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Abstract

Low-dimensional vector representations of network nodes
have proven successful to feed graph data to machine learn-
ing algorithms and to improve performance across diverse
tasks. Most of the embedding techniques, however, have
been developed with the goal of achieving dense, low-
dimensional encoding of network structure and patterns.
Here, we present a node embedding technique aimed at pro-
viding low-dimensional feature vectors that are informative
of dynamical processes occurring over temporal networks –
rather than of the network structure itself - with the goal of en-
abling prediction tasks related to the evolution and outcome
of these processes. We achieve this by using a modified supra-
adjacency representation of temporal networks and building
on standard embedding techniques for static graphs based on
random-walks. We show that the resulting embedding vec-
tors are useful for prediction tasks related to paradigmatic
dynamical processes, namely epidemic spreading over em-
pirical temporal networks. In particular, we illustrate the per-
formance of our approach for the prediction of nodes’ epi-
demic states in a single instance of the spreading process.
We show how framing this task as a supervised multi-label
classification task on the embedding vectors allows us to es-
timate the temporal evolution of the entire system from a par-
tial sampling of nodes at random times, with potential impact
for nowcasting infectious disease dynamics.

Introduction
The ubiquity of network representations of widely differ-
ent systems has led to a flourishing of methods aimed at
the analysis of their structure. Among those, network node
embedding methods has recently gained a lot of popu-
larity (Cai, Zheng, and Chang 2018; Goyal, Chhetri, and
Canedo 2019). Node embedding maps each node of a net-
work into a low-dimensional vector, such that the vectors
representing different nodes are close if the network nodes
share some similarity or are close in the network. Node em-
bedding thus aims at exposing in the low-dimensional space
structural features and relevant patterns of the network that
are not necessarily evident in the network representation.
Most importantly, the embedding vectors can be used as fea-
ture vectors in machine learning applications, and have been
shown to yield improved performance for tasks such as node
classification, link prediction, clustering, or visualization.

While node embeddings have proven successful in
achieving low-dimensional encoding of network structures,
networks are also the support of important dynamical pro-
cesses, such as epidemic or rumor spreading, cascading fail-
ures, consensus formation, etc. (Barrat, Barthélemy, and
Vespignani 2008). Here we introduce and experiment with
node embedding methods tailored to the study of dynam-
ical processes on temporal networks, and in particular to
the task of predicting the evolution and outcome of one
instance of the dynamics (e.g., an epidemic spread) from
partial information and without detailed knowledge of the
dynamical process itself. A useful embedding should thus
yield low-dimensional vectors that encode information rel-
evant to the dynamics of the process occurring over a tem-
poral network – rather than information about the network
structure itself. Since dynamical processes unfold over time-
respecting paths determined by the underlying network and
by its evolution over time, we argue that the sought em-
beddings should be informative of these paths – the paths
along which information can propagate. Driven by this idea,
we propose to map the temporal network to a static graph
representation, a so-called supra-adjacency representation,
whose nodes are (node, time) pairs of the original tem-
poral network (Valdano et al. 2015). We modify the origi-
nal supra-adjacency representation method to only consider
nodes at those times when they interact, and we map the
original temporal edges to edges between the corresponding
(node,time) pairs, so that the static graph representation
preserves the temporal paths of the original temporal net-
work (i.e., the paths supporting and constraining the dynam-
ical process at hand). An example of the supra-adjacency
representation we use here is shown in Fig. 1. Since the re-
sulting representation is a static graph, we can then apply
standard embedding techniques: we focus on embeddings
based on random walks as they provide an efficient way to
sample the relevant paths.

We study the usefulness of the proposed embeddings in
the context of a paradigmatic dynamical process – epidemic
spread over temporal networks – in which network nodes ex-
ist in few discrete states and the dynamics consists of tran-
sitions between such states (e.g., a “susceptible” node be-
coming “infectious”). We focus on the task of predicting the
nodes’ states over time for a single realization of the epi-
demic process. Specifically, we set up a multi-label super-
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vised classification problem with a training set obtained by
sampling the node states at random times, with no informa-
tion about the mechanics of state transitions nor on the pa-
rameters of the epidemic process. Our contributions are as
follows:

• We propose a new method for node embedding tailored to
the study of dynamical process on temporal networks, us-
ing a modified supra-adjacency representation for tempo-
ral networks and building on standard random-walk based
embeddings for static graphs.

• We show that in the important case of epidemic spreading,
a satisfactory prediction performance of nodes’ states can
be achieved in a supervised multi-label classification set-
ting informed by the proposed embeddings.

• We show that our method achieves good performance in
estimating the temporal evolution of the entire system
from sparse observations, consistently across several data
sets and across a broad range of parameters of the epi-
demic model. Our approach requires no fine-tuning of the
embedding hyper-parameters and yields consistently su-
perior performance than other embedding methods.

Problem Formulation
Temporal Network
We consider a temporal network g in discrete time on the set
of timestamps T = (1, 2, · · · , |T |): g is defined as the set
E of the undirected temporal edges (vi, vj , t), meaning that
nodes vi and vj are linked at t ∈ T , possibly with a weightw
(for simplicity we consider only positive weights). At each
timestamp t,Et denotes the set of temporal edges at t, and Vt
is the set of nodes which have at least one temporal edge at t:
Vt = {vi|∃vj , (vi, vj , t) ∈ Et}. We define the snapshot net-
work at t as the undirected weighted networkGt = (Vt, Et),
and the temporal network g can be seen as the succession of
snapshot networks (G1, · · · , G|T |). The overall set of nodes
is V = ∪t∈TVt.

For each node vi ∈ V , we define its set of active times Tvi
as the set of timestamps t in which it has at least one tempo-
ral edge, i.e., such that vi ∈ Vt: Tvi

= {t|∃vj , (vi, vj , t) ∈
Et}. We denote the a-th active time of vi by tvi,a ∈ Tvi ,
with tvi,a < tvi,a+1. We then define the set of active
copies of each node vi, that we call ”active nodes”, as
Vvi = {(vi, t)|t ∈ Tvi}. The overall set of active nodes
is V = ∪vi∈V Vvi .

Dynamical process
We consider a dynamical process taking place on the tem-
poral network, such that the nodes vi ∈ V can be in one
of a finite set of discrete states S. Nodes can change state
either spontaneously or through interaction along temporal
edges. Our definition is thus very general and encompasses
in particular models of epidemic propagation, rumor prop-
agation, opinion formation or cascading processes (Barrat,
Barthélemy, and Vespignani 2008; Castellano, Fortunato,
and Loreto 2009; Pastor-Satorras et al. 2015).

The mapping f : (vi, t) ∈ V → s ∈ S specifies the
state of each node at each of its active times. We assume

that a sample of these states is known: we define the set of
the corresponding observed active nodes as D ⊂ V . Here,
for simplicity, we will assume that D results from a uniform
random sampling of V . We also assume that the state of a
node can be only be observed when it is active, i.e., in con-
tact with at least another node.

For clarity, here we will focus on a paradigmatic dy-
namical process taking place on the temporal network, the
Susceptible-Infectious-Recovered (SIR) model for epidemic
spreading, which has been widely used to model conta-
gious infections such as flu-like diseases (Keeling and Ro-
hani 2008). In this model, each node can be at each time in
one of three possible states: susceptible (S), infectious (I),
and recovered (R). At the start of the process, all nodes are
in state S, except for the epidemic seeds, which are in state
I. A contact between an S and an I nodes leads to a con-
tagion event in which the S node becomes infectious with
probability β per unit time (recall we work in discrete time).
Let us denote by It the set of infectious nodes at t, and con-
sider a susceptible node vi. We denote its set of neighbours
at t as Nt(vi) = {vj |(vi, vj , t) ∈ Et}, and Nt(vi) ∩ It is
the set of its infectious neighbours at t. The probability that
none of these infectious neighbours transmits the disease to
vi at timestep t is (1−β)|Nt(vi)∩It|, and thus the probability
that vi becomes infectious at time t, due to its interactions, is
1−(1−β)|Nt(vi)∩It|. Recovery from state I to state R occurs
also stochastically: each infectious node becomes recovered
(R) at each timestamp with probability µ. Recovered nodes
do not change state any more. The parameters of the model
are thus the infection and recovery rates β and µ (Keeling
and Rohani 2008).

Problem statement

Given a known temporal network and a partial observation
of the dynamical states of the nodes, the problem consists in
predicting the dynamical state of all nodes at all their active
times. In other words, knowing the state of the subset D of
observed nodes at some active times, we want to predict the
state of all the active nodes at all times. Crucially, we seek to
achieve this prediction without any detailed information on
the dynamical process at hand, except for the set of possible
states of each node. In particular, we do not make assump-
tions on the allowed state transitions, the parameters gov-
erning the dynamical process, nor even the reversibility or
irreversibility of the process. We also remark that the above
problem statement implies that we will be working on sin-
gle realizations of the dynamical process, with the goal of
predicting the state of a given node at a given time, rather
than predicting statistical properties averaged over a sample
of simulated or observed dynamics.

Notice that the SIR model – in addition to its relevance to
many real-world phenomena – is particularly interesting to
study in this context: it features both state transitions occur-
ring upon interaction (hence, along the edges of the temporal
network) as well as spontaneous state transitions that can oc-
cur at any time, and in particular between successive active
times of a node (the infectious-recovered transition).
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Figure 1: Proposed supra-adjacency representation (dyn-
supra). The original temporal network (top), whose state is
shown at three different times, is mapped to a static repre-
sentation (bottom) where nodes are (node,time) pairs of
the original network.

Our Approach: DyANE
Our approach consists of three steps. First, we map the
temporal network to a static network between active nodes
through a modified supra-adjacency representation. Second,
we apply standard embedding techniques for static graphs to
this supra-adjacency network. We will consider embeddings
based on random walks as they explore the temporal paths
on which transmission between nodes can occur. Finally, we
train a classifier to predict the dynamical state of all active
nodes based on the vector representation of active nodes and
the partially observed states.

Supra-adjacency representation
We first map the temporal network to a supra-adjacency rep-
resentation, i.e., to a new static network whose nodes are
the active nodes of the temporal network. We thus define
the supra-adjacency network as G = (V, E), where E are
(weighted, undirected) edges joining active nodes. The map-
ping from the temporal network to the supra-adjacency net-
work consists of the following two procedures (Fig. 1):
• For each node vi, we connect its successive active times:

for each active time tvi,a of vi, we draw a “self-coupling”
edge between (vi, tvi,a) and (vi, tvi,a+1) (recall that ac-
tive times are ordered in increasing temporal order).

• For each temporal edge (vi, vj , t), the time t corresponds
by definition to an active time for both vi and vj , that
we denote respectively by tvi,a and tvj ,b. We then map
(vi, vj , t) ∈ E to two undirected edges ∈ E , namely(
(vi, tvi,a), (vj , tvj ,b+1)

)
and

(
(vj , tvj ,b), (vi, tvi,a+1)

)
.

In other words, the active copy of vi at t, (vi, t), is linked
to the next active copy of vj , and vice-versa.
The first procedure makes each active node adjacent to its

adjacent past and future versions (active times), which en-
sures that a node carrying an information at a certain time
can propagate it to its future self along the self-coupling
edges, and is useful in an embedding perspective to favor
temporal continuity. The second procedure encodes the tem-
poral interactions, and yields the crucial property that any
time-respecting path existing on the original temporal net-
work, on which a dynamical process can occur, is also rep-
resented in the supra-adjacency representation. Indeed, if an

interaction between two nodes vi and vj occurs at time t
and potentially modifies their states, e.g., by contagion or
opinion exchange or modification, this can be observed and
will have consequences only at their next respective active
times: for instance, if vi transmits a disease to vj at t, vj can
propagate it further to other neighbours only at its next ac-
tive time, and not immediately at t. This is reflected in the
supra-adjacency representation we propose.

The edges in E are thus of two types, joining two
active nodes corresponding either to the same original
node, or to distinct ones. For each type, we can con-
sider various ways of assigning weights to the edge. We
first consider for simplicity that all self-coupling edges
carry the same weight ω, which becomes thus a hyper-
parameter of the procedure. Moreover, we simply report
the weight of each original temporal edge (vi, vj , t) on the
two supra-adjacency edges

(
(vi, tvi,a), (vj , tvj ,b+1)

)
and(

(vj , tvj ,b), (vi, tvi,a+1)
)

(with t = tvi,a = tvj ,b).
In the following, we will refer to the above supra-

adjacency representation as dyn-supra. We will moreover
consider two variations of this representation. First, we can
encode the direction of time of the original temporal network
in the supra-adjacency representation by making all links of
E directed: an edge ((vi, t), (vj , t

′)) ∈ E is then oriented
according to the direction of increasing time, i.e., pointing
from the active node with the earlier time min(t, t′) to the
one with the later time max(t, t′). We will refer to this rep-
resentation as dyn-supra-directed.

Another possible variation consists in encoding the time
delay between active nodes into edge weights, with decreas-
ing weights for increasing temporal differences. This decay
of edge weights is consistent with the idea that successive
active nodes that are temporally far apart are less likely to
influence one another (which is the case for many impor-
tant dynamical processes). In our case, we will consider that
the original weight of the edge

(
(vi, tvi,a), (vj , tvj ,b)

)
in the

dyn-supra representation (i.e., ω if vi = vj , or the origi-
nal weight w of the temporal edge if vi 6= vj) is multiplied
by the reciprocal of the time difference between the active
nodes if tvi,a 6= tvj ,b , i.e.,

∣∣1/(tvi,a − tvj ,b)
∣∣. We will refer

to this representation as dyn-supra-decay.

Node embedding
The central idea of the node embedding method we propose
for temporal networks, which we call DyANE (Dynamics-
Aware Node Embeddings), is to apply to the supra-
adjacency network G any of the node embedding methods
that have been developed for static networks. In particular,
here we will use DeepWalk (Perozzi, Al-Rfou, and Skiena
2014), as it is a simple and paradigmatic algorithm, and it
is known to yield high performance in node classification
tasks (Goyal and Ferrara 2018).

DeepWalk is based on an exploration of the neighbor-
hood of a node by truncated random-walks rooted at that
node, which makes it particularly appropriate in our frame-
work. Indeed, in the supra-adjacency representation, these
random-walks will explore for each active node both the
self-coupling edges leading to past and future versions of the



Table 1: Empirical temporal networks. Columns, from left-
most to rightmost: data set name, number of active nodes,
number of nodes, number of timestamps, number of tempo-
ral edges, average weight of temporal edges, average frac-
tion of timestamps in which a node is active.

Name |V| |V | |T | |E| 1
|E|
∑

e∈E w(e) 1
|V | |T |

∑
v∈V |Vv|

InVS15 22451 217 699 37582 4.164 0.148
LH10 4880 76 342 14870 4.448 0.188
SFHH 10815 403 127 34446 4.079 0.211
Thiers13 32546 327 246 71724 5.256 0.405
LyonSchool 17174 242 104 89640 2.806 0.682

same original node, and the edges representing the interac-
tions between nodes. As written above, these edges encode
the paths along which dynamical processes occur, meaning
that the final embedding will preserve structural similarities
relevant to these dynamical processes. Note that DeepWalk
does not consider weighted edges, but it can easily be gen-
eralized so that the random walks take into account edge
weights (Grover and Leskovec 2016).

Prediction of dynamical states
Once we have obtained an embedding for the supra-
adjacency representation of the temporal network, we can
turn to the task of predicting the dynamical states of ac-
tive nodes. Since we assume that the set of possible states
is known, this is naturally cast as a (supervised) classifica-
tion task, in which each active node should be classified into
one of the possible states. In our specific case, the three pos-
sible node states are S, I, and R. Note that the classification
task is not informed by the actual dynamical process (ex-
cept knowing the set of possible node states). In particular,
no information is available about the possible transitions nor
about the parameters of the actual process.

We will use here a one-vs-rest logistic regression classi-
fier, which is customarily used in multi-label node classifica-
tion tasks based on embedding vectors. Naturally, we could
use any other suitable classifier.

We remark that we seek to predict node states for indi-
vidual realizations of the dynamics. This is relevant to sev-
eral applications: for example, in the context of epidemic
spreading, and given a temporal interaction network, one
might use such a predictive capability to infer the state of all
nodes from the observed states of few active nodes (“sen-
tinel” nodes).

Experiments
We study the effectiveness of the DyANE, in particular with
the dyn-supra+DeepWalk combination, in the context of
node classification tasks. For our experiments we use tem-
poral networks built from empirical datasets that describe
close-range proximity interactions of persons in a variety of
real world environments. We simulate the SIR (Susceptible-
Infected-Recovered) dynamical process described above
over these temporal networks, generating state labels for all
active nodes.

Based on the above temporal networks and node la-
bels, we run DyANE with different combinations of supra-

adjacency representations and of embedding methods for the
static network, and use the resulting embedding vectors as
inputs to a supervised multi-label classifications tasks. We
test the sensitivity of our approach with respect to the choice
of parameters and to the number of sampled active nodes D.
Finally, we also compare classifiers based on DyANE em-
beddings with methods that directly embed the nodes of a
temporal network without relying on a supra-adjacency rep-
resentation.

Data sets and dynamical process
We used publicly available data sets describing the face-to-
face proximity of individuals with a temporal resolution of
20 seconds (Cattuto et al. 2010). These datasets were col-
lected by the SocioPatterns collaboration1 and we specifi-
cally use data sets collected in a variety of contexts, namely
in offices (”InVS15”), a hospital (”LH10”), a highschool
(”Thiers13”), a conference (”SFHH”) and a school (”Lyon-
School”) (Génois and Barrat 2018). We built a temporal net-
work from each data set by aggregating the data on 600
seconds time windows. Whenever multiple proximity events
were registered between two individuals within a time win-
dow, we used the number of such events as the edge weight.
Table 1 shows some basic statistics for each data set.

We simulated the SIR model on each data set (with
the original temporal resolution of 20 seconds), using
the following five combinations of epidemic parameters:
(β, µ) = {(0.25, 0.002), (0.125, 0.004), (0.125, 0.002),
(0.125, 0.001), (0.0625, 0.002)}. In each case, we consider
as initial state a single randomly selected node as seed, set-
ting its state as infectious, with all others susceptible. Given
the stochastic nature of the model, in some cases the infec-
tious state barely spreads, with a large majority of the nodes
remaining susceptible. The prediction task would then be
trivial, and we restrict our study to non-trivial cases in which
there is still at least one infectious node when more than half
of the total data set time span has elapsed (i.e., |I|T |/2|≥ 1).
We thus run the SIR model up to 100 times for each data set
until we obtain a simulation in which this condition is met.
If the condition is not met in any of the 100 simulations, we
discard the corresponding case (see Table 2). For each se-
lected simulation, we assign as ground truth label to each
active node (vi, ta) the state of node vi at time ta. Table 2
shows the proportion of each label among active nodes for
each case.

We select uniformly at random |D|= ρ|V | active nodes,
and build our training data using those nodes and the cor-
responding node states. Unless otherwise noted, ρ = 1. We
evaluate the prediction performance on a test data consist-
ing of the remaining active nodes and their states. We report
the prediction performance averaged over five realizations
of the random choice of training data, for each data set and
parameter values.

Evaluation
We quantified the prediction performance of each method by
the Macro-F1 and Micro-F1 indices, which are widely used

1http://www.sociopatterns.org/



Table 2: Proportion of the three possible states S, I and R among the active nodes, for each data set and each parameter set of
the SIR model. “-” indicates the cases for which the epidemic did not spread sufficiently (i.e., |I|T |/2|= 0).

β = 0.25, µ = 0.002 β = 0.125, µ = 0.004 β = 0.125, µ = 0.002 β = 0.125, µ = 0.001 β = 0.0625, µ = 0.002
Data set P(S) P(I) P(R) P(S) P(I) P(R) P(S) P(I) P(R) P(S) P(I) P(R) P(S) P(I) P(R)
InVS15 0.171 0.0500 0.778 0.103 0.0534 0.843 0.154 0.0457 0.799 - - - 0.123 0.0769 0.799
LH10 0.0801 0.152 0.767 0.292 0.0975 0.609 0.197 0.120 0.681 - - - 0.0891 0.168 0.742
SFHH 0.0488 0.259 0.692 0.337 0.195 0.467 0.653 0.155 0.191 0.0737 0.151 0.774 0.163 0.333 0.502
Thiers13 0.0340 0.0908 0.875 0.139 0.0959 0.764 0.183 0.0923 0.723 0.240 0.051 0.707 0.111 0.164 0.723
LyonSchool 0.0955 0.155 0.748 0.104 0.191 0.703 0.128 0.156 0.715 0.102 0.0908 0.806 0.107 0.311 0.580

for evaluating multi-label node classification tasks (Goyal
and Ferrara 2018). These indices range between 0 and 1,
with higher values indicating better performance. Macro-F1
is an unweighted average of the F1 scores of each label,
while Micro-F1 gives more importance to the labels which
are more represented. When classes are imbalanced, Macro-
F1 and Micro-F1 give a measure of the effectiveness of the
method on respectively the smaller and the larger classes.
As the number of active nodes in each state might indeed be
imbalanced here, we measure both Macro- and Micro-F1 to
evaluate models by the prediction performance against both
the smaller and the larger classes.

Baseline methods

We considered variations of our method both at the level
of the supra-adjacency representation and of the static em-
bedding method. First, as a variation of our proposed supra-
adjacency representation (dyn-supra), we consider a “base-
line” supra-adjacency representation, which we denote by
mlayer-supra, in which we simply map each temporal edge
(vi, vj , t) to a single edge between active nodes, namely
((vi, t), (vj , t)), similarly to the original supra-adjacency
representation developed for multilayer networks (Kivelä et
al. 2014). Self-coupling edges are drawn as in dyn-supra.
We also considered two alternative embedding methods for
the static networks obtained by each supra-adjacency repre-
sentation: (i) LINE (Tang et al. 2015), which embeds nodes
in a way to preserve both first and second-order proximity;
(ii) Graph Factorization (GF) (Ahmed et al. 2013), which
considers first-order proximity.

In addition, we considered two methods for temporal
network embedding, which thus do not use the interme-
diate supra-adjacency representation, namely: (i) Dynam-
icTriad (DTriad) (Zhou et al. 2018), which embeds the
temporal network by modeling triadic closure events; (ii)
DynGEM (Goyal et al. 2018), which is based on a deep
learning model. It outputs an embedding for the network
of each timestamp, initializing the model at timestamp
t + 1 with the parameters found at time t, thus trans-
ferring knowledge from t to t + 1 and learning about
the changes from Gt to Gt+1. Overall, we obtain eight
methods – six variations of DyANE and two methods
that directly embed temporal networks – which we denote
respectively dyn-supra+DeepWalk, dyn-supra+LINE, dyn-
supra+GF, mlayer-supra+DeepWalk, mlayer-supra+LINE,
mlayer-supra+GF, DTriad, and DynGEM.

We used publicly available implementations of all embed-

ding methods, namely the implementation of LINE2, Dy-
namicTriad3, and DynGEM4 by the original authors, and the
implementation of GF by GEM5. As for DeepWalk, we used
an implementation of node2vec6 with p = q = 1. Unless
otherwise noted, we conducted experiments with embedding
dimension d = 128 and self-coupling edge weight ω = 1.
We used the default values of each implementation of the
embedding methods, except for the number of iterations of
LINE and GF, which we took equal to the number of sam-
ples of DeepWalk. We used Scikit-Learn (Pedregosa et al.
2011) to implement one-vs-rest logistic regression, with the
default hyper-parameter setting.

Prediction performance
Figure 2 shows the prediction performance of the eight
methods considered, for all data sets and SIR parameters
considered. The dyn-supra representation combined with
DeepWalk yields almost always the highest value both for
Macro-F1 and Micro-F1. While dyn-supra+DeepWalk is
consistently the best method for both Macro-F1 and Micro-
F1 across all considered data sets and SIR parameters, Dyn-
GEM yields a higher Micro-F1 value in a few cases. How-
ever, DynGEM’s Macro-F1 score is rather low in such cases.

We moreover observe that: (i) for a given static embed-
ding method, the dyn-supra supra-adjacency representation
gives better results than the baseline (mlayer-supra) one; and
(ii) for a given supra-adjacency representation, DeepWalk
performs better than LINE, which in turn outperforms GF.

Finally, we show in the supplementary material that the
dyn-supra+DeepWalk prediction recovers the overall tem-
poral evolution of the spreading process.

Sensitivity analysis
We first investigate here the effect of the hyper-parameters,
of the supra-adjacency representation (the weight ω of
self-coupling edges) and of the embedding (the embed-
ding dimension d). We show in Fig. 3 the results obtained
for the Macro-F1, for the InVS15 data set and (β, µ) =
(0.025, 0.002), but we have confirmed the same tendency
for the other data sets, parameters and also for Micro-F1
values (the omitted results are included in the Supplemen-
tary Materials). The results show that the performance of

2https://github.com/tangjianpku/LINE
3https://github.com/luckiezhou/DynamicTriad
4http://www-scf.usc.edu/˜nkamra/
5https://github.com/palash1992/GEM
6https://snap.stanford.edu/node2vec/
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Figure 2: Prediction performance of each method, for each data set and spreading parameter set. The top and bottom row
indicate results of Macro-F1 and Micro-F1, respectively.
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dyn-supra+DeepWalk is very stable with respect to changes
in ω, while other methods depend weakly on ω. The per-
formance of all methods is stable on a wide range of em-
bedding dimensions, and decrease when it becomes smaller
than 32. Overall, dyn-supra+DeepWalk remains the most ef-
fective method without the need for fine-tuning ω or d.

Figure 3 also shows the effect of increasing the parame-
ter ρ, i.e., of being able to observe a larger number of active
nodes. The performance increases with ρ for most methods,
and in particular for dyn-supra+DeepWalk, which consis-
tently yields the best result at all values of ρ.

As mentioned above, we moreover considered two vari-
ations if the dyn-supra representation: (i) we regard edges
as directed towards increasing timestamps (dyn-supra-
directed); (ii) we let the weight of an edge decay with in-
creasing temporal lag between the active nodes it links,
e.g., we modulate the edge weight according to the recip-
rocal of the lag (dyn-supra-decay). We also consider these

variations for mlayer-supra representation, yielding mlayer-
supra-directed and mlayer-supra-decay, respectively. No-
tice that, in the mlayer-supra, the supra-adjacency edges rep-
resenting temporal edges are not affected by both variations.
We report in Fig. 4 the results for (β, µ) = (0.1250, 0.002)
and for the DeepWalk embedding, as DeepWalk overall
yielded the best results. We checked that the results of Fig. 4
hold similarly for the LINE and GF embeddings.

Figure 4 indicates that using directed edges worsens the
performance of both dyn-supra and mlayer-supra meth-
ods. Introducing weights depending on the time difference
between active edges also worsens the performance for
mlayer-supra, with little effect on dyn-supra. Overall, the
original dyn-supra method with undirected edges and using
only the weights of the original temporal edges yields the
highest prediction performance.

Related Work
Network node embedding
Numerous embedding techniques have been proposed for
static networks, and we refer to the recent reviews (Cai,
Zheng, and Chang 2018; Goyal and Ferrara 2018) for de-
tailed descriptions. Most techniques encode as proximity or
similarity between nodes either a first-order proximity (two
nodes are more similar if they are connected by an edge
with larger weight) or a second-order proximity (nodes are
more similar if their neighborhoods are similar). A popular
way of exploring the (structural) similarity of nodes consists
in using random walks rooted at the nodes, which thus ex-
plore their neighborhoods. Two of the most well-known em-
bedding techniques, DeepWalk and node2vec (Grover and
Leskovec 2016) are indeed based on such random walks.

As temporal network data has become more widely ac-
cessible in a range of contexts, the issue of embedding dy-
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Figure 4: Effect of the variations in the supra-adjacency rep-
resentation. Top: effect of using directed edges. Bottom: ef-
fect of introducing weights depending on time difference.

namically evolving networks has emerged and some meth-
ods have been put forward. As nodes’ relationships evolve
with time, the structure of their neighborhoods and the sim-
ilarity or proximity between nodes indeed evolve as well.
The typical approach consists then (in discrete time, al-
though see (Nguyen et al. 2018) for a case of continuous
time embedding) in defining a distinct embedding for each
temporal snapshot and to ensure some continuity between
the embeddings of successive snapshots (Zhou et al. 2018;
Goyal et al. 2018; Goyal, Chhetri, and Canedo 2019). For
a comprehensive review of recent embedding methods for
dynamically evolving networks see (Kazemi et al. 2019).

None of these methods however consider, as we do here,
supra-adjacency representations of the temporal network as
a whole in order to then take advantage of static network
techniques for the embedding of temporal networks.

Supra-adjacency representation
The supra-adjacency matrix representation has been devel-
oped for multilayer networks (Gómez et al. 2013; Kivelä et
al. 2014), in which nodes interact on different layers (for
instance different communication channels in a social net-
work). Using the pairs (node, layer) as elementary entities,
this representation builds a graph between these pairs, con-
sisting in (i) the links within each layer, such as (i, α)−(j, α)
if nodes i and j are linked in layer α, and (ii) the links be-
tween different copies of the same node in different layers,
such as (i, α)−(i, β) between layers α and β. The adjacency
matrix of this new graph is the supra-adjacency matrix. This
representation has proven very convenient in the study of

processes on multilayer networks (Kivelä et al. 2014) as it
makes it possible to use the methods and theoretical results
developed using adjacency matrix of simple graphs.

It has been generalized to temporal networks, seen as spe-
cial multilayer networks in which every timestamp is a layer:
in the supra-adjacency representation, each node is identi-
fied by the pair of indices (i, t), corresponding to the node la-
bel i and the time frame t, respectively (Valdano et al. 2015).
Most importantly, (i) each node (i, t) is linked by a directed
edge to its successive copy (i, t+ 1), but not to other future
timestamps and (ii) intra-layer edges are absent: instead, if i
and j are connected at time t, in the supra-adjacency repre-
sentation this is replaced by two directed edges respectively
from (i, t) to (j, t + 1) and from (j, t) to (i, t + 1). This
representation was put forward in the context of spreading
processes on temporal networks as it indeed preserves the
information relevant for the spreading process (Valdano et
al. 2015): if a contagion event occurs from i to j at time
t, j will be contaminated (and could propagate the disease
further) at t+ 1, but not yet at t.

Note that the nodes (i, t) are in this representation present
for all nodes i and timestamps t, even if i is isolated at t, and
that the links (i, t)−(j, t+1) and (j, t)−(i, t+1) also exist
even if i or j have no links at t or t+1. The modified supra-
adjacency representation we propose considers instead only
the pairs (i, t) such that i is not isolated at t, in order to avoid
potentially long chains (i, t)− (i, t+1)− · · ·− if i remains
isolated for some time, and draws links only between (i, t)
and (j, t′) such that i (resp. j) is not isolated at t (resp. t′).

Recovering dynamics on a network
Given a dynamical process occurring on a network, such that
nodes change state over time, only partial knowledge of this
evolution can in general be realistically envisioned, as for
instance in diffusion processes such as the spread of conta-
gious diseases or rumors. The task of recovering the com-
plete knowledge of a diffusion process from partial observa-
tions has thus been addressed in a variety of settings.

Some works have put forward methods to recover the state
of all nodes and the seeds of a spread from a partial obser-
vation of nodes at a given time (Sundareisan, Vreeken, and
Prakash 2015; Xiao, Aslay, and Gionis 2018), without at-
tempting to recover the process whole temporal evolution.
Methods to recover the state evolution of all nodes have also
been proposed, using as input snapshots of the whole sys-
tem, i.e., the knowledge of the state of all the nodes at a
certain time (Sefer and Kingsford 2016; Feizi et al. 2018;
Chen, Tong, and Ying 2019). Bayesian inference meth-
ods from partially observed snapshots have also been pro-
posed (Altarelli et al. 2014). These works make use of strong
assumptions on the nature of the underlying diffusion model.

Some works have also proposed to recover the time evo-
lution of node states without detailed knowledge of the dif-
fusion model (Rozenshtein et al. 2016; Xiao et al. 2018;
Xiao, Aslay, and Gionis 2018). In particular, Rozenshtein
et al. map the temporal network to a supra-adjacency rep-
resentation almost identical to the mlayer-supra representa-
tion described above, in order to preserve the temporal paths
on the network, and solve the recovery of the node states



as a Steiner tree problem. This relies on the fact that each
node changes state only once, hence on the irreversibility of
the process. Finally, we mention a method based on tensor
decomposition to recover coexisting information diffusion
processes from partial knowledge of the node states, with-
out detailed knowledge of the processes, by exploiting the
fact that these processes occur in synergy (Sun et al. 2017).
The fraction of unknown states is however limited, while we
consider a very small fraction of active node states as known.

Conclusion
Here we introduced a method for embedding nodes of tem-
poral networks suited for the task of recovering the dynam-
ical evolution of a single instance of a process occurring on
the network, from partial observations and without informa-
tion on the nature of the process itself except from the set of
possible states of the nodes. Our method first maps the tem-
poral network to a modified supra-adjacency representation,
which preserves the paths on which the process unfolds. As
this representation yields a static graph among the active
nodes, which are pairs of the form (node of the temporal net-
work, time of interaction), it enables the use of embedding
techniques for static networks. We choose to use DeepWalk,
as it is a simple and paradigmatic algorithm based on ran-
dom walks and thus particularly suited to explore the neigh-
borhood of the nodes of the supra-adjacency representation
in a way relevant to the dynamical process on the network.
We finally frame the inference of the dynamical state of all
active nodes from a set of observations as a classification
task.

We have shown the performance of our method on the
concrete case of an epidemic-like model on empirical tem-
poral networks and compared it with other state of the art
methods. Our method consistently yields very good classi-
fication performance in a robust way across data sets and
process parameters, without fine-tuning hyper-parameters.

Our results show that it is possible, without any knowl-
edge of the precise nature of the process nor of its parame-
ters, to recover crucial information on its outcome. Note in
particular that our method assumes no knowledge of which
transitions between states actually occur in the real dynam-
ics: this means that the predicted sequence of states of each
individual node might yield ”forbidden” transitions (e.g., in
the SIR example, transitions from I to S or from R to I).
Nevertheless, we have shown that the outcome of the classi-
fication task gives a good estimation of the actual dynamics.

Our method has however the clear limitation that we as-
sume the whole temporal network to be known. Although a
full observation of the contact patterns of individuals could
be envisioned in some specific controlled settings such as
hospitals, this is not generally the case. Further work will
address this limitation by considering the effect of noise and
errors in the temporal network data, and by considering the
case in which only a (more or less detailed) set of statistics of
the temporal network is known. Noise could also impact the
quality of the sampling (e.g., observational errors), and we
will check its impact on our method’s performance. Further
work will also address different sampling strategies such as
a sampling concentrated at early times, or focused on few

specific “sentinel” nodes followed at all times, or of a whole
snapshot of the system but only at a specific time. This could
yield crucial insights on how to optimize surveillance strate-
gies in concrete settings.

Finally, since our method is largely agnostic with respect
to the specific dynamical process, we will consider other
processes such as other models of disease propagation, com-
plex contagion phenomena or opinion formation.
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Gardeñes, J.; Pérez-Vicente, C. J.; Moreno, Y.; and Arenas,
A. 2013. Diffusion dynamics on multiplex networks. Phys.
Rev. Lett. 110:028701.

[Goyal and Ferrara 2018] Goyal, P., and Ferrara, E. 2018.
Graph embedding techniques, applications, and perfor-
mance: A survey. Knowledge-Based Systems 151:78–94.

[Goyal et al. 2018] Goyal, P.; Kamra, N.; He, X.; and Liu,



Y. 2018. Dyngem: Deep embedding method for dynamic
graphs. arXiv preprint arXiv:1805.11273.

[Goyal, Chhetri, and Canedo 2019] Goyal, P.; Chhetri, S. R.;
and Canedo, A. 2019. dyngraph2vec: Capturing net-
work dynamics using dynamic graph representation learn-
ing. Knowledge-Based Systems.

[Grover and Leskovec 2016] Grover, A., and Leskovec, J.
2016. Node2vec: Scalable feature learning for networks. In
Proceedings of the 22Nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD
’16, 855–864. New York, NY, USA: ACM.

[Kazemi et al. 2019] Kazemi, S. M.; Goel, R.; Jain, K.;
Kobyzev, I.; Sethi, A.; Forsyth, P.; and Poupart, P. 2019.
Relational representation learning for dynamic (knowledge)
graphs: A survey. arXiv preprint arXiv:1905.11485.

[Keeling and Rohani 2008] Keeling, M. J., and Rohani, P.
2008. Modeling Infectious Diseases in Humans and Ani-
mals. Princeton, N.J.: Princeton University Press.
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Figure 1: One example of predicted timeline of the number of active nodes in the infectious state, for dyn-supra+DeepWalk,
for each SIR parameter set and each data set. The blue, orange and gray lines are respectively the number of actual active
nodes in state I in the test data, the number of predicted active nodes in state I and the number of active nodes in the test data
at time t. Note that the number of active nodes in the test data is almost the same as the total number of active nodes, as the
training data is of small size (ρ = 1, i.e., |D|= |V |).
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Figure 2: Effect of the self-coupling edges weight ω. The top and bottom row indicate results of Macro-F1 and Micro-F1,
respectively.
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Figure 3: Effect of the embedding dimension d. The top and bottom row indicate results of Macro-F1 and Micro-F1,
respectively.
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Figure 4: Effect of the sampling parameter ρ. The top and bottom row indicate results of Macro-F1 and Micro-F1, respec-
tively.
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Figure 5: Effect on the reconstruction performance of using directed edges and the LINE embedding (we show only the
results for LINE as GF is not applicable to directed networks). Here (β, µ) = (0.1250, 0.002).
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(a) Results obtained with the LINE embedding.
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(b) Results obtained with the GF embedding.

Figure 6: Effect on the reconstruction performance of introducing weights depending on time difference. These results are
for (β, µ) = (0.1250, 0.002).
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