be accelerated only if a
corresponding accelerator implementation is available in A as
represented by (5). Each VNF of every chain is placed exactly
once as indicated by (6). Constraint (7) is a consequence of
the fact that a VNF f¢ can be accelerated on a node n only
if it is placed on it. Constraint (8) ensures that an accelerator
of a particular type is instantiated if a non-zero number of
VNFs are using that accelerator type. The pair of constraints
(9a - 9b) forces x,, to be equal to 1 iff a non-zero number
of VNFs are placed on n. Constraint (10) ensures variables
Te, e, 6}2, 0/ can only take binary (0 or 1) values.
The solution to the above ILP results in the maximum
consolidation of VNFs on a given set of server nodes.
However, the VNF-AAP problem with a relatively larger
number of chains, VNFs and nodes is challenging problem
to solve using the ILP approach. Moreover, for online
placement of VNF chains wherein chain requests are arriving
dynamically, ILP cannot be used as it requires all the
placement requests before running. In the next section, we
propose a scalable heuristic method for the placement and
accelerator allocation of VNFs in an online fashion.

III. PROPOSED ALGORITHM

The algorithm proposed for solving VNF-AAP problem is
based on the best-fit strategy, which is usually employed for
solving the bin-packing type of problems. The pseudo-code
for the algorithm is shown in Alg. 1. Every time a request
arrives for the VNF chain placement, Alg. 1 is executed and
each VNF of the chain is placed on a node n € N. This
algorithm also tries to give access of hardware accelerators to
VNFs.

Algorithm 1: VNF placement and accelerator allocation

Input: ¢, N
Output: o, g
1 vnfsList < sorted list (descending) of f¢ € F¢ in CPU
usage;
2 nodeList < sorted list (ascending) of n € N in
available CPU resources;
for vnf. in vnfsList do

3

4 ple, acc <+ False,

5 for n in nodeList do

6 if atype(f°) € A then

7 if accelVNF (f¢ n) == True and

Repu(n) = co(f€) — ci(f€) then

8 ple, acc < True;

9 break;

10 else

1 s = Join - ci(£9);
Blfl=n

12 if Swap(f°, fS,;) == T'rue then

13 ple, acc < True;

14 break;

15 end

16 end

17 if Repu(n) > co(f°) then

18 plc < True;

19 break;

20 end

21 end

22 if plc == True then

23 updateCpuRes (n);

24 alfe] + n;

25 if acc == True then

26 BIf) + m:

27 updateAccRes (n);

28 end

29 else

30 ‘ removeVNFE's (¢);

31 end

32 end

The input to the algorithm is a placement request ¢ which
comprises of a set of VNFs F* along-with associated param-
eters (co(f°), c;(f°), atype(f©)) and a set of server nodes N.
The first step is to sort all VNFs in F¢ according to their CPU
requirements in the descending order (1). Similarly, all the
server nodes are ascendingly sorted according to the available
CPU resources (2). Placement of VNFs in vn fsList is tried
in succession. VNFs for which no accelerator available in A,
placement is done using the best-fit manner (17-19). In usual
best-fit based placement, a node with least but sufficient CPU
resources is selected for the placement of the VNF.

For a VNF f¢, with an available accelerator type in A, the
availability of accelerator resources is first checked by the
function accelVNF. If a sufficient amount of accelerator

resources (e.g. logic elements, bus-bandwidth, etc) and CPU
is available on n, f¢ is placed on n along-with the allocation
of an accelerator type a = atype(f€) (7-9).

In case of insufficient accelerator resources, accelerator access
for ff;l can be swapped with f€. £, is a VNF running on n
with a minimum reduction in CPU requirement ¢;(f¢) (11).
If f¢ cannot be placed on any of the nodes, other VNFs of
chain ¢ are removed from all nodes (30). Otherwise, CPU and
accelerator resources are updated accordingly (22-28).

IV. RELATED WORKS

The use of hardware accelerators to improve the perfor-
mance of various VNFs has proposed. In [3], a significant
improvement in throughput along-with a reduction in CPU
utilization was demonstrated by offloading en/decryption and
authentication tasks from the IPSec traffic to a look-aside
accelerator. Similarly, the dynamic allocation of accelerators
to SSH-tunnels based on CPU usage of VNFs was presented
in [4]. OpenANFV is a platform built to support hardware
acceleration for VNFs in an elastic and flexible fashion [5].
VNFs such as Deep Packet Inspection (DPI), network de-
duplication (DeDup) and Network Address Translation (NAT)
were shown to be accelerated in terms of throughput.

. VNF placement problem has been an interesting area of
research since the early adoption of NFV. Various system
models have been proposed which can be used to describe
VNF placement problem [cite models] and developing heuris-
tics for efficient solutions. However, none of these models
consider resources other than general-purpose resources (e.g.
CPU, memory, bandwidth, etc). In [6], authors have pro-
posed an architecture called Uniform Hardware Acceleration
Deployment (UHAD) to ease the integration of hardware
accelerators present in forwarding nodes (switches and routers)
and compute nodes (servers) in the general NFVI. An algo-
rithm is also proposed for allocating accelerator resources to
VNFs. However, the placement of VNFs on server-nodes and
allocation of accelerators to VNFs is decoupled. This strategy
can lead to sub-optimal placement solutions.

Besides [6], most of the research work concerning hardware
acceleration in NFV is focused on improving the packet
processing performance of VNFs in terms of latency and
throughput. Hence, VNF placement models need to be revised
in order to consider hardware accelerator resources while
making decisions such efficient utilization of resources is
achieved.

V. EVALUATION

The ILP model discussed in section II was implemented
in CPLEX 12.9 framework using doCPLEX Python API and
the algorithm proposed in Alg. 1 was written in Python [7].
Evaluations of ILP and Alg. 1 were carried on a Ubuntu 16.04
server running on a Intel Xeon CPU with 16GB of memory.
The values (range) of parameters used for the evaluation is
given in Table II.

Fig. 2 shows the comparison between the placement effi-
ciency of ILP and our algorithm in terms of the total number of

Nodes used

TABLE II
DESCRIPTION OF PARAMETERS AND DECISION VARIABLES

Parameter Value or range | Parameter Value or range
| C | 10-290 co(f€) 1-4
Repu(n) 16-20 i (f°) (0.40 - 0.60)co (f€)
Race(n) 12-16 fracace 0.30
Rpus(n) 80-120 accel. type | a1 | a2 as
chain length 3-6 accel. size 7 5 6
181
16 1
14 1
124
101
8 4
6 4
4 4
2 4
ILP I best-fit best-fit
(without accel.) (with accel.) (without accel.) (with accel.)

Fig. 2. Nodes required for placing 25 requests with ILP and best-fit algorithm.

nodes required for placing 25 requests. As expected, it can be
seen that ILP results in better consolidation of VNFs than our
algorithm. The exact-algorithm based on ILP produces global-
optimal solution in contrast to the near-optimal solution which
is generated as a result making locally optimal decisions at
every step of our algorithm. However, VNF placement based
on ILP is about three orders of magnitude slower as compared
to our algorithm resulting in the issue of non-scalability of
this approach in total terms of number of service-chains and
server-nodes.

The variation of the total number of required nodes with the
changing total number of chain-requests for both cases, i.e., (i)
nodes without access to hardware accelerators, and (ii) nodes
with access to hardware accelerators is plotted in Fig. 3. As the
number of requests is increased, the number of nodes to host
VNFs also increases both for case (i) and case (ii). We also
observe that for a given number of requests, the total number
of nodes required in case (ii) is always less than in case (i).
This is a consequence of the additional VNF consolidation, on
top of best-fit, due to the release of CPU resources by VNFs
which are being offloaded to hardware accelerators.

VI. CONCLUSION

Packet-processing performance of VNFs running on
general-purpose compute platforms can be improved by
offloading functionalities of specific VNFs to the externally
attached hardware accelerators. In this paper, we first
presented an ILP model for VNF-AAP problem. Then we
proposed a scalable heuristic method for making decisions
about VNF placement as well as accelerator allocations to

200 1

—}— without accel.
with accel.

Total nodes required

= - [=
6,1 ~ o N u ~
o w o wv o w

N
w

o

100 150 200 250 300

Total number of requests

0 50

Fig. 3. Performance comparison of VNF placement and accelerator allocation
algorithm without and with access to accelerator resources.

VNFs. The evaluation of the algorithm shows that efficient
utilization of the physical resources can be achieved in
a heterogenecous NFV infrastructure with about 20-25%
reduction of the required number of server-nodes.

VNF chaining algorithm with the consideration of delay
improvements as a result of hardware accelerators will be
investigated in the future. Secondly, we will analyze VNF
placement algorithms with an objective to optimize the total
cost, i.e., both compute and accelerator costs.

VII. ACKNOWLEDGMENT

This work was funded through NGPaaS, under the grant
number 761557, in the scope of the European Commission
Horizon 2020 and 5G-PPP programs.

REFERENCES

[1] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network function virtualization: State-of-the-art and re-
search challenges,” IEEE Communications Surveys Tutorials, vol. 18,
no. 1, pp. 236-262, Firstquarter 2016.

X. Li and C. Qian, “A survey of network function placement,” in 2016
13th IEEE Annual Consumer Communications & Networking Conference
(CCNC). IEEE, 2016, pp. 948-953.

S. Doyle and G. Tkachuk, “Intel IPsec Acceleration,” Intel, Tech. Rep.,
2018.

G. P. Sharma, W. Tavernier, D. Colle, and M. Pickavet, “Dynamic
hardware-acceleration of vnfs in nfv environments,” in 2019 Sixth In-
ternational Conference on Software Defined Systems (SDS), June 2019,
pp. 254-259.

X. Ge, Y. Liu, D. H. Du, L. Zhang, H. Guan, J. Chen, Y. Zhao, and
X. Hu, “Openanfv: Accelerating network function virtualization with a
consolidated framework in openstack,” in ACM SIGCOMM Computer
Communication Review, vol. 44, no. 4. ACM, 2014, pp. 353-354.

H. Fan, Y. Hu, S. Zhang, and Q. Ren, “Hardware acceleration resource
allocation mechanism for vnf,” Procedia computer science, vol. 131, pp.
746-755, 2018.

IBM, “IBM ILOG CPLEX optimization studio.” [Online]. Available:
https://www.ibm.com/analytics/cplex-optimizer

(51

(6]

(71

