D. Acharya, Z. Huang, D. P. Paudel, and L. V. Gool, Covariance Pooling for Facial Expression Recognition p, p.8

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Multiclass BrainComputer Interface Classification by Riemannian Geometry, IEEE Transactions on Biomedical Engineering, vol.59, issue.4, pp.920-928, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00681328

,

, Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface: alexandrebarachant/pyRiemann, p.44, 2019.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten, Classification of covariance matrices using a Riemannian-based kernel for BCI applications, Neurocomputing, vol.112, pp.172-178, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00820475

N. Boumal, B. Mishra, P. A. Absil, and R. Sepulchre, Manopt, a Matlab Toolbox for Optimization on Manifolds, Journal of Machine Learning Research, vol.15, pp.1455-1459, 2014.

M. Brodski, J. Dalecki, O. Dus, I. Iohvidov, M. Kren et al., Thirteen Papers on Functional Analysis and Partial Differential Equations, vol.2, 1965.

,

A. Edelman, T. Arias, and S. Smith, The Geometry of Algorithms with Orthogonality Constraints, SIAM Journal on Matrix Analysis and Applications, vol.20, issue.2, pp.303-353, 1998.

M. Engin, L. Wang, L. Zhou, and X. Liu, DeepKSPD: Learning Kernel-matrix-based SPD Representation for Fine-grained Image Recognition, 2017.

H. Faulkner, E. Shehu, Z. L. Szpak, W. Chojnacki, J. R. Tapamo et al., A Study of the Region Covariance Descriptor: Impact of Feature Selection and Image Transformations, 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp.1-8, 2015.

Z. Gao, Y. Wu, X. Bu, and Y. Jia, Learning a Robust Representation via a Deep Network on Symmetric Positive Definite Manifolds, 2017.

W. F. Harris, The average eye, Ophthalmic and Physiological Optics, vol.24, issue.6, pp.580-585, 2004.

K. He, X. Zhang, S. Ren, and J. Sun, Deep Residual Learning for Image Recognition, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.770-778, 2016.

,

Z. Huang and L. J. Van-gool, A Riemannian Network for SPD Matrix Learning, AAAI, vol.1, p.3, 2017.

Z. Huang, C. Wan, T. Probst, and L. Van-gool, Deep Learning on Lie Groups for Skeleton-based Action Recognition, 2016.

Z. Huang, J. Wu, and L. Van-gool, Building Deep Networks on Grassmann Manifolds, 2016.

C. Ionescu, O. Vantzos, and C. Sminchisescu, Matrix Backpropagation for Deep Networks with Structured Layers, 2015 IEEE International Conference on Computer Vision (ICCV), pp.2965-2973, 2015.

,

C. Ionescu, O. Vantzos, and C. Sminchisescu, Training Deep Networks with Structured Layers by Matrix Backpropagation, 2015.

A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images p, p.60

M. Meghwanshi, P. Jawanpuria, A. Kunchukuttan, H. Kasai, and B. Mishra, McTorch, a manifold optimization library for deep learning, 2018.

N. Miolane, J. Mathe, C. Donnat, M. Jorda, and X. Pennec, geomstats: a Python Package for Riemannian Geometry in Machine Learning, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01974572

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang et al., Automatic differentiation in PyTorch, 2017.

X. Pennec, P. Fillard, and N. Ayache, A Riemannian Framework for Tensor Computing, International Journal of Computer Vision, vol.66, issue.1, pp.41-66, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070743

,

F. Yger, A review of kernels on covariance matrices for BCI applications, 2013 IEEE International Workshop on Machine Learning for Signal Processing, pp.1-6, 2013.

F. Yger and M. Sugiyama, Supervised LogEuclidean Metric Learning for Symmetric Positive Definite Matrices, 2015.

K. Yu and M. Salzmann, Second-order Convolutional Neural Networks, 2017.