S. Alves-carvalho, G. Aubert, S. Carrère, C. Cruaud, A. L. Brochot et al., Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species, Plant J, vol.84, issue.1, pp.1-19, 2015.

V. A. Benedito, I. Torres-jerez, J. D. Murray, A. Andriankaja, S. Allen et al., A gene expression atlas of the model legume Medicago truncatula, Plant J, vol.55, issue.3, pp.504-517, 2008.

X. Cheng, M. Wang, H. K. Lee, M. Tadege, P. Ratet et al., An efficient reverse genetics platform in the model legume Medicago truncatula, New Phytol, vol.201, issue.3, pp.1065-76, 2014.

X. Cheng, J. Wen, M. Tadege, P. Ratet, and K. S. Mysore, Reverse genetics in medicago truncatula using Tnt1 insertion mutants, Methods Mol Biol, vol.678, pp.179-90, 2011.

X. Dai, J. Li, T. Liu, and P. X. Zhao, HRGRN: A Graph Search-Empowered Integrative Database of Arabidopsis Signaling Transduction, Metabolism and Gene Regulation Networks, Plant Cell Physiol, vol.57, issue.1, p.12, 2016.

S. Dash, J. D. Campbell, E. K. Cannon, A. M. Cleary, W. Huang et al., Legume information system (LegumeInfo.org): a key component of a set of federated data resources for the legume family, Nucleic Acids Res, vol.44, issue.D1, pp.1181-1189, 2016.

T. De-bang, P. K. Lundquist, X. Dai, C. Boschiero, Z. Zhuang et al., Genome-wide Identification of Medicago Peptides involved in Macronutrient Responses and Nodulation, Plant Physiol, vol.175, issue.4, pp.1669-1689, 2017.

K. Eilbeck, S. E. Lewis, C. J. Mungall, M. Yandell, L. Stein et al., The Sequence Ontology: a tool for the unification of genome annotations, Genome Biol, vol.6, issue.5, p.44, 2005.

D. M. Emms and S. Kelly, OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy, Genome Biol, vol.16, p.157, 2015.

M. Franz, C. T. Lopes, G. Huck, Y. Dong, O. Sumer et al., Cytoscape.js: a graph theory library for visualisation and analysis, Bioinformatics, vol.32, issue.2, pp.309-320, 2016.

L. Godiard, A. Niebel, F. Micheli, J. Gouzy, T. Ott et al., Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach, Mol Plant Microbe Interact, vol.20, issue.3, pp.321-353, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01265975

M. A. Harris, J. Clark, A. Ireland, J. Lomax, M. Ashburner et al., The Gene Ontology (GO) database and informatics resource, Nucleic Acids Res, vol.32, pp.258-264, 2004.

J. He, V. A. Benedito, M. Wang, J. D. Murray, P. X. Zhao et al., The Medicago truncatula gene expression atlas web server, BMC Bioinformatics, vol.10, p.4411, 2009.

N. Hohnjec, M. F. Vieweg, A. Puhler, A. Becker, and H. Kuster, Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different Glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza, Plant Physiol, vol.137, issue.4, pp.1283-301, 2005.

M. F. Jardinaud, S. Boivin, N. Rodde, O. Catrice, A. Kisiala et al., A Laser Dissection-RNAseq Analysis Highlights the Activation of Cytokinin Pathways by Nod Factors in the Medicago truncatula Root Epidermis, Plant Physiol, vol.171, issue.3, pp.2256-76, 2016.

E. P. Journet, D. Van-tuinen, J. Gouzy, H. Crespeau, V. Carreau et al., Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis, Nucleic Acids Research, vol.30, issue.24, pp.5579-5592, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00427223

Y. Kang, M. Li, S. Sinharoy, and J. Verdier, A Snapshot of Functional Genetic Studies in Medicago truncatula, Front Plant Sci, vol.7, p.1175, 2016.

Y. Kang, M. Sakiroglu, N. Krom, J. Stanton-geddes, M. Wang et al., Genome-wide association of drought-related and biomass traits with HapMap SNPs in Medicago truncatula, Plant Cell Environ, vol.38, issue.10, pp.1997-2011, 2015.

Y. Kawahara, Y. Oono, H. Wakimoto, J. Ogata, H. Kanamori et al., TENOR: Database for Comprehensive mRNA-Seq Experiments in Rice, Plant Cell Physiol, vol.57, issue.1, p.7, 2016.

V. Krishnakumar, M. R. Hanlon, S. Contrino, E. S. Ferlanti, S. Karamycheva et al., Araport: the Arabidopsis information portal, Nucleic Acids Res, vol.43, pp.1003-1012, 2015.

V. Krishnakumar, M. Kim, B. D. Rosen, S. Karamycheva, S. L. Bidwell et al., MTGD: The Medicago truncatula genome database, Plant Cell Physiol, vol.56, issue.1, p.1, 2015.

T. Kudo, M. Kobayashi, S. Terashima, M. Katayama, S. Ozaki et al., TOMATOMICS: A Web Database for Integrated Omics Information in Tomato, Plant Cell Physiol, vol.58, issue.1, p.8, 2017.

T. Kudo, S. Terashima, Y. Takaki, K. Tomita, M. Saito et al., PlantExpress: A Database Integrating OryzaExpress and ArthaExpress for Single-species and Cross-species Gene Expression Network Analyses with Microarray-Based Transcriptome Data, Plant Cell Physiol, vol.58, issue.1, p.1, 2017.

H. Kuster, N. Hohnjec, F. Krajinski, F. El-yahyaoui, K. Manthey et al., Construction and validation of cDNA-based Mt6k-RIT macro-and microarrays to explore root endosymbioses in the model legume Medicago truncatula, Journal of Biotechnology, vol.108, issue.2, pp.95-113, 2004.

J. J. Miller, Graph Database Applications and Concepts with Neo4J, Proceedings of the Southern Association for Information Systems Conference, pp.141-147, 2013.

S. Moreau, J. Fromentin, F. Vailleau, T. Vernié, S. Huguet et al., The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction, New Phytol, vol.201, issue.4, pp.1343-57, 2014.

Y. Pecrix, S. E. Staton, E. Sallet, C. Lelandais-briere, S. Moreau et al., Whole-genome landscape of Medicago truncatula symbiotic genes, Nat Plants, vol.4, issue.12, pp.1017-1025, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01985359

B. Roux, N. Rodde, M. F. Jardinaud, T. Timmers, L. Sauviac et al., An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing, Plant J, vol.77, issue.6, pp.817-854, 2014.

M. Tadege, J. Wen, J. He, H. Tu, Y. Kwak et al., Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula, Plant J, vol.54, issue.2, pp.335-382, 2008.

H. Tang, V. Krishnakumar, S. Bidwell, B. Rosen, A. Chan et al., An improved genome release (version Mt4.0) for the model legume Medicago truncatula, BMC Genomics, vol.15, p.312, 2014.

J. Verdier, D. Lalanne, S. Pelletier, I. Torres-jerez, K. Righetti et al., A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds, Plant Physiol, vol.163, issue.2, pp.757-74, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01209940

T. Vernié, S. Moreau, F. De-billy, J. Plet, J. P. Combier et al., EFD Is an ERF Transcription Factor Involved in the Control of Nodule Number and Differentiation in Medicago truncatula, Plant Cell, vol.20, issue.10, pp.2696-2713, 2008.

M. Wang, J. Verdier, V. A. Benedito, Y. Tang, J. D. Murray et al., LegumeGRN: a gene regulatory network prediction server for functional and comparative studies, Plos One, vol.8, issue.7, p.67434, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01601327

T. D. Wu and C. K. Watanabe, GMAP: a genomic mapping and alignment program for mRNA and EST sequences, Bioinformatics, vol.21, issue.9, pp.1859-75, 2005.

N. D. Young, F. Debelle, G. E. Oldroyd, R. Geurts, S. B. Cannon et al., The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, issue.7378, pp.520-524, 2011.

M. Zouine, E. Maza, A. Djari, M. Lauvernier, P. Frasse et al., TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks, Plant J, vol.92, issue.4, pp.727-735, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01607612

. Debang_plantphysiol2017-currated-ssp, , 1879.

, Mt20120830.gene-ncrna-missing 82940

, Additional information (such as experimental conditions, a link to the corresponding publication?) can be found on a panel on the side of the graph. Dashed lines indicate several relations of a same type

. Tadege, MtEFD and MtDME) (number of paths set to five). A contextual menu (long click on any object; here Mt0127_00021) gives access to the Mt5.0 genome browser and numerous associated data: here Mt5.0 and Mt4.0 gene models, Affymetrix and Nimblegen gene probe location, position of TnT1 insertions in the TnT1 mutant population, Example of shortest paths (top right panel) found between two proteins, 2008.

. Cheng, nodule and root RNAseq data; three bottom right panels: annotation information accessed through a right click on the Mt5.0 gene model, with links to different databases (here ThaleMine, 2011.