N. Chiorazzi, K. R. Rai, and M. Ferrarini, Chronic lymphocytic leukemia, N Engl J Med, vol.352, pp.804-815, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01375537

G. Fabbri and R. Dalla-favera, The molecular pathogenesis of chronic lymphocytic leukaemia, Nat Rev Cancer, vol.16, pp.145-162, 2016.

X. S. Puente, Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia, Nature, vol.475, pp.101-105, 2011.

B. T. Messmer, Multiple distinct sets of stereotyped antigen receptors indicate a role for antigen in promoting chronic lymphocytic leukemia, J Exp Med, vol.200, pp.519-525, 2004.

F. Fais, Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors, J Clin Invest, vol.102, pp.1515-1525, 1998.

K. Stamatopoulos, Over 20% of patients with chronic lymphocytic leukemia carry stereotyped receptors: Pathogenetic implications and clinical correlations, Blood, vol.109, pp.259-270, 2007.

R. Hoogeboom, A mutated B cell chronic lymphocytic leukemia subset that recognizes and responds to fungi, J Exp Med, vol.210, pp.59-70, 2013.

M. Duhren-von-minden, Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling, Nature, vol.489, pp.309-312, 2012.

P. A. Deglesne, Survival response to B-cell receptor ligation is restricted to progressive chronic lymphocytic leukemia cells irrespective of Zap70 expression, Cancer Res, vol.66, pp.7158-7166, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02060842

L. Chen, ZAP-70 enhances IgM signaling independent of its kinase activity in chronic lymphocytic leukemia, Blood, vol.111, pp.2685-2692, 2008.

L. Z. Rassenti, ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia, N Engl J Med, vol.351, pp.893-901, 2004.

S. Lanham, Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia, Blood, vol.101, pp.1087-1093, 2003.

S. Casola, B cell receptor signal strength determines B cell fate, Nat Immunol, vol.5, pp.317-327, 2004.

J. A. Burger and V. Gandhi, The lymphatic tissue microenvironments in chronic lymphocytic leukemia: in vitro models and the significance of CD40-CD154 interactions, Blood, vol.114, pp.2560-2561, 2009.

L. D. Vallat, Y. Park, C. Li, and J. G. Gribben, Temporal genetic program following B-cell receptor cross-linking: altered balance between proliferation and death in healthy and malignant B cells, Blood, vol.109, pp.3989-3997, 2007.

L. Vallat, Reverse-engineering the genetic circuitry of a cancer cell with predicted intervention in chronic lymphocytic leukemia, Proc Natl Acad Sci, vol.110, pp.459-464, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01203756

A. Perrot, A unique proteomic profile on surface IgM ligation in unmutated chronic lymphocytic leukemia, Blood, vol.118, pp.1-15, 2011.

T. Yoshida, Rapid B cell apoptosis induced by antigen receptor ligation does not require Fas (CD95/APO-1), the adaptor protein FADD/MORT1 or CrmA-sensitive caspases but is defective in both MRL-+/+ and MRL-lpr/lpr mice, International immunology, vol.12, pp.517-526, 2000.

S. Zupo, Apoptosis or plasma cell differentiation of CD38-positive B-chronic lymphocytic leukemia cells induced by crosslinking of surface IgM or IgD, Blood, vol.95, pp.1199-1206, 2000.

A. Petlickovski, Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B cells, Blood, vol.105, pp.4820-4827, 2005.

C. Buske, Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand, Experimental hematology, vol.25, pp.329-337, 1997.

M. F. Pascutti, IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells, Blood, vol.122, pp.3010-3019, 2013.

M. J. Ahearne, Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia, Br J Haematol, vol.162, pp.360-370, 2013.

D. De-totero, The opposite effects of IL-15 and IL-21 on CLL B cells correlate with differential activation of the JAK/STAT and ERK1/2 pathways, Blood, vol.111, pp.517-524, 2008.

S. Reports and |. , , vol.9, 2019.

A. C. Fluckiger, Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors, Blood, vol.80, pp.3173-3181, 1992.

L. Lagneaux, A. Delforge, D. Bron, C. De-bruyn, and P. Stryckmans, Chronic lymphocytic leukemic B cells but not normal B cells are rescued from apoptosis by contact with normal bone marrow stromal cells, Blood, vol.91, pp.2387-2396, 1998.

M. Plander, Different proliferative and survival capacity of CLL-cells in a newly established in vitro model for pseudofollicles, Leukemia, vol.23, pp.2118-2128, 2009.

P. E. Patten, CD38 expression in chronic lymphocytic leukemia is regulated by the tumor microenvironment, Blood, vol.111, pp.5173-5181, 2008.

A. Os, Chronic lymphocytic leukemia cells are activated and proliferate in response to specific T helper cells, Cell Rep, vol.4, pp.566-577, 2013.

D. Asslaber, Mimicking the microenvironment in chronic lymphocytic leukaemia -where does the journey go?, Br J Haematol, vol.160, pp.711-714, 2013.

T. Decker, Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells, Blood, vol.95, pp.999-1006, 2000.

E. Hamilton, Mimicking the tumour microenvironment: three different co-culture systems induce a similar phenotype but distinct proliferative signals in primary chronic lymphocytic leukaemia cells, Br J Haematol, vol.158, pp.589-599, 2012.

A. P. Kater, CD40 stimulation of B-cell chronic lymphocytic leukaemia cells enhances the anti-apoptotic profile, but also Bid expression and cells remain susceptible to autologous cytotoxic T-lymphocyte attack, Br J Haematol, vol.127, pp.404-415, 2004.

D. De-totero, Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells, Blood, vol.107, pp.3708-3715, 2006.

G. Lutzny, Protein kinase c-beta-dependent activation of NF-kappaB in stromal cells is indispensable for the survival of chronic lymphocytic leukemia B cells in vivo, Cancer cell, vol.23, pp.77-92, 2013.

M. Wagner, Integration of innate into adaptive immune responses in ZAP-70-positive chronic lymphocytic leukemia, Blood, vol.127, pp.436-448, 2016.

J. P. Graham, K. M. Arcipowski, and G. A. Bishop, Differential B-lymphocyte regulation by CD40 and its viral mimic, latent membrane protein 1, Immunological reviews, vol.237, pp.226-248, 2010.

Z. Ul-haq, S. Naz, and M. A. Mesaik, Interleukin-4 receptor signaling and its binding mechanism: A therapeutic insight from inhibitors tool box, Cytokine & growth factor reviews, vol.32, pp.3-15, 2016.

M. M. Aguilar-hernandez, IL-4 enhances expression and function of surface IgM in CLL cells, Blood, vol.127, pp.3015-3025, 2016.

R. Spolski and W. J. Leonard, Interleukin-21: a double-edged sword with therapeutic potential, Nature reviews. Drug discovery, vol.13, pp.379-395, 2014.

F. Caligaris-cappio, Role of the microenvironment in chronic lymphocytic leukaemia, Br J Haematol, vol.123, pp.380-388, 2003.

L. A. Smit, Differential Noxa/Mcl-1 balance in peripheral versus lymph node chronic lymphocytic leukemia cells correlates with survival capacity, Blood, vol.109, pp.1660-1668, 2007.

Y. Herishanu, The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia, Blood, vol.117, pp.563-574, 2011.

D. Bagnara, A novel adoptive transfer model of chronic lymphocytic leukemia suggests a key role for T lymphocytes in the disease, Blood, vol.117, pp.5463-5472, 2011.

L. Chen, ZAP-70 directly enhances IgM signaling in chronic lymphocytic leukemia, Blood, vol.105, pp.2036-2041, 2005.

S. Gobessi, ZAP-70 enhances B-cell-receptor signaling despite absent or inefficient tyrosine kinase activation in chronic lymphocytic leukemia and lymphoma B cells, Blood, vol.109, pp.2032-2039, 2007.

E. Slinger, R. Thijssen, A. P. Kater, and E. Eldering, Targeting antigen-independent proliferation in chronic lymphocytic leukemia through differential kinase inhibition, Leukemia, vol.31, pp.2601-2607, 2017.

J. J. Van-dongen, Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936, Leukemia, vol.17, pp.2257-2317, 2003.

R. Letestu, Evaluation of ZAP-70 expression by flow cytometry in chronic lymphocytic leukemia: A multicentric international harmonization process, Cytometry B Clin Cytom, vol.70, pp.309-314, 2006.

H. Dohner, Genomic aberrations and survival in chronic lymphocytic leukemia, N Engl J Med, vol.343, pp.1910-1916, 2000.

F. Konietschke, M. Placzek, F. Schaarschmidt, L. Hothorn, and A. , nparcomp: An R Software Package for Nonparametric Multiple Comparisons and Simultaneous Confidence Intervals, Journal of statistical software, vol.64, 2015.

R. N. Damle, Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia, Blood, vol.94, pp.1840-1847, 1999.

S. Reports and |. , , vol.9, 2019.