New Detection Thresholds and Stop Rules for CUSUM Online Detection.
Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières

To cite this version:
Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières. New Detection Thresholds and Stop Rules for CUSUM Online Detection.. ENBIS 2019 - 19th Annual Conference of the European Network for Business and Industrial Statistics., Sep 2019, Budapest, Hungary. hal-02289501

HAL Id: hal-02289501
https://hal.archives-ouvertes.fr/hal-02289501
Submitted on 16 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
New Detection Thresholds and Stop Rules for CUSUM Online Detection

Nassim Sahki, Anne Gégout-Petit, Sophie Wantz-Mézières

03 September 2019
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Preamble</td>
</tr>
<tr>
<td>2 Online change-point detection</td>
</tr>
<tr>
<td>3 New detection threshold</td>
</tr>
<tr>
<td>4 Simulation results</td>
</tr>
<tr>
<td>5 Perspectives</td>
</tr>
</tbody>
</table>
Change-point

(a) Changepoint in the mean

(b) Changepoint in the variance

(c) Changepoint in the mean and variance

(d) Slope changepoint
Context of analysis

Offline context:
- All data are received and processed in one go;
- The primary aim is accurate detection of changes;
- Inference about all change-points simultaneously.

Online context:
- Data arrives either as single data-points or in batches;
- Data must be processed quickly before new data arrives;
- The aim is the quickest detection of a change after it has occurred;
- Inference about most recent change only.
Online change-point detection
Hypothesis test

Let $\{X_i\}_{i=1,\ldots,n}$ a series of observations sequentially observed.

X_n is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation x_n, the hypotheses:

$$
\begin{align*}
H_{0,n} : v > n & \quad X_i \sim f_0(\cdot) \quad \forall i = 1, \ldots, n \\
H_{1,n} : \exists \, v \leq n, & \quad X_i \sim f_0(\cdot) \quad \forall i = 1, \ldots, (v-1) \\
& \quad X_i \sim f_1(\cdot) \quad \forall i = v, \ldots, n
\end{align*}
$$

(1)

Where ("distribution pre-change") $f_0 \neq f_1$ ("distribution post-change")

The "instantaneous" Log Likelihood Ratio (LLR) is defined by:

$$L_i = \log(\Lambda_i) = \log \left(\frac{f_1(x_i)}{f_0(x_i)} \right), \quad i \geq 1$$
Hypothesis test

Let \(\{ X_i \}_{i=1,\ldots,n} \) a series of observations sequentially observed. \(X_n \) is the last observed point in the dataset.

Statistically, the problem of change-point detection is to sequentially test for each new observation \(x_n \), the hypotheses:

\[
\begin{align*}
H_{0,n} : & \quad v > n \quad \quad X_i \sim f_0(\cdot) \quad \forall i = 1, \ldots, n \\
H_{1,n} : & \quad \exists \, v \leq n, \quad X_i \sim f_0(\cdot) \quad \forall i = 1, \ldots, (v-1) \\
& \quad X_i \sim f_1(\cdot) \quad \forall i = v, \ldots, n
\end{align*}
\]

(1)

Where ("distribution pre-change") \(f_0 \neq f_1 \) ("distribution post-change")

The "instantaneous" Log Likelihood Ratio (LLR) is defined by:

\[
L_i = \log(\Lambda_i) = \log \left(\frac{f_1(x_i)}{f_0(x_i)} \right), \quad i \geq 1
\]
Recursive detection statistics

- The Cumulative Sum ”CUSUM” statistics is written recursively [Page(1954)]:

\[
W_n = \max\{0, W_{n-1} + L_n\}, \quad n \geq 1, \quad W_0 = 0
\] (2)

When the two distributions \(f_0\) and \(f_1\) are unknown;

⇒ [Tartakovsky, A. G. and all (2006)] suggests replacing the log likelihood ratio \(L_n\) through a score function \(S_n = S_n(X_1, \ldots, X_n)\).
Recursive detection statistics

The Cumulative Sum ”CUSUM” statistics is written recursively [Page(1954)] :

\[W_n = \max\{0, \ W_{n-1} + L_n\}, \quad n \geq 1, \quad W_0 = 0 \] (2)

When the two distributions \(f_0 \) and \(f_1 \) are unknown;

\[\Rightarrow \] [Tartakovsky, A. G. and all (2006)] suggests replacing the log likelihood ratio \(L_n \) through a score function \(S_n = S_n(X_1, \ldots, X_n) \).
The score S_n is defined for a mean and variance change-point detection by:

$$S_n(\delta, q) = C_1 \cdot Y_n + C_2 \cdot Y_n^2 - C_3$$

(3)

$Y_n = (X_n - \mu_0)/\sigma_0$: the centered and standardized data under H_0.

$C_1 = \delta \cdot q^2$, $C_2 = \frac{1-q^2}{2}$, $C_3 = \frac{\delta^2 \cdot q^2}{2} - \log(q)$

$\delta = (\mu_1 - \mu_0)/\sigma_0$ \hspace{1cm} q = \sigma_0/\sigma_1$

- δ : minimum level of change in the mean that is required to be detected.

No changepoint detection on the mean :

$\mu_1 = \mu_0 \Rightarrow \delta = 0$, therefore $C_1 = 0$.

- q : minimum level of change in the variance that is required to be detected.

No changepoint detection on the variance :

$\sigma_1^2 = \sigma_0^2 \Rightarrow q = 1$, therefore $C_2 = 0$.
The score function can only be used to the knowledge of the parameters mean and variance of pre-change data μ_0, σ_0^2.

- Use a portion of observed data on the normal state without change-point
 \Rightarrow **Estimate** μ_0 and σ_0^2.

- Depending on the objective (mean and/or variance) and level of change that we want to detect: $\delta = (\mu_1 - \mu_0)/\sigma_0$, $q = \sigma_0/\sigma_1$
 \Rightarrow **Fixed** μ_1 and σ_1^2.
Note

The score function can only be used to the knowledge of the parameters **mean and variance of pre-change data** μ_0, σ_0^2.

- Use a portion of observed data on the normal state without change-point
 - \Rightarrow **Estimate** μ_0 and σ_0^2.

- Depending on **the objective (mean and/ or variance)** and level of change that we want to **detect** : $\delta = (\mu_1 - \mu_0)/\sigma_0$, $q = \sigma_0/\sigma_1$
 - \Rightarrow **Fixed** μ_1 and σ_1^2.
The statistics is calculated recursively:

\[W_n = \max\{0, W_{n-1} + S_n\}, \quad n \geq 1, \quad W_0 = 0 \]

Online detection is based on a **Stopping Rule**:

\[T_h = \min\{n \geq 1 : W_n \geq h\}, \quad h \geq 0 : \text{threshold.} \]

When \(W \) exceeds the threshold \(h \):

\[\Rightarrow \text{The procedure triggers an alarm (Stopping Time) to signal that a change-point has occurred.} \]
Denote T a stopping time, such as:

$$T = \min\{i \geq 1 : W_i \geq h\}$$

* $T \geq v$: detection with a delay $(T - v)$.
* $T < v$: false alarm.
* $T = +\infty$: non detection.
Detection parameters

Let $P_0[.]$, $E_0[.]$: respectively the probability and the expectation before the change-point v.
Let $P_1[.]$, $E_1[.]$: respectively the probability and the expectation after the change-point v.

Parameters evaluated under P_0.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Time Between False Alarm (MTBFA)</td>
<td>$MTBFA = E_0[T]$</td>
</tr>
<tr>
<td>Instantaneous False Alarm Rate (IFAR)</td>
<td>$\alpha = \frac{1}{E_0[T]}$</td>
</tr>
</tbody>
</table>

Parameter evaluated under P_1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Detection Delay (ADD)</td>
<td>$ADD = E_1[T]$</td>
</tr>
</tbody>
</table>

Nassim SAHKI
New Detection Thresholds and Stop Rules for CUSUM Online Detection
The conventional detection threshold used in the literature is based on the Wald's inequality [Egea-Roca et al (2017)].

⇒ This threshold is constant. It is given after fixing \(\alpha \) "the tolerated \(IFAR \), by:

\[
h_\alpha \leq - \ln(\alpha)
\]

(7)

1 New detection thresholds constructed by an empirical method;
2 New stopping rules by modifying the classical rule.
CUSUM statistics under pre-change regime

- Simulate a series X_n of $n = 200$ observations of Gaussian distribution ($\mu_0 = 0$ et $\sigma_0^2 = 1$);
- Compute W- statistics according to different levels of δ, ($q = 1$).

The behavior (variability) of the W-statistics depends on the level of δ;
⇒ Build thresholds according to δ.

(A): $\delta = 0.5$

(B): $\delta = 1$

(C): $\delta = 2$
CUSUM statistics under pre-change regime

- Simulate a series X_n of $n = 200$ observations of Gaussian distribution ($\mu_0 = 0$ et $\sigma_0^2 = 1$);
- Compute W- statistics according to different levels of δ, ($q = 1$).

The behavior (variability) of the W-statistics depends on the level of δ;
\Rightarrow Build thresholds according to δ.

(A): $\delta = 0.5$
(B): $\delta = 1$
(C): $\delta = 2$
Empirical method: perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. Under \mathbb{P}_0: simulate B series of n observations

 $\{X_{ij}^j\}_{i=1,..,n; j=1,..,B}$.
Empirical constant threshold

Empirical method: perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. Under \mathbb{P}_0: simulate B series of n observations

 \[\{X_i^j\}_{i=1,..,n; j=1,..,B}. \]
Empirical constant threshold

Empirical method: perform simulations of the statistics under P_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. Under P_0: simulate B series of n observations
 \[\{ X_{ij} \}_{i=1}^n, j=1,..,B. \]
2. Choice of the objective of detection (δ, q) and compute $w_j^i(\delta, q)$;
3. Choice of instantaneous false alarm rate α tolerated;

\[\delta = 1, \quad q = 1, \quad \alpha = 0.01 \]
\[W(1, 1) \]
Empirical constant threshold

Empirical method: perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. **Under \mathbb{P}_0**: simulate B series of n observations
 \[\{X_i^j\}_{i=1,\ldots,n; j=1,\ldots,B} \]

2. Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;

3. **Choice of instantaneous false alarm rate α tolerated**;

4. For each series $\{x_i^j\}_{1 \leq i \leq n}$, compute the **maximum of statistics**:
 \[m^j(\delta, q) = \max_{1 \leq i \leq n} w_i(\delta, q). \]
Empirical method: perform simulations of the statistics under P_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. Under P_0: simulate B series of n observations
 \[
 \{ X_{ji} \}_{i=1,\ldots,n; \ j=1,\ldots,B}. \]
2. Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;
3. Choice of instantaneous false alarm rate α tolerated;
4. For each series $\{ x_{ji} \}_{1 \leq i \leq n}$, compute the \textbf{maximum of statistics}:
 \[
 m^j(\delta, q) = \max_{1 \leq i \leq n} w_i(\delta, q). \]
Empirical constant threshold

Empirical method: perform simulations of the statistics under \mathbb{P}_0 and build the detection threshold according to empirical quantile of law of the statistics under pre-change regime.

Construction steps:

1. Under \mathbb{P}_0: simulate B series of n observations
 \[
 \{ X^j_i \}_{i=1,\ldots,n; \ j=1,\ldots,B}.
 \]

2. Choice of the objective of detection (δ, q) and compute $w^j_i(\delta, q)$;

3. Choice of instantaneous false alarm rate α tolerated;

4. For each series $\{ x^j_i \}_{1 \leq i \leq n}$, compute the maximum of statistics:
 \[
 m^j(\delta, q) = \max_{1 \leq i \leq n} w_i(\delta, q).
 \]

5. The constant threshold would be the empirical quantile of order $(1-\alpha n)$:
 \[
 h(\delta, q) = q_{1-\alpha n} \left[\left(m^j(\delta, q) \right)_{1 \leq j \leq B} \right].
 \]
Empirical constant threshold

\[q = 1, \quad \alpha = 0.02 \]

![Graph](image)

\[h(\delta, q) \]

\[\delta \]

<table>
<thead>
<tr>
<th>0.5</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
</table>

Constant Wald

Constant empir
Empirical instantaneous threshold

Construction steps:

1. Under P_0: simulate B series of n observations

$$\{X^j_i\}_{i=1,..,n; j=1,..,B}.$$
Empirical instantaneous threshold

Construction steps:

1. Under \mathbb{P}_0: simulate B series of n observations
 \[\{X_i^j\}_{i=1,..,n; j=1,..,B}. \]
2. Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;
3. Choice of instantaneous false alarm rate α tolerated;

\[\delta = 1, \; q = 1, \; \alpha = 0.01 \]
Empirical instantaneous threshold

Construction steps:

1. Under \(P_0 \): simulate \(B \) series of \(n \) observations \(\{X_{ij}\}_{i=1,\ldots,n;\ j=1,\ldots,B} \).

2. Choice of the objective of detection \((\delta, q)\) and compute \(w_j^i(\delta, q) \).

3. Choice of instantaneous false alarm rate \(\alpha \) tolerated;
Empirical instantaneous threshold

Construction steps:

1. Under P_0: simulate B series of n observations
 \[\{ X_i^j \}_{i=1}^n \quad j=1,..,B. \]

2. Choice of the objective of detection (δ, q) and compute $w_i^j(\delta, q)$;

3. Choice of instantaneous false alarm rate α tolerated;

4. The instantaneous threshold would be the empirical quantile of order $(1-\alpha)$:
 \[
 h_t(\delta, q) = \mathbf{q}_{(1-\alpha)} \left[(w_t^j(\delta, q))_{1 \leq j \leq B} \right],
 \]
 \[t = 1, .., n \]
Empirical instantaneous threshold

$q = 1$, $\alpha = 0.02$

- Constant Wald
- Empirical constant
- Empirical instantaneous
Propose a **dynamic instantaneous threshold (data-driven)**: \(h_t - Z_{N_t}(\delta, q) \)

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever statistics returns to its initial value (zero).

Where \(N_t = \sum_{i=1}^{t} \mathbf{1}_{\{W_i = 0\}} \), and \(Z_{N_t} = \inf\{i \geq Z_{N_{t-1}}; W_i = 0\} \) (renewal process)

Graphs:

(A): \(h_t(0.5, 1) \) is not dynamic

(B): \(h_t - Z_{N_t}(0.5, 1) \) is dynamic
Propose a **dynamic instantaneous threshold (data-driven)**: $h_t - Z_{N_t}(\delta, q)$

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever statistics returns to its initial value (zero).

Where $N_t = \sum_{i=1}^{t} 1\{W_i = 0\}$, and $Z_{N_t} = \inf\{i \geq Z_{N_{t-1}}; W_i = 0\}$ (renewal process)
Dynamic instantaneous threshold

⇒ Propose a dynamic instantaneous threshold (data-driven): \(h_t - Z_{N_t}(\delta, q) \)

- Use the built instantaneous threshold and adapt it to the behavior of the statistic;
- Moving the threshold whenever the statistic returns to its initial value (zero).

Where \(N_t = \sum_{i=1}^{t} 1\{W_i = 0\} \), and \(Z_{N_t} = \inf\{i \geq Z_{N_{t-1}}; W_i = 0\} \) (renewal process)
Simulation results
Objective
- Evaluate the different detection thresholds.

Data simulation
- Choice of real pre-change regime $P^R_0: \mu^R_0, \sigma^R_0$ (supposed known);
- Choice of real post-change regime $P^R_1: \mu^R_1, \sigma^R_1$ (and fixed δ^R, q^R).

Objective of detection
- Choice the type and level of the expected change (δ, q).

Estimation of $MTBFA, \alpha$ and ADD
- Knowing that we simulated series limited to $n = 100$ observations each, we used an empirical estimate taking into account the censoring (survival analysis).
Simulation

- **Objective**
 - Evaluate the different detection thresholds.

- **Data simulation**
 - Choice of real pre-change regime $\mathbb{P}_0^R : \mu_0^R, \sigma_0^R$ (supposed known);
 - Choice of real post-change regime $\mathbb{P}_1^R : \mu_1^R, \sigma_1^R$ (and fixed δ^R, q^R).

- **Objective of detection**
 - Choice the type and level of the expected change (δ, q).

- **Estimation of** $MTBFA, \alpha$ and ADD
 - Knowing that we simulated series limited to $n = 100$ observations each, we used an empirical estimate taking into account the censoring (survival analysis).
Objective
- Evaluate the different detection thresholds.

Data simulation
- Choice of real pre-change regime \(\mathbb{P}_0^R : \mu_0^R, \sigma_0^R \) (supposed known);
- Choice of real post-change regime \(\mathbb{P}_1^R : \mu_1^R, \sigma_1^R \) (and fixed \(\delta^R, q^R \)).

Objective of detection
- Choice the type and level of the expected change (\(\delta, q \)).

Estimation of \(MTBFA, \alpha \) and \(ADD \)
- Knowing that we simulated series limited to \(n = 100 \) observations each, we used an empirical estimate taking into account the censoring (survival analysis).
Objective
- Evaluate the different detection thresholds.

Data simulation
- Choice of real pre-change regime $P^R_0: \mu^R_0, \sigma^R_0$ (supposed known);
- Choice of real post-change regime $P^R_1: \mu^R_1, \sigma^R_1$ (and fixed δ^R, q^R).

Objective of detection
- Choice the type and level of the expected change (δ, q).

Estimation of $MTBFA$, α and ADD
- Knowing that we simulated series limited to $n = 100$ observations each, we used an empirical estimate taking into account the censoring (survival analysis).
Results under \mathbb{P}_0 : *MTBFA* and *IFAR*

Table – $B = 100000$, $n = 100$, $\alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>$\hat{\delta}$</th>
<th>MTBFA</th>
<th>$\hat{\alpha}$</th>
<th>Nbr. FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>779</td>
<td>0.001</td>
<td>12156</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>318</td>
<td>0.003</td>
<td>27125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>239</td>
<td>0.004</td>
<td>34283</td>
</tr>
</tbody>
</table>

The more the objective δ is large, the more we have false alarms.
Results under P_0: MTBFA and IFAR

\textbf{Table} – $B = 100000$, $n = 100$, $\alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>MTBFA</th>
<th>$\hat{\alpha}$</th>
<th>Nbr. FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>779</td>
<td>0.001</td>
<td>12156</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>318</td>
<td>0.003</td>
<td>27125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>239</td>
<td>0.004</td>
<td>34283</td>
</tr>
<tr>
<td>Const. Empir</td>
<td>0.5</td>
<td>35</td>
<td>0.028</td>
<td>95139</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>36</td>
<td>0.028</td>
<td>94385</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37</td>
<td>0.027</td>
<td>93740</td>
</tr>
</tbody>
</table>

Similar $\hat{\alpha}$ whatever is δ; $\hat{\alpha}$ slightly exceeds the tolerated α.
Results under $\mathbb{P}_0 : MTBFA$ and $IFAR$

Table — $B = 100000, n = 100, \alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>\hat{MTBFA}</th>
<th>$\hat{\alpha}$</th>
<th>Nbr. FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>779</td>
<td>0.001</td>
<td>12156</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>318</td>
<td>0.003</td>
<td>27125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>239</td>
<td>0.004</td>
<td>34283</td>
</tr>
<tr>
<td>Const. Empir</td>
<td>0.5</td>
<td>35</td>
<td>0.028</td>
<td>95139</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>36</td>
<td>0.028</td>
<td>94385</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>37</td>
<td>0.027</td>
<td>93740</td>
</tr>
<tr>
<td>Inst. Empir</td>
<td>$h_t(0.5)$</td>
<td>0.5</td>
<td>291</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>$h_t(1)$</td>
<td>1</td>
<td>147</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>$h_t(2)$</td>
<td>2</td>
<td>73</td>
<td>0.014</td>
</tr>
</tbody>
</table>

- The same behavior of Wald’s threshold results, with higher levels of FA but always respecting the tolerated α.

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection
Results under $\mathbb{P}_0 : MTBFA$ and $IFAR$

Table – $B = 100000$, $n = 100$, $\alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>$\hat{\delta}$</th>
<th>$\hat{\alpha}$</th>
<th>Nbr FA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>779</td>
<td>0.001</td>
<td>12156</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>318</td>
<td>0.003</td>
<td>27125</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>239</td>
<td>0.004</td>
<td>34283</td>
</tr>
<tr>
<td>Const. Empir</td>
<td>1.42</td>
<td>35</td>
<td>0.028</td>
<td>95139</td>
</tr>
<tr>
<td></td>
<td>1.94</td>
<td>36</td>
<td>0.028</td>
<td>94385</td>
</tr>
<tr>
<td></td>
<td>2.04</td>
<td>37</td>
<td>0.027</td>
<td>93740</td>
</tr>
<tr>
<td>Inst. Empir</td>
<td>$h_t(0.5)$</td>
<td>291</td>
<td>0.003</td>
<td>27953</td>
</tr>
<tr>
<td></td>
<td>$h_t(1)$</td>
<td>147</td>
<td>0.007</td>
<td>48564</td>
</tr>
<tr>
<td></td>
<td>$h_t(2)$</td>
<td>73</td>
<td>0.014</td>
<td>74391</td>
</tr>
<tr>
<td>Inst. Empir</td>
<td>$h_t(0.5)$</td>
<td>75</td>
<td>0.013</td>
<td>73466</td>
</tr>
<tr>
<td></td>
<td>$h_t(1)$</td>
<td>65</td>
<td>0.015</td>
<td>78544</td>
</tr>
<tr>
<td></td>
<td>$h_t(2)$</td>
<td>58</td>
<td>0.017</td>
<td>81940</td>
</tr>
</tbody>
</table>

- More homogeneous results; $\hat{\alpha}$ is close to the tolerated one but never exceeds it.
Results under $\mathbb{P}_1 : \text{ADD}$

Table – $B = 100000$, $n = 100$, $v = 50$, $\alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>$\delta^R = 1$</th>
<th>$\delta^R = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>3.91</td>
<td>ADD 9 Mdn 9 No-detect</td>
<td>ADD 4 Mdn 4 No-detect</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>9.45 9 0</td>
<td>4.31 4 0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.44 6 2</td>
<td>2.94 3 0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.37 7 212</td>
<td>2.58 2 0</td>
</tr>
</tbody>
</table>

- Detection is not so fast when $\delta^R > \delta$;
- The change-point is quickly detected when δ^R is large, whatever is δ.
Results under $\mathbb{P}_1: ADD$

Table \(B = 100000, n = 100, v = 50, \alpha = 0.02 \)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>\widehat{ADD}</th>
<th>\widehat{Mdn}</th>
<th>No-detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>9.45</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.44</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.37</td>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>Const.</td>
<td>1.42</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Empir</td>
<td>1.94</td>
<td>3.62</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2.04</td>
<td>4.54</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

\widehat{ADD} is considerably better; Change-point is quickly detected as long as $\delta^R \geq \delta$.

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection
Results under $\mathbb{P}_1 : ADD$

Table — $B = 100000, n = 100, v = 50, \alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>$\delta^R = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>\overline{ADD}</td>
</tr>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>9.45</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.44</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.37</td>
</tr>
<tr>
<td>Const. Empir</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.62</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.54</td>
</tr>
<tr>
<td>Inst. Empir</td>
<td>$h_t(0.5)$</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>$h_t(1)$</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>$h_t(2)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Comparable to Wald's but with faster detection.
Results under $\mathbb{P}_1: ADD$

Table – $B = 100000$, $n = 100$, $v = 50$, $\alpha = 0.02$

<table>
<thead>
<tr>
<th>Threshold</th>
<th>δ</th>
<th>\widehat{ADD}</th>
<th>\widehat{Mdn}</th>
<th>No-detect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>9.45</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>7.44</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9.37</td>
<td>7</td>
<td>212</td>
</tr>
<tr>
<td>Const. Empir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>3.62</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.54</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Inst. Empir</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$h^T_{(0.5)}$</td>
<td>0.5</td>
<td>8.47</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>$h^T_{(1)}$</td>
<td>1</td>
<td>6.22</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$h^T_{(2)}$</td>
<td>2</td>
<td>6.23</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>$h^T_{(0.5)}$</td>
<td>1</td>
<td>5.1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$h^T_{(1)}$</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>$h^T_{(2)}$</td>
<td>3</td>
<td>5.8</td>
<td>4</td>
</tr>
</tbody>
</table>

- It detects more quickly than the fixed threshold and that of Wald.
Summary

- **Fixed $\alpha = 0.01$**
- **Fixed $\alpha = 0.02$**
- **Fixed $\alpha = 0.03$**

Legend:
- **O** Wald
- **•** Empir. Const
- **+** Empir. Inst
- **★** Empir. Inst dynamic

Parameters: 0.5, 1, 2
Theoretical study on the behavior of detection statistics (understand results given by the thresholds);
The case where the parameters of the pre-change regime are unknown: estimation methods;
Use the detection methods in the multivariate case;
Thesis framework: prediction of a dreaded event during online monitoring of lung transplant patients.
Thank you!
Annex
New stopping rule

Classical stopping rule

signals the existence of a changepoint when the detection statistic exceeds the instantaneous threshold.

Corrected stopping rule

signals the existence of a change-point when the detection statistic exceeds the instantaneous threshold during a time $c \geq 1$.

Diagram

- **Classical (c = 1) stopping rule**
- **Corrected (c=3) stopping rule**

The graph shows the W-statistics over time, with T_1 and T_2 indicating specific points in time. The dashed line represents the classical rule, and the solid line represents the corrected rule. The threshold h is marked on the graph.
Results: corrected stop rule

TABLE – \(B = 100000, n = 100, v = 50, \alpha = 0.02 \)

<table>
<thead>
<tr>
<th>Threshold</th>
<th>(\delta)</th>
<th>Sous (P_0 : \hat{\alpha})</th>
<th>Sous (P_1 : \overline{ADD})</th>
<th>Stop rule “c”</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Wald</td>
<td>0.5</td>
<td>0.001</td>
<td>0.0009</td>
<td>0.0007</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.003</td>
<td>0.002</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.004</td>
<td>0.001</td>
<td>0.0004</td>
</tr>
<tr>
<td>Const. empir</td>
<td>1.42</td>
<td>0.5</td>
<td>0.028</td>
<td>0.018</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.028</td>
<td>0.014</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.027</td>
<td>0.007</td>
<td>0.002</td>
</tr>
<tr>
<td>Inst. empir.</td>
<td>(h_t(0.5))</td>
<td>0.5</td>
<td>0.003</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>(h_t(1))</td>
<td>1</td>
<td>0.007</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>(h_t(2))</td>
<td>2</td>
<td>0.014</td>
<td>0.004</td>
</tr>
<tr>
<td>Inst. Empir Dynam</td>
<td>(h_t(0.5))</td>
<td>0.5</td>
<td>0.013</td>
<td>0.007</td>
</tr>
<tr>
<td></td>
<td>(h_t(1))</td>
<td>1</td>
<td>0.015</td>
<td>0.006</td>
</tr>
<tr>
<td></td>
<td>(h_t(2))</td>
<td>2</td>
<td>0.017</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Nassim SAHKI

New Detection Thresholds and Stop Rules for CUSUM Online Detection