Transforming developing country agriculture: Removing adoption constraints and promoting inclusive value chain development

Alain de Janvry, Elisabeth Sadoulet

To cite this version:

Alain de Janvry, Elisabeth Sadoulet. Transforming developing country agriculture: Removing adoption constraints and promoting inclusive value chain development. 2019. hal-02287668

HAL Id: hal-02287668
https://hal.archives-ouvertes.fr/hal-02287668
Submitted on 13 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Transforming developing country agriculture: Removing adoption constraints and promoting inclusive value chain development

Alain de Janvry
Elisabeth Sadoulet

Abstract

For most poor countries of today, investing in agriculture and the associated sectoral linkages is the most promising strategy for sustained growth and poverty reduction. Yet, in these countries, investment in agriculture has generally been lagging relative to international norms and recommendations. We start from the premise that this has been due to lack of success in modernizing the operations of smallholder farmers (SHF) that typically constitute the core of the farm population. These farmers are linked to consumers through value chains that range from the most elementary (local spot markets) to the most advanced (contract farming and out-grower schemes). Current wisdom with cases of successful modernization of smallholder farming is that it requires asset building, productivity growth in staple foods (Green Revolution), agricultural transformation (diversification of farming systems toward high value crops), and rural transformation (value addition through rural non-farm activities linked to agriculture).

Key words: Constraints removal approach: constraints to modernization originating in credit, insurance, information, and access to deep markets. Inclusive value chain development approach: incentives to modernize originating in access to assets, contracts, producer organizations discipline, and value chain coordination.
Transforming developing country agriculture:
Removing adoption constraints and promoting inclusive value chain development

Alain de Janvry and Elisabeth Sadoulet
University of California at Berkeley and Ferdi
May 20, 2019

Abstract
For most poor countries of today, investing in agriculture and the associated sectoral linkages is the most promising strategy for sustained growth and poverty reduction. Yet, in these countries, investment in agriculture has generally been lagging relative to international norms and recommendations. We start from the premise that this has been due to lack of success in modernizing the operations of smallholder farmers (SHF) that typically constitute the core of the farm population. These farmers are linked to consumers through value chains that range from the most elementary (local spot markets) to the most advanced (contract farming and out-grower schemes). Current wisdom with cases of successful modernization of smallholder farming is that it requires asset building, productivity growth in staple foods (Green Revolution), agricultural transformation (diversification of farming systems toward high value crops), and rural transformation (value addition through rural non-farm activities linked to agriculture). This modernization has too often been hampered by extensive market and government failures. We outline a theory of change where the removal of market and government failures to achieve modernization can be approached through two contrasted and complementary initiatives. One is a “constraint removal” approach where development agents (governments, international and bilateral development agencies, NGOs, donors) facilitate overcoming the major constraints to adoption: liquidity, risk, information, and access to markets. The other is an “inclusive value chain development” approach where agents in value chains (entrepreneurs, coordinating agencies, producer organizations) create incentives to smallholder modernization through contracting and vertical coordination. We review the extensive literature that has explored ways of inducing modernization through these two approaches, noting a number of success stories, and propose a research agenda to further explore and enhance their potential.

Key words: Constraints removal approach: constraints to modernization originating in credit, insurance, information, and access to deep markets. Inclusive value chain development approach: incentives to modernize originating in access to assets, contracts, producer organizations discipline, and value chain coordination.

1. Motivation: Role of agriculture for development

Successful productivity growth in agriculture has been the source of early development and subsequent structural transformation and industrialization in most of today’s developed countries. This has been amply documented by the work of historians such as Bairoch (1973) who looked at the Western industrialization experience, cascading from England in the mid-1700s, to France and Germany around 1820, the United States and Russia in the mid-1800s, and finally Japan with restauration of the Meiji emperors in 1880. Following WWII, agriculture has similarly been the engine of growth and transformation for the Asian industrialization miracles in Taiwan, South Korea, China, and Vietnam (Mellor, 1995). In all these countries, an agricultural
revolution preceded a subsequent industrial take-off, typically by something like a half century. Agriculture has also fulfilled an important role in facilitating industrialization in India, Brazil, and Chile (Mellor, 1995; Bustos et al., 2016).

Agriculture remains today the expected engine of growth for the “agriculture-based countries”, those countries with a high contribution of agriculture to GDP growth and a high share of their poor in the rural sector (World Bank, 2007). These are also countries where the farm population is importantly composed of smallholder farmers (SHF), sometimes exclusively (e.g., Malawi, Rwanda) and sometimes coexisting with larger commercial farms (e.g., Senegal, Mozambique). In both cases, agricultural growth importantly requires modernization of the operation of SHFs, with gains in land, labor, and total factor productivity. With labor-intensive industrialization increasingly compromised by robotization and the re-shoring of industries toward the industrialized countries (Rodrik, 2015), agriculture with agroindustry and the associated linkages to services and non-tradable consumption goods remains the best bet as a path toward industrialization for these countries. This includes most of the Sub-Saharan Africa (SSA) countries. A growth strategy with a prominent role for agriculture has been advocated by Stiglitz (2018) and Page (2018) as a major departure from the classical structural transformation approach based on labor-intensive industrialization advocated for example by Lin and Chang (2009).

The World Development Report *Agriculture for Development*’s (World Bank, 2007) main message was that SSA countries should invest more in agriculture in order to fully capture its potential for growth and poverty reduction. Following the world food crisis of 2008, there was a short-term positive response by governments, international organizations, and the donor community with a sharp increase in investment in agriculture. The number of countries meeting the CAADEP (Comprehensive Africa Agriculture Development Program) goal endorsed by NEPAD (New Partnership for Africa’s Development) of allocating at least 10% of government expenditures to agriculture increased from 3 in 2007 to 10 in 2009. Overseas development assistance to agriculture increased by 60% between 2007 and 2009. But this response was not sustained. In 2014 (latest data) only 2 SSA countries (Malawi and Mozambique) out of 43 met the CAADEP goal. The modal SSA country spends only 5% of its public expenditures on agriculture. No SSA country spends a percentage of its public budget on agriculture that reaches the percentage contribution of agriculture to GDP, and 75% of the countries spend less than half that percentage (Goyal and Nash, 2016). NEPAD also set a goal for public spending on agricultural Research-and-Development to reach 1% of agricultural GDP. Returns to investing in agricultural research are typically significantly in excess of cost relative to other public programs, indicating under-investment (Alston et al., 2009). This takes extreme forms in SSA where investment is by far the lowest among regions and has been declining over the last decade. In 2011, only six countries (Swaziland, Cabo Verde, South Africa, Botswana, Namibia, and Mauritius) met the NEPAD research goal (IFPRI, 2018). With failure to invest in agriculture, the yield gap on cereals has continued to increase between SSA and other regions of the world. This gap is correlated with a growing chemical fertilizer gap and a large deficit in irrigation. Today, the World Development Report’s main message continues to be advocated by international development organizations such as the World Bank, the Food and Agriculture Organization, and the International Fund for Agricultural Development (Goyal and Nash, 2016; IFAD, 2016). This is motivated by the observation that 51% of the world extreme poor live in SSA, a share that
continues to rise, and 78% of the world extreme poor work in agriculture in spite of rapid urbanization.

In the current global economic context for the SSA countries, investing in agriculture where the poor work has proven more effective for poverty reduction than taking the poor out of agriculture and to an urban-industrial environment, i.e., through a Lewis (1954)-type structural transformation. Research shows that the poor are not found in agriculture due to adverse selection. Poverty reduction, where it has happened, has been more effective through productivity growth where the poor work (in agriculture and rural areas) than through structural transformation (Christiaensen and Todo, 2014; Rodrik et al., 2016). A Solow-type decomposition of sources of growth shows that agricultural output growth in SSA in the 1985-2012 period originated for 63% from area expansion compared to 8% from factor deepening and 29% from productivity growth (Goyal and Nash, 2016). This is not sustainable due to an effective land constraint and declining farm size in most countries as a consequence of rapid population growth. Take Malawi as an example where agricultural land for households engaged in agricultural production fell from 2.3 acres in 2004, to 1.8 in 2010, and 1.4 in 2016 (de Janvry, Duquennois, and Sadoulet, 2018). Productivity growth and factor deepening consequently have to be the main sources of growth in Sub-Saharan agriculture as in the rest of the developing world where they account for 83% of agricultural output growth.

This opinion on the role of agriculture for development is far from universally shared in the development community. Gollin et al. (2014) and Collier and Dercon (2015) have argued that rural poverty reduction has to come from employment creation in the urban-industrial environment and a corresponding structural transformation of the economy. As seen above, governments have correspondingly not invested public resources in agriculture to the recommended levels. Hence the puzzle in using agriculture for development is: why has the World Development Report/CAADEP recommendation not been followed?

There are African countries to look at for successful progress toward a Green Revolution (Ethiopia in maize for the domestic market) and a rural transformation (Morocco exports of high value horticultural products and fruit to Europe; Ghana and Côte d’Ivoire cocoa exports; Ethiopia exports of sesame and cut flowers) (Boettiger et al., 2017). Chemical fertilizer use is overall low (16 kg per ha of arable land vs. 158 in South Asia and 344 in East Asia and the Pacific), but uneven across countries. The LSMS-ISA data show that the share of cultivating households using chemical fertilizer reaches 77% in Malawi, 56% in Ethiopia, and 41% in Nigeria, while remaining at 17% in Niger and Tanzania, and 3% in Uganda (Christiaensen, 2017). Rural transformation is accompanied by land concentration in medium farms (5 to 100 hectares) in countries like Kenya (where they control 20% of total farm land), Ghana (32%), Tanzania (39%), and Zambia (50%) (Jayne et al., 2018). These farms are typically mechanized and owned by well-educated urban-based professionals who can be effective agents for technology adoption. These various success stories show that using agriculture for development can be done, but has not yet been sufficient to overcome continuing rising gaps between SSA and the rest of the world.

2. Re-interpreting the role of agriculture for development
While there has been limited success with enhancing public expenditures in agriculture, there has been considerable progress with data collection and with rigorous experimentation on how to promote the modernization of agriculture. We know more today about how to use agriculture for development than we did 10 years ago, even though this knowledge has not been put into practice in the desirable form and to the desirable degree. It is consequently important to start by reviewing what we have learned.

The main argument that has been used in support of the need for a structural transformation as the mechanism to reduce poverty is that there is a large labor productivity gap between agriculture and non-agriculture (Gollin et al., 2014). An important observation, however, based on the LSMS-ISA data for SSA is that while the gap in labor productivity per person per year between non-agriculture and agriculture is indeed large, the gap in labor productivity per hour worked between non-agriculture and agriculture is relatively small (McCullough, 2017). In other words, when agricultural workers do work, their labor productivity is not very different from that of non-agricultural households. What this suggests is that there is a deficit in work opportunities for agricultural vs. non-agricultural workers that creates an income gap between the two categories of workers.

Because households engage in a multiplicity of sectoral activities, the relevant contrast in labor productivity is not between agriculture and non-agriculture, but between rural and urban households, with rural households typically principally engaged in agriculture. Looking at labor calendars for rural and urban households in Malawi in Figure 1, we see that weekly household hours worked are not different for rural and urban households at peak labor time, which corresponds to the planting season in December and January (de Janvry, Duquennois, and Sadoulet, 2018). During the rest of the year, there are much less employment opportunities for rural than urban households, with the former working about half the time worked by urban households during the low season (June and July). Lack of labor smoothing across months can thus be a major cause of income differentials between rural and urban households. Measuring annual labor productivity as median household real consumption per capita, rural households are at 57% of individuals in urban households. When this is measured not per year but per hour worked, rural households are at 81% of individuals in urban households.
With high urban unemployment in Malawi limiting the option of reducing rural poverty through permanent or seasonal rural-urban migration, this suggests that a key instrument for rural poverty reduction is to have less idle time for land and labor throughout the monthly calendar. For Bangladesh, Lagakos et al. (2018) proposed filling labor calendar for rural households through migration to cities during the lean season. When this option is not available due to high urban unemployment—in addition to seasonal migration being potentially detrimental to agricultural practices in the home plot (Fink et al., 2014)—filling and smoothing labor calendars in rural areas becomes a key dimension of poverty reduction. This can involve both employment in agriculture with more diversified farming systems and in the local rural non-farm economy. This is the purpose of the agricultural and rural transformations that are also important in redefining the role of agriculture for development.

Based on work done for the IFAD (2016) Rural Development Report led by Binswanger, for China by Huang (2016), by BRAC on graduating the ultra-poor out of poverty (Banerjee et al., 2015), for the Gates Foundation by Boettiger et al. (2017), and for the ATAI project (ATAI, 2018), a strategy out of rural poverty would involve the following five steps: Asset building, Green Revolution, Agricultural Transformation, Rural Transformation, and Structural Transformation as described in Table 1. We refer to this theory as the agriculture for development sequence.
Table 1. The agriculture modernization sequence

<table>
<thead>
<tr>
<th>Stages of transformation</th>
<th>Processes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asset building</td>
<td>Access to land and human capital for the landless and SHF</td>
</tr>
<tr>
<td>Green Revolution</td>
<td>Adoption/diffusion of new seeds and fertilizers for staple crops</td>
</tr>
</tbody>
</table>
| Agricultural Transformation | Access to water for irrigation
 | Ag diversification toward high value crops
 | Development of value chains and contracting |
| Rural Transformation | Mechanization and land concentration
 | Development of land and labor markets
 | Growth of the rural non-farm economy |
| Structural Transformation | Rural-urban migration
 | Urban-based industrialization and services |

Minimum asset endowments for SHF under the form of land, capital, health, knowledge and skills, and social capital are needed to initiate production for the market and participation in a value chain. This corresponds to minimum asset endowments to get started in production in farm household models such as Eswaran and Kotwal’s (1986), and to asset thresholds to escape poverty traps in Barrett and Carter (2012). The BRAC graduation model for the rural ultra-poor thus importantly starts with achieving minimum asset thresholds for households to engage in self-employment in agriculture (Banerjee et al., 2015), with rigorous impact evaluations demonstrating success in raising household consumption in five of six case countries. Evaluation with a randomized experiment of a BRAC credit program for landless workers and SHF in Bangladesh shows that loans can be used to rent land and to select more favorable fixed rent over sharecropping contracts (Das et al., 2019).

The Green Revolution, whereby productivity growth is achieved in staple crops through the adoption and diffusion of high yielding variety seeds and fertilizers is the initial step in agricultural modernization. It has been actively pursued to achieve food security and is a learning ground for the subsequent transformations of agriculture and rural areas. It has been a major success of the Consultative Group in International Agricultural Research and is still an ongoing effort in Sub-Saharan Africa and Eastern India.

A key objective of the Agricultural Transformation is to fill labor calendars over as much of the year as possible through multiple cropping (diversification in agriculture)--which typically requires water control to cultivate land in the dry season--, the development of value chains for new crops, and contracting among agents in these value chains. An example is the introduction of short duration rice varieties in Bangladesh that frees the land for an additional crop, typically high value products such as potatoes and onions, between rainy season and dry season rice crops. This makes an important contribution to filling land and labor calendars and to reducing the length of the hungry season. Necessary for this third crop is water control so cultivation can happen beyond reliance on the monsoon and risk is reduced for costly investments (Emerick et al., 2017). Because the Agricultural Transformation implies diversification of farming system, it is a key element of national food security strategies where diverse diets, including perishable
goods that are less traded than staple foods, are an important element of a solution (Dewey, 2017).

SHFs are engaged in value chains that define the way they relate to markets. Value chains for agricultural products link farmers backward to their input and technology suppliers and forward to intermediaries, processors, and ultimately consumers (Reardon et al., 2009; Swinnen et al., 2015). Relations within value chains often take the form of contractual arrangements. Induced by income gains for consumers, urbanization, and globalization, there has been in recent years a rapid development of value chains not only for low-value staple food crops, but also for medium-value traditional domestic consumption and export crops, and high-value non-traditional export crops. Their structure can take a wide variety of forms in linking SHF to consumers, ranging from the more traditional to the more elaborate (Byerlee and Haggblade, 2013) as follows:

- **Spot markets**: individual SHF buy inputs from agro-dealers and technology companies and sell products to local traders (coaxers) who in turn sell to long-distance traders, wholesalers, retailers, and ultimately consumers. This applies mainly to low value staple food crops for the domestic market (Lançon, 2018).

- **Collective action for marketing**: SHF buy inputs and sell products through producer organizations and marketing cooperatives.

- **Contract farming with individual SHF or with producer organizations (so-called “productive alliances”, see World Bank, 2016)**: contracts are typically resource-providing, potentially including credit, insurance, access to inputs, and technical assistance, at the same time as they may specify quality of deliveries and offer price guarantees.

- **Out-grower schemes with plantations or estates**: SHF are contracted to deliver to the nucleus institution (a plantation, an agroindustry), typically also through resource providing contacts (Casaburi and Willis, 2018).

- **Vertically integrated commercial farms where SHF participate to value sharing through the labor market as workers on the commercial farms** (Maertens and Swinnen, 2009).

A key objective of the Rural Transformation is to give access to smallholder households to sources of income beyond agriculture, contributing to the diversification of sources of income in what has often been referred to in rural sociology as “pluriactivity”. In Ghana, income derived from the rural non-farm economy (including seasonal migration) for rural households is about 40% of total income, a share that increases as land endowments fall (World Bank, 2007). It is indeed the case that, with land limitations, smallholder households rarely exit poverty with agriculture alone. This requires the development of land markets (to allow for gradual land consolidation and mechanization) and of labor markets (with different members of the household usually specializing in farm or non-farm activities rather than switching activities over the labor calendar; see de Janvry, Duquennois, and Sadoulet, 2018, for Malawi). This process will happen in the more favorable areas where a rural non-farm economy linked to agriculture can develop through forward, backward, and final demand linkages. This is the Agriculture Demand-Led Industrialization strategy advocated by Adelman (1984) and Mellor (1995) that is actively pursued in countries such as Ethiopia and Rwanda, and through CAADP in much of Sub-Saharan Africa.
3. How to promote the modernization of SHF agriculture?

In vast regions of Sub-Saharan Africa and South Asia, the desirable modernization of SHF has been held back by multiple obstacles that are presumed to originate in market and government failures (World Bank, 2007; Goyal and Nash, 2018). These failures may result in (1) lack of **profitability** of innovations for particular SHFs given their specific circumstances, (2) lack of local **availability** of the innovations in spite of potential profitability, and (3) **constraints** to adoption in spite of potential profitability and availability. These constraints concern most particularly lack of access to sources of liquidity such as credit and savings, risk and lack of access to risk-reducing instruments such as insurance and emergency credit lines, lack of access to information about the existence of new technology and how to use it, and lack of access to input and output markets due to high transaction costs such as poor infrastructure and monopoly power in markets. The modernization problem is thus particularly multidimensional and difficult to solve.

There are basically two contrasted approaches to potentially overcoming the problems that obstruct SHF modernization. The first consists in focusing on particular groups of farmers and addressing each of the problems in their own shapes and forms that affect them in modernizing. We can label this a “push-driven” approach to modernization and transformations. It consists in securing the existence and profitability of innovations, ensuring their local availability, and then overcoming each of the four major constraints to demand and adoption through either better technology or through institutional innovations (Magruder, 2018; Bridle et al., 2018). The second consists in creating incentives for SHF to modernize by building value chains for the particular product, and managing vertical (contracts, stakeholder dialogue) and horizontal (producer organizations) coordination within the value chains to overcome the profitability-availability-constraints obstacles as they apply to inclusion and competitiveness of SHF in the value chain. This is a “pull-driven” approach to modernization and transformations. It consists in creating the demand for innovations in order to establish SHF competitiveness within a value chain, and then securing the existence, availability, and conditions for adoption of innovations. The approach thus requires both value chain development and value chain inclusion of SHFs.

The theory of change we use in this paper is represented in Figure 2. Circumstances for SHF modernization include the national and international context and policies, deficits in access to assets, and market and government failures that affect them. Approaches to modernization can follow a push or a pull approach, in each case with specific agents engaging in the push or pull activities. Desired outcomes are adoption/modernization, productivity growth in staple foods, Agricultural and Rural Transformations, and growth and poverty reduction. In what follows, we review each of these approaches in turn. Both have been extensively used and analyzed, yet belong to somewhat separate traditions in spite of obvious complementarity.
Figure 2. Theory of change for SHF modernization: Constraint removal and inclusive value chain development

4. Lessons from studies addressing constraints to adoption

Technological innovation are first analyzed in experimental plots, usually for yield and resilience to specific shocks. But this does not tell us whether the innovation is likely to be adopted by SHF. Analysis of the modernization problem should start with verification that the innovation is indeed profitable for the intended SHF under their own objectives, capacities, and circumstances. Measuring profitability in farmers’ plots is however very difficult, if not outright impossible (Foster and Rosenzweig, 2010). There are data problems in observing family labor time and definitional problems in setting the opportunity cost for family labor and self-provided inputs. Conditions also vary year-to-year due to weather conditions, with only short time series to observe how climate affects outcomes, made even more difficult to interpret with climate change. And there are many unobservable conditions and complementary factors that affect profitability and compromise the external validity of any measurement made at a particular time and place. An alternative approach is to verify profitability without measuring it. Some among the best endowed and best located farmers have to be able to make sustained use of the innovation for the innovation to have adoption potential by others under current (or modifiable) market, policy, and complementary input conditions. This can be established by observation, experimentation, or simulation.

Once the innovation is proven profitable and locally available, its adoption may still be hampered by constraints facing SHF in accessing liquidity, risk-reducing instruments, information, and markets. These four categories of constraints have been extensively analyzed using in particular randomized control trials to identify their causal relations to adoption (ATAI, 2018). These studies typically seek to identify ways of overcoming these constraints that could be implemented by governments, international organizations, NGOs, and benevolent actors such as foundations and corporate social responsibility initiatives.

a. Credit and savings
Due to seasonality, especially under rainfed farming conditions which is where most of the lag in modernization currently prevails (i.e., in most of Sub-Saharan Africa and Eastern South Asia), there is a lack of correspondence between the timing of agricultural incomes and expenditures. As a consequence, the inter-temporal displacement of liquidity through credit and savings is important for farmers to invest in new technologies, purchase inputs, optimize the timing of sales, buy consumption goods, and cover timely expenditures such as school fees.

Yet, financial services for SHFs appear too frequently to be ill-designed for their purpose, expensive, excessively risky, and not easily available. Even when they have formal land titles, SHF are typically unwilling to put their land at risk as collateral with a commercial bank, thus acting as “risk constrained” (Boucher et al., 2008). Microfinance products that effectively circumvent the collateral problem by relying on group lending and joint liability tend to be too expensive for the long agricultural cycles (e.g., 24% interest on BRAC and Grameen Bank loans with 7% inflation in Bangladesh) and have repayment conditions that are typically ill adapted to the timing of the capacity of farmers to pay (Burke et al., 2019). Availability of credit from formal sources, both commercial and non-profit, is consequently limited, and SHF must either self-finance or rely on informal lenders with prohibitive interest rates. Hence, there would appear to exist a largely unresolved liquidity constraint on adoption originating on the supply side of the financial market.

Recent field experiments are providing evaluations of different interventions aiming at relaxing the liquidity constraint on SHF, with fertilizer the most commonly used indicator of technology adoption because of its ubiquitous recognition and yet massive underuse. While contexts and interventions vary for these experiments, they surprisingly tend to show that a liquidity constraint is not the main reason why SHF are under-investing in fertilizers. The main constraint is instead lack of profitability in adopting fertilizers.

A first category of experiments consists in providing unrestricted access to credit to a defined eligible population, as in Morocco (Crépon et al., 2015), Mali (Beaman et al., 2015), and Ethiopia (Tarozzi et al., 2013). While interest rates in these studies were variously subsidized (they were set at 12.5-14.5%, 25%, and 12%, respectively), uptake remained low: only 17% of eligible farmers took a loan in Morocco, 21% in Mali, and 36% in Ethiopia. Furthermore, farmers that did take a loan only used a small fraction of the liquidity to increase their expenditures on fertilizer or other agricultural inputs (e.g., input expenditures increased by 11% in Mali, relative to farmers in the control group that were not offered credit).

Other experiments offered restricted credit that can only be used on agricultural inputs. Such credit displaces the equilibrium allocation of liquidity in favor of the targeted inputs, similarly to what a price discount would do. And yet, uptake remained low. In Malawi input credit (at 27.5% interest rate for 10 months) for high-yielding maize and groundnuts was taken by 33% of the farmers (Giné and Yang, 2009).

This low demand for credit seems to be reflective of a low demand for the inputs themselves. The low demand for fertilizer is exemplified in two rather extreme experiments. In Mali, Beaman et al. (2015) provided to another group of farmers a pure cash grant, rather than the credit described above. This only raised the expenses on fertilizer by 15%, in comparison with 11%
with a credit that had to be paid for, showing that credit is not the major constraint to adoption. In Mozambique, a group of progressive and well positioned farmers, with good access to extension services and to input and output markets, were offered vouchers with a 75% discount on fertilizer price, and yet only 28% of the farmers redeemed their vouchers (Carter et al., 2013).

There are a few experiments that show the importance of well-tailored credit and savings products to support the adoption of profitable innovations by SHF. Two cases exhibit the importance of accounting for the seasonal distribution of farmer income. In Kenya, One Acre Fund offered harvest-time loan at 10% interest rate with repayment expected 9 months after harvest, collateralized with stored maize. The objective was to allow farmers to avoid selling their harvest at the time of the year where prices are lowest, postponing sale to the period of high prices. 63% of the eligible farmers took the loan. A similar savings scheme through group-based grain storage was introduced in Kenya. Fifty eight percent of the farmers took-up the product, and were twice as likely to sell maize on the market (Aggarwal, Francis, and Robinson, 2018). While these financial products contribute to the households’ welfare, and indirectly increase the return to agricultural production, there is no evidence that they induced higher adoption of fertilizer or other modern technologies. Another interesting experiment for large equipment is to have them self-collateralizing the loan. This is feasible when the equipment requires a large initial investment but retains its value over the loan period. An example is water tanks provided on leasing arrangement (at a very low real interest rate) in Kenya to small farmers by a dairy cooperative, with repayment of the loan deducted from milk sales (Jack, Kremer, de Laat, and Suri, 2016). This scheme increased the take-up of water tank from 2.4% to 41.9%, and most loans were fully paid in advance of the planned 24 months.

These experiments point to the existence of other constraints to fertilizer use. This can be lack of complementary inputs (such as organic fertilizers and soil nutrients), excessively high risk, or high transaction costs in reaching markets that all make fertilizer use not profitable. These other constraints need to be jointly addressed with credit availability. An example is new financial products such as Risk Contingent Credit where repayment is insured by an index insurance, where insurance serves as collateral for the loan, and where the insurance premium is paid with loan repayment at the end of the season that have promise and are under experimentation (Shee et al., 2018). Another example is precision farming where soil testing allows to customize fertilizer recommendations to heterogenous local conditions and to design comprehensive technological packages (Cole and Fernando, 2016).

Conclusion is thus that credit availability is not the main constraint to fertilizer use for a large majority of SHF in SSA and SA. For them, low fertilizer use is mainly due to low profitability associated with physical, market, and institutional conditions. Interventions to secure both the profitability of fertilizers and the availability of well-designed financial products for their circumstances are necessary for large scale adoption to occur.

b. Risk and Insurance
Smallholder farmers are exposed to many risks that can put their lives and assets in jeopardy and deter investment. Shocks include weather, plagues, prices, and health. As a consequence, SHF engage in shock-coping adjustments after an adverse event has occurred, and in risk-management strategies in anticipation of shocks difficult to cope with. Both responses are costly.
Shock-coping includes dis-saving, emergency borrowing, sale of productive assets, emergency migration, use of child labor by taking children out of school, and postponement of consumption expenditures. Some of these responses can have long-term consequences, particularly when they imply decapitalization of assets, including child human capital and health (Carter and Barrett, 2006; Maccini and Yang, 2009). SHF also engage in risk-management practices. This includes preferring to use low return-low risk traditional technologies, holding large precautionary savings (such as food grains) and productive assets that are biased toward liquidity (such as animals), and engaging in income diversification at an efficiency cost (Rosenzweig and Wolpin, 1993).

These costly strategies to deal with risk reduce the resources available for investment and technology adoption. Risk exposure also has a direct consequence on the adoption of technologies in reducing their return. Thinking of fertilizer, for example, the possibly that drought or flood wipes out the harvest and hence the return to fertilizer discourages its application in the first place (Dercon and Christiaensen, 2011).

The obviously missing piece in the panoply of risk management and risk coping instruments used by smallholder farmers is insurance. Agricultural insurance is common in developed countries, although usually heavily subsidized. For SHF in developing countries, the administrative and implementation costs for agricultural insurance that requires verification of losses by an adjustor are too high to make it cost effective. Index insurance, where payments are triggered by a verifiable local index of rainfall or small area average yield has promise (Carter et al., 2017). Yet, take up has been very low, typically not exceeding 6 to 18% at market price (Schickele, 2016), with the reasons for low adoption shown to be multiple, including basis risk, lack of trust, liquidity constraints, and limited salience of benefits (Cole et al., 2013).

The question for this paper, however, is whether insurance, when taken, induces farmers to adopt technology. Only a few studies in which the insurance uptake was sufficient permit this analysis. Experimental results for Ghana have shown that farmers that purchased insurance increased their use of chemical inputs by 24% (Karlan et al., 2014). Mobarak and Rosenzweig (2013) offering a (highly subsidized) insurance to farmers in India, show that it induced them to replace their use of traditional risk tolerant rice varieties by higher yielding varieties. Cai (2016) shows that a weather insurance policy in China induced tobacco farmers to increase their production of this risky but highly profitable crop by 16 percent and their borrowing by 29 percent.

These experimental results suggests that if one could improve the design of the insurance product so that uptake could increase, technology adoption may follow. Promising avenues include products with reduced basis risk (higher density of weather stations and better yield predictions using satellite imagery), financial training to help farmers better understand the insurance (Cai et al., 2019), group insurance on the presumption that managers have a better understanding of the product than farmers (McIntosh et al., 2018), and combining index insurance with other risk-reducing instruments, including social assistance for large shocks (Carter et al., 2017).

Also promising is to reduce risk through resilient technology such as drought and flood tolerant seed varieties. SwarnaSub1, a superior rice technology with flood resilience properties, is appealing to farmers in flood-prone areas. Emerick et al. (2016) show that adoption of Swarna-
Sub1 enhances agricultural productivity by crowding in modern inputs (fertilizer) and cultivation practices (more labor intensive planting method), and increasing credit demand. Finally, an innovative financial product introduced by BRAC in Bangladesh is contingent credit lines indexed on events such as flooding (Lane, 2018). This experiment shows that households given pre-approval to take a loan if they experienced flooding in their local area increased investment in risky production practices as part of their risk-management response. Since offering contingent credit lines has little ex-ante cost, the behavioral effect can be very large.

c. Information

A farmer’s decision to adopt a technology relies on his assessment of its value for himself. Hence beyond being aware of the existence (and availability if it needs to be acquired) of the technology, the farmer needs fairly complete information on the specificity of the technology, how to use it or adapt it, and how it would perform in his own context. To take some examples, the adoption of a new variety or management practice requires being aware and informed on their characteristics, associated best practices, and benefits. But even the adoption of fertilizers which are broadly familiar to most farmers, requires reliable information on their quality (Bold et al., 2017) and the very specific quantity and timing of application that depends on local conditions. This learning process is particularly difficult due to the heterogeneity of contexts across farmers (notably spatial heterogeneity of soil quality) and across years (notably because of weather variation) (Tjernström, 2017). The traditional model of public or private sector extension agents faces multiple limitations. In addition to customization of the advice that should be delivered, the sheer number of smallholders and their geographical dispersion limit what a public or private extension service can possibly achieve. In India, for example, fewer than 6% of the agricultural population reports having ever received information from extension services (Cole and Fernandez, 2016). In Uganda and Malawi, these numbers are higher (11% and 50% in one year, respectively) but still implying receiving a service less than once a year (Ragasa and Niu, 2017; Kabunga et al., 2016).

Given the multitude of smallholder farmers and the limited number of extension agents, extension services have typically focused their efforts on training “contact farmers” and expecting that these entry points in the farming community will circulate (push) information in their social networks, inducing other farmers to adopt (Anderson and Feder, 2007). The idea is to reinforce the process of learning and diffusion of technology from farmers experiencing for themselves to watching others experience the technology (Foster and Rosenzweig, 1995). This model is extensively used in countries like Malawi and parts of Peru. Recent research has attempted to improve on this model by identifying optimum entry point farmers to maximize the subsequent diffusion of information and adoption. The theory of social networks gives useful clues as to which farmers to potentially select as contact farmers based on their position in the network (Jackson, 2008; Beaman et al., 2018). Other less theoretically based experiments compare the diffusion of the technology through contact farmers identified as “peer” farmers (resembling most others in the community, in particular by gender), large farmers, extension officer-designated farmers, community-designated farmers, members of women’s groups, etc. (Emerick and Dar, 2019; BenYishay and Mobarak, 2019; Dar et al., 2019). Results do not coalesce to a general finding, suggesting that who are the best contact farmers is context specific.
To be good entry points, contact farmers also need to be good experimenters, demonstrating the benefits of the new technology. Finding out who those good demonstrators are is not easy. An interesting idea is that farmers themselves have a better idea of how they will benefit from the new technology. And this should be reflected in their willingness-to-pay to experiment with the new technology (Chassang et al., 2019). Experimentation has shown that incentivizing lead farmers with the payment of bonuses proportional to their success with diffusion of the innovation in their community may be necessary and can be effective (BenYishay and Mobarak, 2019). It remains however unclear whether this recommendation is scalable.

In many contexts, the private profit-making sector can benefit from providing farmers with the essential agronomic and business knowledge needed to be more productive.1 A recent experiment uses this idea in selecting local agro-dealers as entry points in the diffusion process of a new flood tolerant variety (Emerick et al., 2018). Results are encouraging, showing that training agro-dealers results in wider diffusion of the new rice variety than the traditional contact farmer approach, and that these dealers more effectively target the new seed to places where flooding is more frequent and thus where it will be the most profitable. This provides evidence that dealers are motivated to provide farmers with the right technology and can thus be used as diffusion agents.

Extension services can also be made more effective by using ICT technology. Experiments include sending SMS reminders to farmers on agronomic practices (Casaburi et al., 2014) and using SMS to make recommendations customized to farmers’ own idiosyncratic soil conditions (Cole and Fernando, 2016). In some specific cases, there may be simple techniques that can substantially improve farmers’ ability to access information through self-experimentation. An interesting experiment provides farmers with leaf color charts that guide them in their fertilizer doses decisions (Islam, 2014).

The extension models described above rely on what can be called a “push approach”, whereby extension agents or lead farmers are expected to push the information to the farmers they are in contact with. There is also potential for a “pull approach” to the diffusion of information through social learning. In this case, information is broadly broadcasted in the community that something is to be learned from informed (contact) farmers. “Buzzing” can motivate farmers to seek the information from informed farmers that may be inside or outside their normal social networks. de Janvry et al. (2019) thus show that “buzzing” through visible demonstration plots that use a counterfactual (so-called “side-to-side” demonstration plots where the next best seed variety for the demonstrating farmer is cultivated next to the new technology) can be just as effective as seeding information through central farmers (in this case large farmers and extension officer-selected farmers). Under this approach, farmers know that there is something to be learned and they know with whom to engage in conversation to be informed. Banerjee et al. (2018) found a

1 See Section 5 below on the value chain and contract arrangements that include these advisory services by large input suppliers or processors. A few large input suppliers such as Hariyali Kisaan Bazaar and Tata Kisan Sansar in India provide advice to farmers in their retail stores. Processors that buy their product from small farmers will also provide services that include agronomic training. There are examples in http://www.g-fras.org/en/ggp-home.html and in IFPRI’s series of Good Practice Notes related to extension.
similar result in helping people understand the demonetization process in India: “seed” information and broadly inform who the “seeds” are so they induce information-seeking conversations. The advantage is lower cost (not having to identify who are the central farmers in each community) and ability to reach less privileged farmers who do not belong to well informed social networks.

In general, the information issue remains poorly addressed for SHF in SSA. Extension services are even more under-funded than Research-and-Development and in need of new approaches that may work. The role of the private sector in circulating information in contexts where value chains are poorly developed needs to be further explored. Using IT services such as Digital Green and digital platforms are still in their infancy (Aker, Ghosh, and Burrell, 2016). Innovative approaches in addressing the information problem are in need of conceptualization and experimentation, with significant opportunities to make a large difference on SHF modernization.

c. Access to markets and quality recognition

Incentives to adoption require good access to well performing markets. In contrast, SHF typically face poor infrastructure and high transaction costs, limited access to information on prices, lack of competition on local markets, and problems with quality recognition for inputs and outputs.

Distance to market and poor infrastructure are major contributors to higher input prices and lower product prices for net sellers, which in turn act as a tax that discourages the adoption of innovations. Aggarwal et al. (2018) thus show that distance to market is equivalent to a 6% ad-valorem tax per kilometer for villages in Tanzania. Reducing travel cost by 50%, which is said to be equivalent to paving rural roads, would in this case increase local maize prices and double fertilizer adoption. Improved infrastructure may however increase or decrease the prices of local crops depending on the competitiveness of local goods with those from further away. For Sierra Leone, Casaburi, Glennester, and Suri (2013) show that improving rural roads lowers prices on rural markets, benefiting consumers and hurting producers. They find that only when cell phone services help reach markets further away does improved infrastructure raise local prices, benefiting producers.

Improved price information can also have mixed effects on farmer welfare. The role of IT services in reducing search costs, lowering local price volatility, and raising average producer prices was observed by Jensen (2007) for fish in India and by Aker (2010) for grains in Niger. Better information on prices was also observed by Svensson and Yanagizawa (2009) in Uganda to have a positive effect on the level of prices received by farmers. However, better price information may have no effect on prices received by farmers if they have no option to sell on these markets and no bargaining power with local merchants (Fafchamps and Minten, 2012).

Local markets may also not be competitive, with the possibility of extensive collusion among merchants as shown by Bergquist (2017) in Kenya using an experiment exogenously varying the number of merchants on local markets. This finding is however not supported in an extensive literature review by Dillon and Dambro (2016) who found that local markets in Sub-Saharan Africa overall tend to be competitive.
Finally, quality recognition is a major issue on local markets, even though consumers are willing to pay a price premium for higher quality, particularly for higher phytosanitary standards. Quality recognition via third party certification, as for onions in Senegal, resulted in higher prices for good quality produce and created incentives for farmers to adopt quality-enhancing technology (Bernard et al., 2017). On input markets, Bold et al. (2017) find that there is extensive cheating on the quality of fertilizers, contributing to low adoption in Uganda. An experiment by Hasanain, Khan, and Rezaee (2016) shows that quality recognition in services markets via IT ratings can lead to improved veterinary services for artificial insemination in Pakistan. This was due to increased veterinarian effort once success rates were known to cattle owners.

The frequent poor performance of markets due to high transaction costs, partial transmission of information, frequent lack of competitiveness, and lack of quality recognition remains a major obstacle to profitability and hence to technological upgrading. Addressing these constraints requires not only institutional innovations, but also costly public investments in infrastructure and marketing facilities.

d. A ceiling to adoption
The constraint removal approach has helped identify potential technological and institutional innovations to enhance adoption. In spite of this, technology adoption and modernization has been modest. As shown by continuously rising yield gaps, and in spite of many local success stories, a global Green Revolution for Africa is still in the waiting. A major difficulty for technology adoption under rainfed conditions is heterogeneity of conditions. At the household level, this applies to three dimensions: farmer circumstances, farmer objectives, and farmer capacity. If these dimensions are immutable or too costly to change, technological innovations must be customized to fit these dimensions.

Farmers’ circumstances such as agro-ecological conditions vary widely over short distances and across years in particular regarding rainfall patterns and soil fertility (soil acidity, organic matter). For Zambia, Burke et al. (2017) show that only 8% of farmers can benefit from basal chemical fertilizer applications due to lack of a complementary factor, in this case lime to achieve the desirable level of soil acidity. In Western Kenya, Marenya and Barrett (2009) find that only 55% of plots can use chemical fertilizers profitably due to lack of a complementary factor, in this case soil organic matter as measured by carbon content. Barghava et al. (2018) similarly find that there is complementarity between soil organic carbon and modern inputs. For adoption to go beyond farmers with complementary factors in place, technological innovations must either be customized to fit heterogeneous contextual conditions, or complementary factors must be delivered jointly with the technological innovation.

Farmers’ objectives are different from breeders’ who typically focus on maximum yields in experimental plots with highly favorable controlled conditions (Laajaj et al., 2018). Farmers maximize profit or utility weighting return and risk. They may also have labor calendar objectives such as labor-saving at peak periods and labor-smoothing in the rest of the year. Labor constraints on farming may come from involvement in rural non-farm economy activities and seasonal migration, requiring to fit farming systems to accommodate complementarities between
on- and off-farm labor engagements, including a gender division of tasks. The household will have nutritional objectives if part of the harvest is home consumed, and diversity of diets matter for the choice of farming systems. These specific objectives must feed into the design of new customized technological innovations.

Farmers’ capacity may be improved through the acquisition of information and skills, but other dimensions of capacity are fixed factors to which technological innovations must adapt. T.W. Schultz (1964) and Foster and Rosenzweig (2010) have famously shown that farmers’ education matters for technology adoption. Low skills may reduce the capacity and the speed of learning (Laajaj et al., 2018). Again, limits on capacity must be taken into account on the supply side of technology if it cannot be addressed as a demand-side constraint that can be relaxed. Technology must be kept relatively simple to use. An example is SwarnaSub1 that requires the same agronomic practices as the widely used Swarna rice variety. Another is the leaf color chart to adjust the quantity and timing of fertilizer applications.

It is thus possible that available technology is not adapted to the circumstances and demands of a majority of farmers. Either it has to be adapted to the lack of key complementary factors, or the complementary factors have to be jointly delivered as a technological package. Unless this is done, lack of technological upgrading for a majority of farmers may not be an adoption issue (i.e., a constraint that can be directly addressed) but a supply-side issue concerning the availability of technologies that are profitable and adoptable by the majority of farmers. Lack of investment in Research-and-Development to address the specificity and heterogeneity of Sub-Saharan conditions noted above adds credibility to this interpretation. This is documented by Pardey et al. (2016) who shows that there is both under-investment in agricultural research in Sub-Saharan Africa as revealed by an estimated average internal rate of return of 42% for 25 countries over the 1975-2014 period, well in excess the expected return on public investment, and a continuing deterioration of the situation. Goyal and Nash (2016) document a net decapitalization of agriculture Research-and-Development capacity in Sub-Saharan Africa over the last decade.

Conclusion is that an approach to modernization that seeks to remove constraints on adoption of existing technology is essential, but likely to hit a low ceiling due to heterogeneity of conditions, lack of complementary factors, and diverse farmers’ objectives and capacity. A complementary approach worth exploring is development of inclusive value chains.

5. Lessons from studies addressing inclusive value chains development

An inclusive value chain development approach consists in creating incentives for SHF to modernize through their participation in vertically coordinated value chains that provide links to markets for products with a profitable effective demand, while at the same time potentially offering solutions to market and government failures. The advantage of a value chain approach as opposed to a constraints approach is that it does not predetermine the solution to adoption (the removal of a particular constraint) but seeks instead broad complementarities in the ways of achieving modernization that are specific to the agent in question. Referring to the Byerlee and Haggblade (2013) classification reported in Section 2, we include under the category of
vertically coordinated value chains, resource providing contracts (contract farming, out-grower schemes) and the more complex multi-stakeholder structure.

Which elements are included (credit, technology transfer, input provision, information, training, etc.) and the specific structure and institutional form that this vertical coordination will take is endogenous, depending on the particular needs of producers, the end-buyers, and the context of market failures and institutional deficits.

a. Resource providing contracts
A key element of modern value chains that can result in SHF modernization is implementation of resource-providing (also called interlinked) contracts (Bardhan, 1989). Contracts can take on a large variety of forms (Bellemare and Lim, 2018; FARM Foundation, 2018). They can help SHFs overcome market failures (in credit, insurance, and inputs) and government failures (in information and access to markets). For example, a contract in an out-grower scheme with a sugar plantation in Kenya provides index insurance to individual farmers with the premium deducted from harvest-time payment for product delivery (Casaburi and Willis, 2018), providing a rare case of large take-up of index insurance without subsidies. Quality recognition can be an integral part of contracts, for instance inducing higher quality of cocoa production in Sierra Leone (Casaburi and Reed, 2017).

Resource-providing contracts are however typically difficult to put into place, implement, and enforce. Contract terms (demanding phytosanitary and quality norms; technological specifications in production) can be difficult for SHFs to respect. This applies to domestic markets that supply supermarkets and rich urban consumers who demand quality standards that approximate international norms. Monopsony power of contracting agents (agribusiness, agro-exporters, supermarkets) can lead to hold-up practices with defaults or delays in payments and lower prices on deliveries. Side-selling by SHFs when the contract price is inferior to the local market price at harvest time can also undermine the enforcement and credibility of contracts. And principal-agent relationships facilitate appropriation by the lead agent, typically the commercial partner, of the net social gains created by the contract thus limiting its potential for poverty reduction if there has been no improvement in farmers’ bargaining power over surplus. Despite these difficulties, empirical studies tend to show positive benefits of these contracts for SHFs under the form of technology adoption, agricultural transformation, and income and employment gains (see for example the study by Dihel et al., 2018, for Ghana, Kenya, and Zambia). Most available impact studies are however recognized to suffer from selection biases and external validity issues (Bellemare, 2015).

b. Vertical coordination in value chains
Other institutions are frequently necessary to complement or strengthen a simple contract. For example hold-up risk by the buyer can be resolved through a commonly accepted external certification agent. Saenger et al. (2014) show that providing dairy farmers contracted by a large company in Vietnam an independent milk quality assessment induced a 12% increase in input use, and a significant corresponding increase in output (quantity of milk fat and total solids), ultimately translating into higher welfare for the farmers. What is interesting in this case is that, while the company was playing fair with farmers, some of them believed that it was behaving opportunistically in rejecting some milk deliveries. Independent certification can thus benefit
both the farmers and the company. More generally, quality certification can have a major role in value chain development where phytosanitary standards and other qualitative aspects of produce are important (Dequiedt, 2018). Important is for certification to happen low in the value chain, before aggregation of produce makes it impossible to reward individual quality contributions, which is particularly challenging when production originates in thousands of very small farmers (Bernard et al., 2017; Abate and Bernard, 2018). Where quality can be certified early in the value chain, incentives can be created for farmers to invest in quality enhancement, in particular through the adoption of technological change (Balineau, 2018).

Beyond the direct contract between (say) a processor and farmers, arrangements may involve a separate input provider, or a financial actor that will provide credit to the farmers, possibly guaranteed by the processor or the input provider, or a transporter, etc. These arrangements result in value chain models that are quite complex, entailing the need for coordination between multiple stakeholders, sometimes referred to as innovation platforms.

As an example, the Bubaare Innovation Platform in Uganda developed since 2008 the sorghum value chain for the production of baby food and a traditional beverage in a context where most small farmers only produced sorghum for their own consumption. The platform includes Huntex Ltd, a large processor selling to supermarkets that invested in storage (a key element for the conservation of the products that could only be afforded with economies of scale) and packages and commercializes the products, credit partners that provide financing to farmers and the processor, the public agricultural research system that developed new high yielding varieties, extensions services that taught farmers improved crop management techniques, local parish governments that set the standards for the commercialization of sorghum, and the University of Makerere that helped with technology development. This very successful platform registered as a cooperative in 2013 and operates without any further donor intervention, solely relying on membership fees (Kalibwani and Twesigye, 2015).

A different story emerges from Peru, where a value chain was created to market native potatoes produced by SHF to high-income consumers in Lima. Coordination is assumed by a strong intermediary (CAPAC, Cadenas Agrícolas Productivas de Calidad) which links farmers to a few supermarket groups. On the supply side, CAPAC coordinates services provided to producers by different NGOs, which include contract management, quality control, and delivery to the supermarkets. On the demand side, CAPAC participates in national advocacy, the promotion of events, and the creation of labels. The supermarkets themselves have developed their own promotion, including a cooking school and books. And researchers at the International Potato Center have developed improved storage methods (Thiele et al., 2011).

There have been multiple initiatives by governments, private enterprises, development agencies, and NGOs to promote the development of similar vertically coordinated value chains. Over the last 15 years, the World Bank has spent heavily in value chain development in seven West African countries with investments in infrastructure (roads, irrigation, electricity, market facilities), support to producer organizations (training, capacity), development of supporting services (credit and insurance, technical assistance), and public sector capacity (extension, regulation). This has focused on value chains such as mangos, onions, meat, and poultry in Burkina Faso, and onions and rice in Senegal (World Bank Agricultural Diversification and
Market Development Project for Burkina Faso and Senegal, internal documents). Rigorous evaluation of these investments is still not available.

These innovation platforms are to help actors in a value chain communicate and coordinate actions to address bottlenecks to value chain development. Swinnen (2018) emphasizes the role of identifying appropriate entry points that can consist in financing the leading firm in a value chain so it has resources to in turn finance farmers in interlinked contracts, and directly targeting constraints to value chain development such as farmer training, PO development, and presence of service providers. As revealed by the FARM Foundation (2018) review of contracting in value chains in Sub-Saharan Africa, leading private sector enterprises have been important in acting as coordinating agents for value chain development. Coordination can thus be achieved at the cost of competition, creating an interesting trade-off whereby monopsony power in value chains can help facilitate vertical coordination while enhancing value extraction to the benefit of the lead agent.

Value chains for low-value domestic staple foods are particularly important for smallholders, but more difficult to develop as discipline is harder to achieve due to the large number of producers and availability of local buyers facilitating side-selling (Lançon, 2018). Yet, success with value chain development for domestic producers is essential if they are to remain competitive with imports, and also potentially help the country make headways in substituting for rapidly rising imports.

Value chain development does not necessarily come top-down from commercial partners. It can also come bottom-up at the initiative of producer organizations. Collion (2018) thus contrasts top-down “aggregation schemes” in Morocco where an agroindustry contracts with producers to secure the provision of produce with quality specifications, to bottom-up “productive alliances” in Latin America where a producer organization develops a business plan that involves contracting with a commercial partner in resource-providing contracts. Capacity of the producer organization to do this typically comes with technical assistance and subsidies provided by the public sector and with the support of international development organizations (World Bank, 2016). Hence, the inclusive value chain development approach to modernization and transformation can come from upstream as well as from downstream agents in the value chain, even if the latter tends to dominate occurrences.

c. Inclusive value chains
With SHF inclusion, value chain development can become not only a powerful instrument for modernization but also for rural poverty reduction via profit-making as entrepreneurs and via employment benefits as workers in vertically integrated schemes (Van den Broeck, Swinnen, and Maertens, 2016).

A value chain development approach to modernization typically builds on the best, starting with regions and farmers better endowed and closer to markets. As it gains strength, the value chain can gradually include more distant regions and less well-endowed farmers, fulfilling a more extensive poverty reduction function. Some of the key conditions for successful inclusion are the following:
(1) Sufficient asset endowments for SHF under the form of land, capital, health, knowledge and skills, and social capital to initiate production for the market and participation in a value chain (Devaux, Torero, Donovan, and Horton, 2016). The BRAC graduation model for the rural ultra-poor thus importantly starts with meeting minimum asset thresholds to engage in agricultural entrepreneurship (Banerjee et al., 2015). They typically involve animals, health, and management skills. Successful value chain inclusion needs extend this effort at SHF asset building beyond the ultra-poor.

(2) Producer organizations with capacities, discipline, and bargaining power to engage in contracting with commercial partners in productive alliances, without the risks of side-selling and contract defaulting (World Bank, 2016).

(3) Willingness and capacity of commercial partners to contract with SHFs in resource providing contracts, or in cooperation with service-providing institutions such as commercial banks and technology companies that offer SHFs access to these resources.

(4) Quality recognition sufficiently upstream in the value chain that it creates incentives for SHF to certify their goods and engage in quality improvement in their production practices.

(5) Helping SHF identify the comparative advantages they can build upon in developing a value chain inclusion strategy and achieving competitiveness. This can often be based on labor-intensive activities anchored in traditional farming systems and agro-ecological niches, and on complementarities between small and large farms in servicing a value chain (Swinnen, 2018).

(6) Insertion of a value chain development effort in a broader rural development strategy pursuing agricultural and rural transformations. This includes infrastructure investments to connect often remote areas to deep markets where they can be competitive (Schejtmam and Berdegué, 2004).

As this long list of conditions indicates, value chain inclusion is difficult to achieve and requires both commitment by supporting agencies and sustained assistance to achieve results. It also requires a good understanding of the market forces that determine supply and demand for any particular product and hence the profit to be made in participation to the value chain. An early experiment illustrates the case: The Fair Trade value chain shows a way of providing price and other supports to SHF (Balineau, 2018). But the value potentially generated for SHF by Fair Trade contracts can easily be eroded by unlimited entry (de Janvry, McIntosh, and Sadoulet, 2015).

Resource-providing contracts and vertical coordination in value chains can thus be effective instruments for modernization. The incentives created by linking farmers to markets and overcoming market failures help endogenize technological and institutional responses. This can lead to innovations to seize new market opportunities as in INSEAD’s Blue Ocean approach rather than competition for market share in already deeply competitive markets (Kim and Mauborgue, 2005). Design and implementation of this approach to modernization and transformation is still in need of much impact evaluation research.
d. Impact evaluation of inclusive value chain development

Assessing the impact of a vertically coordinated value chain on (say) farmers production or welfare is particularly challenging. All impact evaluations proceed from well-defined units (composed of producers) that are treated (benefit from the intervention) and corresponding counterfactual that did not receive it. In the case of value chains, the unit of intervention is most often either a farmer organization or a community, rather than an individual farmer. Even if not all farmers from a community participate in the value chain, this would be by choice, and hence non-participating farmers cannot be good counterfactuals to participating farmers. Any analysis will thus compare communities in which the value chain has intervened to communities not affected. This raises some statistical concerns. The number of communities any such intervention can incorporate is limited, simply because of financial and human resource constraints.

The second challenge is to find counterfactual communities. The gold standard for measuring the impact of interventions or programs is the randomized control trial. This would consist on defining a priori a set of communities that would equally qualify for participating to the value chain and only randomly invite half of them to participate. Getting an institution or a private sector firm to select in this way clients with whom it will do business is often hard. But getting a large number of private and public sector partners to all agree around a scheme that will impose on them restrictions on who should and should not be incorporated in the process of value chain construction is even more challenging if not impossible. In addition, the construction of a value chain is by essence progressive, and it is in part adjusted to the needs and with the contributions of the communities that are incorporated. It is rarely a blue print that is offered to communities.

It is then not surprising that we find almost no rigorous evaluations of value chains. Those that exist proceed with an ex-post evaluation whereby researchers take stock of the communities that are included in the value chain and look for similar communities that are not included. Cavatassi et al. (2011) provide an interesting example with evaluation of a value chain linking smallholder potato farmers in the mountain regions of Ecuador to high-value markets. The authors proceed with a very careful matching of communities, including propensity score matching using census data, verification by key local organizations and agronomists to determine whether they were comparable, and finally verifying that the treated and control communities were not differing regarding other interventions. Their impact evaluation is thus restricted to less that half of the treatment communities (18) for which they have a good counterfactual. The authors then use different methods of weighting participants, non-participants, and control farmers. All of them show similar results that the value chain has brought a large increase in yield and in gross value per hectare, and that these benefits were obtained through both selling a higher percentage and quantity of potato harvest and selling at a 30 per cent higher price. Production costs also increased but benefits outweigh added costs, suggesting welfare benefits for the farmers.

Impact analysis of contract farming presents somewhat different challenges, but is generally easier to do. Similar to what has been done to evaluate the impact of microfinance institutions, one can imagine a large processor extending its scale of operation willing to proceed with a randomized scheme, by which it will preselect more units (farmers or villages) than it wants to incorporate, or use a phased-in design whereby selected units are randomly assigned to be
incorporated in two phases. Yet, the large literature attempting to measure the impact of contract farming on farmer welfare uses observational methods (Barrett et al., 2012; Bellemare and Bloem, 2018). Most studies use propensity score matching to find counterfactuals to individual participating farmers, often within limited samples of non-participating farmers. The validity of the method in that context is questionable as identification of treatment effects is based on the assumption that selection into participation is fully captured by observable characteristics. Other studies try to overcome the challenge of the endogenous choice to participate in contract farming by using instrumental variable estimation, but similarly finding an instrument that is convincingly correlated with the choice of participating in contract farming and yet uncorrelated with the potential benefit of this participation is essentially impossible. As of yet, the closest to a randomized evaluation of getting smallholders access to high value markets through contract farming is given by Ashraf et al. (2009). The authors worked with an NGO that serves as an intermediary linking SHF to commercial banks, retail providers of farm inputs, transportation services, and exporters. 36 farmer groups selected to participate in the experiment were randomized into treatment and control. The study shows that during the first year of operation, the contract increased production of export crops and lowered marketing costs, leading to a 32% income gain for new adopters. The experience however fell apart one year into the project, with defaulting on their commitments by buyers and farmers. This experience has little external validity for what contract farming by a solid private sector partner could do (Bellemare and Bloem, 2018).

6. Conclusion

With modernization of SHF lagging and its recognized importance for growth, agricultural and rural transformations, and poverty reduction in agriculture-based countries, efforts have been pursued using both a constraint removal and an inclusive value chain development approach. The constraints approach has focused on removing major obstacles to adoption originating in liquidity, risk, information, and markets. It has yielded significant benefits, especially in terms of designing institutional innovations to overcome constraints to adoption, and work is still in progress. Institutional agents such as governments, international and bilateral development agencies, NGOs, and donors have a key role to play in implementing the approach. Yet, the approach has shown limits with modest aggregate success in technology adoption, calling for a complementary approach. A value chain approach that relies on development and inclusion has been relatively less explored in spite of potential effectiveness. This approach focuses on creating incentives to modernization in inclusive value chains that cater through commercial agents to well identified consumer demand. Modernization will typically require technological and institutional innovations to meet this demand through the value chain. Private agents such as entrepreneurs and corporations, and collective action in producer organizations, have a key role to play in designing and implementing contracts and coordination. Important lessons from experiences reviewed highlight the roles of asset endowments, producer organizations, contracting, and value chain coordination through lead agents and multi-stakeholder platforms. Implementation of both approaches to achieve growth and poverty reduction requires increasing investment in agriculture for development.
Together, these recommendations help define a research agenda to be followed in support of the much needed modernization and transformation of agriculture in poor agriculture-based countries. For the constraints approach, the agenda focuses on identifying technological and institutional innovations to overcome the credit, insurance, information, and market access constraints to adoption. For the value chain approach, it focuses on promoting value chain development and inclusion with attention to the roles of threshold asset endowments, designing and implementing resource-providing contracts, enhancement of PO discipline in contracting, technological and institutional innovations for SHF to be competitive in meeting effective consumer demand, and achieving coordination in value chains that favors inclusion and a fair sharing of value. While considerable experience has been gained in rigorous evaluations of the constraint removal approach, conceptual thinking is still needed to achieve a similar level of rigor in evaluating the inclusive value chains approach.
References

Banerjee, Abhijit, Emily Breza, Arun Chandrasekhar, and Benjamin Golub. 2018. “When less is more: Experimental evidence on information delivery during India’s demonetization.” Working paper. Economics Department, MIT.

IFPRI. 2018. *Agricultural science and technology indicators data*. Washington D.C.

Pascal