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Abstract

The aim of this work is to develop an algorithm that can utilize historical PV power measurements to estab-

lish the parameters of a physical model for power production. The chosen approach consists in evaluating

the parameters of a PV model that maximize the likelihood that simulations match with power measure-

ments. The proposed method offers advantages beyond the standard approaches used for the simulation

or prediction of PV power production, as it makes maximum use of the information typically available on

a PV plant (plant description and measurement history). Furthermore, an interpretation and control of

the algorithm output is made possible. The performance of the proposed approach has been evaluated and

analysed using measurements from two PV plants. It is shown that the proposed approach may identify

the orientation angles of a PV module to within an accuracy of less than 2◦ in optimal cases. Situations

were also found with a difference between the estimated and actual angles of 5◦, for which the estimated

parameters lead to better simulation/forecast accuracy than the actual ones as they balance the systematic

error of the chosen PV-model.

Keywords: Photovoltaic, Simulation, Forecast, Characterization

1. Introduction1

It has become commonplace for photovoltaic forecast suppliers or academic groups to need to generate2

forecasts for PV plants for which little information aside from historical power measurements is available.3

The two common approaches in this case are the physically motivated approach and the statistical approach.4

The physically motivated approach maximizes the use of the information available for the plant (Drews5

et al., 2006; Kidwelly, 2006). Optimally, PV plant information includes orientation angles of the PV modules6

along with the module and inverter specifications. In this case, a calculation of the PV power from mete-7

orological data using available models from the literature is possible. Systematic differences between the8
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simulated/forecasted and measured power can however be frequently observed. This error typically results9

from differences between the information used and the actual characteristics of the PV plants (approximate10

module orientation, deviation from manufacturer specifications, etc. . . ). A manual correction of the plant11

information used is always possible, but may be time-consuming. The physical approach applies to ideal12

conditions, but it is unfortunately often the case that its implementation is impossible due to missing PV13

plant information needed for the calculation of the power from meteorological data.14

The alternate approach is the statistical one, for which PV plant information is not a necessary prereq-15

uisite. In this approach, the best possible use is made of historical measurements. Artificial neural networks16

have become a standard practice to this end, and numerous works can be found in the literature on such17

methods (de Rocha Vaz, 2014; Dolara et al., 2015; Espinar et al., 2010). Though a statistical approach18

avoids the problems faced by the physical approach, other issues are present themselves. A neural network19

or any other statistical method learns dependencies between input and output data using a training dataset.20

For this purpose, it is important to exclude data affected by measurement errors or plant outages from21

the training dataset that would hinder the training phase of the statistical method used. Though obvious22

measurement errors can be easily detected and excluded from the training dataset, other errors like downed23

power lines or module shading may be more difficult to identify. The performance of the statistical approach24

is thus strongly dependent on the quality of the training dataset, which is sometimes difficult to guarantee.25

In the case of a deficient training set, it is not possible to check or fit the statistical coefficients to make26

manual fixes as were possible with the physical approach. Lastly, no use of the available plant parameters27

can be made with the statistical approach.28

Both the physical and statistical approaches thus have advantages and drawbacks, and the optimal29

approach may depend on the quality of the available dataset. Still, neither approach is ideal as both ignore30

some part of the available information: historical measurements are not used in the physical approach and31

plant parameters is overlooked in the statistical approach.32

Time series of power measurements implicitly contain a wealth of information on a PV plant. A visual33

inspection of this data may for example easily reveal whether the PV modules are oriented to the east or the34

west. This shows that it may be possible to derive (or train) parameters of a physical model from historical35

measurements. Such a hybrid approach would offer many advantages. First, the simulation model could36

integrate physical models available from the literature. Then, information contained in historical measure-37

ments would be fully exploited. Finally, it would be possible to control and modify trained parameters,38

which would have a physical sense. Regarding the last point, information available on a PV plant (module39

orientation, inverter or module specifications) could be explicitly used for the validation or modification of40

the assessed parameters.41

The goal of the work presented in this paper is to develop a hybrid approach, in which parameters of a42

PV model are estimated from historical PV power measurements and meteorological data. The focus of this43
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paper is consequently put on the choice of the appropriate configuration parameters of a PV model (module44

azimuth and tilt angle, power curve, etc...), rather than on minimizing the forecast/simulation error. A45

minimization of the error by e.g. removing systematic errors from the meteorological input data and/or by46

means of model output statistical methods may be conducted once the parameters of the considered plant47

are known, but this step is not addressed here.48

Characterizing a PV plant requires estimating the parameters of a PV plant model that lead to the best49

match between measurements and simulation. A preliminary step is to choose a PV model, which is the50

focus of section section 2. The approach used for assessing the parameters is then described in section 3.51

In section 4, parameters of two plants are evaluated with the proposed approach; and compared with the52

known plant characteristics. Advantages and limitations of the parameter estimation algorithm introduced53

in this paper are then finally discussed in conclusion.54

2. PV plant model selection55

The aim of the proposed approach is to derive parameters of a PV model from historical measurements,56

facilitating the simulation/forecast of the power production of a PV plant from meteorological data with57

the best accuracy. This goal has two objectives at odds with one another. On one hand, the best simulation58

accuracy is obtained by using complex models requiring detailed information on the configuration of a PV59

plant. Though power measurements implicitly contain a lot of information on a PV plant, it is clear that60

it is not possible to ascertain each detailed characteristics of a PV plant from this data. The choice of an61

overly complex model would thus make the parameter estimation impossible. On the other hand, it can be62

expected that while the parameters estimation of a very simple model would be much easier, the choice of an63

overly simple model could limit the simulation accuracy due to its inherent uncertainty. Regarding the choice64

of the set of equations for the simulation of the PV power production from amongst the different models65

available in the literature, a compromise is thus required between minimizing the amount of information on66

the PV plant needed by the model and maximizing the model accuracy.67

To find the optimal model, the choice of the PV model considers different PV plant characteristics and68

their respective effects on the power output. First, all processes occurring in a PV plant, whose consideration69

with the chosen approach is unrealistic, were neglected (e.g. local shading, the effect of wind on the module70

temperature, voltage-dependency of the inverter efficiency. . . ). The characteristics of a PV plant to which71

the output power is most sensitive were then identified. These are the two module orientation angles, the72

set of parameters describing the optical losses of the module glazing, the electrical characteristics of the73

power module and the power curve of the PV inverter. This information is important for the choice of the74

set of models describing the different parts of a PV plant. Indeed, in order to decrease the modelling error,75

accurate models should be preferred to describe the effects these key characteristics on the output power.76
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In contrast, simpler models can be chosen for other parameters whose effect on the power is lower. Based77

on these considerations, a set of models to simulate the output power from meteorological data has been78

selected from amongst those available in the literature. The resulting calculation steps are described in the79

following paragraphs.80

With the effect of local shading being neglected, the plane of array (POA) irradiation can be estimated81

from the global irradiation and the sun position using a set of models commonly used for this purpose (Iqbal,82

1983; Quaschning, 1999). Here, the separation and transposition models proposed by Skartveit et al. (1998)83

and Perez et al. (1993) are each respectively used for estimating the plane of array irradiation from the84

global horizontal irradiation. The module azimuth and tilt angle as well as the ground albedo are the PV85

plant information required for this first step. To limit the number of model parameters and considering its86

limited effect on the output power, the ground-albedo is assumed to be constant and equal to 20%.87

To estimate the POA irradiation effectively contributing to the photovoltaic effect (effective irradiation),88

optical losses occurring within the module glazing have to be considered. The formulation of Martin and89

Ruiz (2001) for calculating the angular losses has been chosen from the models existing in the literature90

(Souka and Safwat, 1966; Standard et al., 1977; King et al., 1997) as it offers the best compromise between91

simplicity and physicality. Indeed, Martin and Ruiz propose an analytical model based on theoretical and92

experimental results that only requires two parameters (the angular loss coefficient and a fitting coefficient93

for the diffuse and reflected irradiation) for the determination of the angular losses of the direct, diffuse94

and reflected irradiations. As the output PV power is little sensitive to the fitting coefficient of the Martin95

and Ruiz (2001) model for the diffuse and reflected irradiation, it is assumed constant and set to a value96

representative for crystalline modules (0.07).97

The influence of the variations of the solar spectrum on the power production of PV cells is neglected so98

that the output of the PV power modules can be directly evaluated with the effective irradiation and the99

module temperature.100

The calculation of the module temperature can be nontrivial, as it is affected by local conditions (wind101

cooling the module back-side, thermal inertia of the building, etc. . . ). However, a detailed modelling of102

the module temperature requires information on a PV plant that cannot be considered in the proposed103

approach. As a result, the expression proposed by Ross (1976) has been chosen, where the difference104

between the module and air temperature is assumed to be proportional to the POA irradiation.105

Further models may be chosen for the remaining calculation steps that would result in a relatively large106

set of additional parameters describing the respective influences of the PV module characteristics, DC-losses,107

inverter efficiency, and so on, on the output power. A general consideration of the remaining simulation108

steps however shows that a unique value of the produced power corresponds to each value of the effective109

irradiation and module temperature. For the present application, individually modelling each component of110

the plant is not necessary, since only their cumulative effect is needed for the power calculation. Accordingly,111
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a pragmatic simplification was made, using a look-up table (LUT) describing the combined behaviour of112

the PV module, cable losses, inverter efficiency, etc. . . rather than simulating each effect individually113

Additionally, with the assumption that the difference between module and air temperature is proportional114

to the POA irradiation (Ross, 1976), it can be shown that the explicit simulation of the module temperature115

can be avoided. Indeed, under this assumption, a single power value corresponds to any pair of effective116

irradiation and air temperature. It was thus decided to use a look-up-table giving the output PV power for117

all values of the effective irradiation and air temperature.118

An advantage of the look-up-table is that parameters which are difficult to assess are implicitly considered119

(effective capacity, soiling loss, mismatch losses, etc...). Furthermore, eventual modelling weaknesses are120

avoided since it is not necessary to choose a mathematical model describing a relationship between the121

input and output data. The use of an LUT may therefore not necessarily lead to a reduction of the model122

accuracy. Finally, the use of an LUT instead of a set of additional parameters actually considerably simplified123

the estimation of the model parameters from historical measurements (see following section).124

In total, the chosen PV plant model uses three parameters (the module azimuth and tilt angles and125

the angular loss coefficient) and an LUT describing the “total power curve” of the PV plant. A flow chart126

illustrating the PV model is given in Figure 1. The input meteorological data are the global horizontal127

irradiation and the air temperature (upper row) and the PV plant parameters are the module orientation128

angles, the angular losses parameter and the LUT (left column).129

One last issue remains to be addressed regarding the physical model. The power output of an increasing130

number of PV plant is capped when the power exceeds a certain level (i.e. 70% of the peak capacity).131

This limitation on the power is commonly referred to as inverter clipping. Though inverter clipping is not132

explicitly discussed in this section, it is implicitly considered in the look-up table. Indeed, all irradiation133

and temperature values leading to power values larger than the limit under normal conditions are associated134

with the clipping limit. The effect of the power limitation is therefore contained in the look-up table and135

no specific measure is required to consider the effect of inverter clipping.136

3. Determination of the simulation parameters of a PV plant137

With a PV model chosen, it remains to discover how the set of parameters best describing a PV plant138

can be evaluated from power measurements. The basic idea is to identify the set of parameters with which139

power simulated from meteorological data best matches with the measurements. Two issues need however140

be clarified prior to the parameter search (section 3.3). Firstly, it is unclear what meteorological data are141

the best suited for the determination of the configuration parameters (section 3.1). At the same time, given142

the presence of a look-up-table in the model parameters and that measurements can be affected by issues143

such as power line failures, it is unclear what cost function is suited to the present problem (section 3.2).144
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Figure 1: Flow chart of the simplified PV plant model

3.1. Choice of meteorological input data for the model parameter evaluation145

Apart from its configuration (parameters of the PV model), the power production of a PV plant depends146

on the solar irradiation and the air temperature. The first step in the determination of the simulation147

parameters of a PV plant thus consists in collecting meteorological data for each point in time a measurement148

is available.149

Should the present approach be needed to calculate PV power forecast, it may appear at first glance150

natural to use irradiation and temperature forecast to estimate the configuration parameters of the con-151

sidered plant. Deviations between forecasted and actual weather conditions when the power was measured152

may however result in noise that limits the performance of the parameter estimation. It is thus preferable153

to use the most accurate meteorological information available as an input for the parameter estimation.154
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Two situations can occur at this preliminary step. In the optimal situation, irradiation and temperature155

are measured parallel to the AC power production. In this first situation, the meteorological information156

needed for the power calculation is available directly from the set of measurements. A more common157

situation is that only the power generation is measured and another source of meteorological data must158

consequently be used. In this latter case, it is possible to extract for example irradiation from satellite-based159

products and temperature from NWP analysis for the desired location and time period.160

3.2. Choice of the cost function161

Once meteorological data is available for each value of the power measurement, it remains to identify162

with which set of parameters the PV power simulated from meteorological data best fits the measurements.163

This is a common optimization problem that can be solved by choosing a cost function to quantify the164

simulation error and by searching for its global minimum over the parameter space.165

At first glance, it may seem natural to choose a common measure of the simulation error such as the166

RMSE or MAE as the cost function. In practice, the implementation of this approach is difficult due to167

the existence of a look-up table in the parameter set. Indeed, each value contained by the LUT needs to168

be estimated by the optimization, such that the parameter space is too large for the optimization. Another169

approach (or problem formulation) is thus necessary to solve the issue caused by the LUT.170

The use of a look-up table in the simplified model has been motivated by the fact that, with the assumed171

simplifications, a single value of the output PV power corresponds to any pair of air temperature and effective172

irradiation values. This characteristic of the chosen PV model can also be exploited to evaluate the optimal173

module orientation angles and optical loss coefficient (the LUT is not considered in a first time). Indeed,174

these three parameters can be expected to have the following effects:175

• If the module orientation angles and the optical loss coefficient are optimally chosen, little dispersion176

should be observable amongst measurements corresponding to similar values of the simulated effective177

irradiation and temperature (e.g. left-side plot in Figure 2).178

• In contrast, a sub-optimal set of parameters should result in a higher dispersion among measurements179

corresponding to similar values of the simulated effective irradiation and temperature (e.g. right-side180

plot in Figure 2).181

Based on the considerations above, it should be possible to search for the three parameters (module tilt182

and azimuth angles and angular loss coefficient) by minimizing the dispersion of the measurements for any183

values of the effective irradiation and temperature. The advantage of this approach is that the shape of the184

power curve (quantified by the LUT) is not necessary for the optimization, which only focuses on maximizing185

the density of points on this unknown power curve. As a result, the parameter space is reduced to the three186

dimensions formed by the module tilt and azimuth angles and the angular loss coefficient. To implement187
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this idea, a cost function must still to be chosen that quantifies the dispersion of the measurements for any188

values of the effective irradiation and air temperature.189

For a given set Xparam of the three model parameters (module azimuth angle, module tilt angle and190

angular loss coefficient), the effective irradiation can be calculated from the global horizontal irradiation.191

Three time series are thus available as input data for the cost function: power measurements, air temperature192

and effective irradiation.193

Figure 2: Illustration of the approach used for estimating the performances of a given set of parameters.

The dispersion of the data is first evaluated by calculating the joint probability distribution of the three194

considered variables. For this purpose the number of occurrences of the three considered quantities within195

different bins is counted. Bin widths of 0.01kW/kWp, 20W/m2 and 2◦C have been used for the power,196

irradiation and air temperature, respectively. This first step is illustrated in Figure 2 for air temperature197

values ranging between 20 and 25◦C and for a set of optimal and sub-optimal parameters (left and right198

picture respectively). Scatter points represent the adequacy between power measurements (ordinate) and199

simulated effective irradiation (abscissa). The number of values present in different power bins for each class200

of effective irradiation is represented by a horizontal bar. This operation is conducted for each class of air201

temperature. The meaning of the bar colours is discussed later.202

The joint probability distribution concerns the distribution of the dataset in the entire space covered by203

the data. Since only the frequency of the occurrence of power values in the vicinity of the (unknown) power204

curve is needed, it remains to extract this information from the joint probability distribution.205

When the set of parameters is optimal, it can reasonably be expected that the frequency of measurements206

will be higher for power bins corresponding to the power curve than for those elsewhere. In this case, the207

required information can thus be assessed for any value of the temperature and irradiation by selecting the208
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bin with the maximal frequency from amongst all bins of power measurement. These bins are marked in red209

in the example given on the left picture of Figure 2. A final summation over all temperature and irradiation210

bins should give approximately the percentage of measurements lying in the vicinity of the unknown power211

curve (sum of frequency corresponding to all red bars in the left picture of Figure 2).212

When the set of parameters is sub-optimal, the assessment described above becomes meaningless since it213

can no longer be expected that the power bin with the maximum frequency corresponds to the power curve.214

This situation is illustrated by the right picture in Figure 2. However, in this case, the previous calculation215

should lead to a lower value that when optimal parameters are used. Indeed, based on the example given216

in Figure 2, red bars are higher in the left (optimal parameter set) that in the right picture (sub-optimal217

parameter set). In that sense, this approach can still be used to evaluate the performances of a set of218

coefficients.219

Finally, the cost function used for the estimation of the module azimuth angle, the module tilt angle and220

the angular loss coefficient is thus:221

f cost (Xparam) =
∑
j,k

[
max

i
(p(PWMeas = PWi, Geff (Ghor, Xparam) = Gj , Tair = Tk))

]
(1)

Where:222

• Xparam is the set of considered parameters (module azimuth angle, module tilt angle and optical223

loss coefficient),224

• PWMeas, Ghor, Tair are the power measurements, the global horizontal irradiation and air temper-225

ature data, respectively,226

• Geff (Ghor, Xparam) is the effective irradiation calculated from Ghor with the parameter set Xparam,227

• PWi, Gj , Tk are the ith, jth and kth bins of the power, irradiation and air temperature, respectively,228

• p(X = Xi, Y = Yj , Z = Zk) is the probability that X, Y and Y are equal to Xi, Yj and Zk (joint229

probability distribution), and,230

• f cost (Xparam) is the cost function for the set of parameters Xparam.231

3.3. Determination of the configuration parameters232

Using time series of power measurements and the corresponding irradiation and temperature data, the233

first three parameters can be evaluated by finding the set of parameters Xparam that maximizes the cost234

function introduced in the previous section (1):235

XOpt
Param = argmax

(
f cost (XParam)

)
(2)
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This optimization is made in a three-dimensional space formed by the module tilt angle, the module236

azimuth angle and the optical loss coefficient, so that the estimation of the first three parameters is relatively237

fast.238

Once the three parameters that maximises the cost function are found, the next step of the algorithm239

consists in evaluating the look-up table that corresponds to the power curve of the PV plant. For this240

purpose, the simulated effective irradiation, air temperature and power measurements are used and the241

evaluation is made in two steps.242

In the first step of the evaluation, for any value of the effective irradiation and air temperature, the243

power curve value is evaluated as the most frequent value of the power measurement (bin with the largest244

number of power measurements). These are represented by the red bars in Figure 2. The most frequent245

(or modal) value is preferred over e.g. the average value because it was judged to be more stable given the246

problems potentially affecting the measurements (line outage, measurement errors, etc. . . ).247

At this stage, only values of the effective irradiation and air temperature covered by the measurement248

dataset can be evaluated in the look-up-table. This would not be a problem if the measurement dataset249

were sufficiently large such that all possible values of air temperature and effective irradiation were covered.250

However, it cannot be excluded that a simulation could require a value from the look-up table that could251

not be assessed with the available measurements. An estimation of the values undefined in the look-up-table252

was thus necessary, which is the second step of the evaluation.253

For the purpose of the estimation of the undefined LUT values, a linear dependency between the output254

power and the air temperature for each value of the effective irradiation is assumed. With this assumption, at255

each value of the effective irradiation, the two coefficients describing the linear dependency between output256

AC-power and air temperature are estimated with the available data and the undetermined values of the257

look-up table are filled by extrapolating the data with this linear relationship.258

4. Sample applications259

4.1. Test PV plants260

Two PV plants have been chosen to illustrate the performances of the parameter estimation algorithm261

presented in this paper. These plants have been selected from amongst numerous plants for which the262

algorithm has been implemented, with the intention of demonstrating not only the performances obtained263

but also of showing the limitation of the proposed approach. Power measurements used in the two chosen264

examples are thus affected by local shading and measurement errors. Measurement errors have been inten-265

tionally left in the dataset for assessing how the proposed approach copes with such issues. This is discussed266

later in the validation of the results.267
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The measurements of two plants provided by the Technical University of Bern have been chosen to268

illustrate the operation and evaluate the performance of the proposed algorithm. A short description of the269

two PV plants used is given in Table 4.2.270

Stade de Suisse Wankdorf (DA1) EBL Liestal

Latitude 46◦57’51” 47◦29’16”

Longitude 7◦27’55” 7◦46’59”

Year of installation 2005 1992

Azimuth and tilt angles 1 -63◦ E / 20.5◦ 0◦ S / 30◦

Peak power 127.575kWp 18.510 kWp

Reference of module Kyocera KC-167GH-2 Kyocera LA361H51

Number of modules 729 363

Reference of inverter Sputnik SolarMax125 Sputnik SolarMax20

Period used for the parameter estimation 01.01.2008 – 31.12.2008 01.01.2009 – 31.12.2009

Table 1: Description of the characteristics of the EBL Liestal PV plant.

For these two plants, one year of five-minute measurements of the output AC-power, global horizontal271

irradiation, POA irradiation, air temperature and module temperature are available.272

For both plants the algorithm has first been run with local meteorological measurements and then273

using remote-data. Remote data include irradiation calculated from satellite images with the helioclim-3v4274

method (Espinar et al., 2012) and air temperature taken from Cosmo-DE analysis (Schulz and Schättler,275

2014). Where remote data have been used fifteen-minute average power measurements have been evaluated276

to match the time resolution of the satellite data. The original time resolution of five minutes has been used277

when the algorithm is run with local meteorological measurements.278

4.2. Validation of the estimated parameters279

For the sake of brevity, the optimization conducted for the estimation of the parameters is not detailed280

in this paper. Alternatively, reports generated by the algorithm are given in the appendix for each algorithm281

run conducted. These reports provide an overview of all end- and intermediary results, which are important282

for assessing the quality of the parameter estimation. Only the final results of the algorithm are discussed283

in this section.284

Module orientations and optical loss coefficients found with the algorithm are given in Table 4.2 and285

scatter plots of the normalized measured power (y-axis) as a function of the effective irradiation (abscissa)286

are displayed in ??.287

11



Table 2: Illustration of the approach used for estimating the performances of a given set of parameters.

Table 3: Results of the parameter estimation.

The module orientation angles estimated with the algorithm can be directly compared with the values288

available from the plant description. A validation of the angular loss coefficient and power curve look-289

up table is by contrast not possible, as the actual values of these parameters are not available from the290

plant information. An indirect validation of these parameters is therefore realized by verifying that the291

estimated power curve matches the dependencies between power measurements, effective irradiation and air292

temperature.293

Validation of the estimated module orientation angles294

The module orientation angles evaluated by the algorithm and those provided by the plant operator can295

be found in and respectively.296

There is a good agreement between module orientation angles found with local meteorological measure-297

ments and remote data. For the Liestal plant the module orientation found with the local and remote data298

are (-3◦E; 30◦) and (-1◦E; 30◦) respectively, while the same module orientation has been found with the two299

datasets for the Wankdorf PV plant (-68◦E; 22◦).300

The module tilt angle found at Liestal corresponds exactly to that provided by the plant operator (30◦).301

In contrast, estimated azimuth angles correspond to a slightly eastward orientation (-3◦E and -1◦E) while302

a southern orientation is indicated in the plant description. An aerial view of the plant taken from Google303

Earth (left picture in Figure 3) reveals that the plant is indeed slightly oriented to the east, such that the304

results of the algorithm are plausible.305

In the left picture of Figure 3, it can also be observed that a part of the PV plant is shaded in the306

morning. The production deficit resulting from the shading may explain the higher dispersion of the scatter307

points in the two right plots from Figure 5 for an effective irradiation between 0 and 600W/m2.308

A larger discrepancy is found between module orientations given by the plant operator (-63◦E; 20.5◦)309

and those found by the algorithm (-68◦E; 22◦) in the second example (Wankdorf Stade de Suisse). The310

difference in tilt angle is relatively small (overestimation of +1.5◦) but the larger azimuth angle difference311

of 5◦ is not negligible. A control of the module orientation with Google Earth (right picture in Figure 3)312
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Figure 3: Aerial view of the Liestal left picture) and Wankdorf Stade de Suisse PV plants (right picture) Source: Google earth

confirmed that the azimuth angle provided by the plant operator (-63◦E) is correct. The module orientation313

estimated by the algorithm therefore seems to deviate from its actual value for this plant.314

Numerous intermediate measurements available from the Wankdorf PV plant (POA irradiation, air and315

module temperature, DC and AC power) allowed for the validation of the different steps of the PV power316

calculation in order to understand the reason for this difference. An analysis of these intermediate results317

revealed that this difference in the azimuth angle results from the assumption made for modelling the318

module temperature. Indeed, the Ross model was chosen, in which the difference between the module and319

air temperature is assumed to be proportional to the POA irradiation. This implies that a single module320

temperature corresponds to each value pair (POA irradiation and air temperature). The analysis of the321

intermediary measurements showed that the characteristics of the module temperature do not fully satisfy322

this simplifying assumption.323

To highlight the behaviour of the module temperature responsible for the deviation of the estimated324

azimuth angle from its actual value, differences between measured module and air temperature are displayed325

as a function of the measured POA irradiation in Figure 4. Since a dependence of the scatter points with326

the time of the day was identified, scatter points have been coloured according to the solar azimuth angle.327

It can be observed in Figure 4 that for a given POA irradiation the difference between the module and air328

temperature is lower in the morning than in the afternoon. For example, for a POA irradiation of 400W/m2,329

a temperature difference of 10◦C is observed at a solar azimuth of 120◦, while it increases to 20◦C as the solar330

azimuth is 240◦. Under the same external conditions (air temperature and POA irradiation), a difference331

depending on the solar azimuth reaching up to 10◦C can thus be observed, which is inconsistent with the332

simplifying assumption made.333

The observed dependency of the module temperature on the solar azimuth (or the time of the day) can be334
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Figure 4: Dependence of the difference between the module and air temperature (ordinate) on the POA irradiation (abscissa)

and the solar azimuth angle (colour of the scatter points) for the Wankdorf PV plant.

easily explained by the fact that the PV modules are directly integrated on the roof of the Wankdorf stadium.335

The air behind the module is heated by the incoming irradiation in the course of the day, which heats the336

backside of the PV module so that the module temperature exhibits a dynamic behaviour influenced by the337

thermal inertia of the building. As the consideration of the thermal inertia of the module was not foreseen338

in the chosen model, the parameter estimation algorithm has balanced the resulting modelling error by339

overestimating the module azimuth angle.340

As previously mentioned, an explicit consideration of effects such as those illustrated in Figure 4 have341

been intentionally omitted in the chosen PV model (they would have required information of excessive detail342

on a PV plant). It is thus clear that a modelling error may occur for plants like Wankdorf where the validity343

of the simplifying assumption is limited. Given that the proposed algorithm estimates model parameters344

by maximizing the probability that a simulation matches the measurements, it is not surprising that a set345

of parameters different from the actual ones is found at Wankdorf. In a way, it can be considered that the346

difference between the estimated and actual parameters compensates for the weaknesses of the simplified347

PV model for this plant.348

Validation of the angular loss coefficients and power curve LUT349

As already mentioned, a direct validation of the angular loss coefficient and power curve LUT is not350

possible, as their actual values are not available from the description of the PV plant. Therefore, an indirect351

validation has been conducted, where it was verified that these parameters describe well the dependence352

between the effective irradiation, air temperature and power measurements.353
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Figure 5: Scatter plots of the normalized measured power (ordinate) as a function of the effective irradiation (abscissa) and

the estimated power curve (red line) – the colour of the scatter points represent the local point density.

In ??, scatter plots of the normalized measured power as a function of the effective irradiation can be354

found for the four algorithm runs. Power measurements were corrected for their dependency on the air355

temperature to facilitate the visualisation of the data. For this purpose, the linear dependency assessed356

during the construction of the look-up table (see previous section) has been used to evaluate AC-power357

values corresponding to an air temperature of 25◦C. The colour of the points represents the local density of358

the scatter points. A light blue to blue point occurs rarely, while a red point is very frequent. The power359

curves corresponding to an air temperature of 25◦C, evaluated by the parameter estimation algorithm, are360

displayed in each scatter plot by a red curve.361

The scatter plot corresponding to the estimation of the model parameters of the Wankdorf plant using362

local meteorological measurements is displayed in the upper left picture in Figure 5. A line of scatter points363

with a high density (light blue to red dots) starting from the origin (0W/m2; 0kW/kWp) and ending at364

(1000W/m2;0.7kW/kWp) can be observed in this figure, which corresponds to the power curve of the PV365
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plant. A horizontal line of scatter points with a high density can also be observed in this scatter plot. These366

points result from a time period where values delivered by the data logger were constant (intentionally not367

excluded from the dataset). It is interesting to note that these points did not seem to affect the algorithm,368

which was expected, given the chosen cost function. The red line represents power curve values obtained369

from the algorithm. The red line matches very well to the line of scatter points of high density. In this first370

example, the module orientation and optical loss coefficient seem to be correctly estimated, as the scatter371

plot contains a continuous line with a high density of points. The LUT evaluated by the algorithm seems also372

very plausible because the estimated power curve matches well for regions of high scatter point density. In373

this first example, the results of the algorithm are very plausible and the algorithm performance appears to374

be insensitive to measurement errors. The same conclusion as that previously described can be drawn from375

the observation of the scatter plot corresponding to the estimation of the parameters of the Wankdorf plant376

using remote data (lower left picture in ??). More noise than in the previous plot can however be observed377

here, which results from the uncertainty of the satellite-derived irradiation and the Cosmo-DE temperature.378

The power curve obtained with remote data is very similar to that resulting from local meteorological379

measurements. Lower values can however still be observed for values of the effective irradiation ranging380

from 0 to 400W/m2. This difference may be explained by the difference in the angular loss coefficient381

between the two runs, or by a bias in the satellite-derived irradiation. Despite these minor differences, it is382

interesting to note that similar results are obtained with the algorithm when local measurements or remote383

meteorological data are used.384

The dispersion of scatter points corresponding to the parameter estimation of the Liestal PV plants385

from local meteorological measurements (upper right picture in Figure 5) is larger than that observed at386

Wankdorf (upper left picture in Figure 5). A visual inspection of the intermediate measurements available387

showed that a module shading occurring in the morning at low solar elevation (already observed in Figure 3)388

is responsible for this spread. The red line matches well with scatter points of high density. However, it389

is very likely that these points are affected by the shading and that the estimated power curve is lower390

than the actual one. The same effects can be observed in the scatter plot corresponding to the parameter391

estimation of the Liestal PV plants from remote data (lower right picture). In these last two examples, it is392

interesting to note that correct module orientation angles were found despite the effect of the local shading393

on the measurements.394

5. Discussion and Conclusion395

An algorithm has been developed that derives the parameters of a physical model from historical PV396

power measurements. For this purpose, a simple PV model fulfilling the requirements of the intended397

application has been chosen (??) and a parameter-estimation method dealing with usual issues occurring in398
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a PV plant (e.g. line outage, measurement errors) has been proposed in section 3.399

The operation and performance of the algorithm have been illustrated for two PV plants in section 4.400

Outputs of the algorithm were found to be plausible and in good agreement with the information available401

on the PV plants. It was found that the parameters estimated with the algorithm may deviate from their402

actual values when, due to modelling error, they result in better simulation results. In this sense, the output403

of the algorithm should be seen as a set of parameters that lead to the best simulation and not necessarily404

as the actual characteristics of the PV plant. Nevertheless, a physical interpretation of the algorithm output405

is possible albeit with some precaution.406

With the chosen cost function, the algorithm was shown to be little sensitive to outliers resulting from407

measurement errors or power line outages, which constitutes an advantage in comparison to statistical408

methods. The performance of the proposed method were found to be limited when PV module are shaded.409

In that case, for the considered examples, the module orientation was correctly assessed but the power curve410

was underestimated for power values affected by the shading. An explicit consideration of this issue could411

improve the proposed approach in the future.412

The algorithm has been tested with several hundred PV plants. These have shown that at least six413

months of power measurements are necessary for an accurate estimation of the module tilt angle. When414

less than six month measurement is available and should the module orientation angles be available from415

plant information, it is possible to only assess the optical loss coefficient and the power curve of the plant by416

setting orientation angles to their known value. With regards to this, the proposed method is much more417

flexible than traditional statistical or physical approaches. It has also been shown that its performance is418

limited in some situations. For example, it often occurs that a power production time series corresponds to419

the aggregated production of modules with different orientations. The algorithm performs poorly in such420

cases, since it is based on the assumption that only a single orientation exists for a PV plant. A simulation421

error was also observed to result from the assumption that soiling losses are constant with time.422

The parameter assessment algorithm described in this paper is German patent pending (Saint-Drenan423

and Bofinger, 2012).424
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Panel (1):470

The location of the PV plant is displayed on a map by a square whose colour corresponds to the maximum471

value of the cost function evaluated by the algorithm at this location. The abscissa is the longitude and the472

ordinate the latitude.473

If the exact location of the PV plant is known, this map is trivial. Should the exact location of the plant474

not be known but rather for example only the postal code, an estimation of the coordinates of the PV plant is475

represented in this map. This is achieved by selecting all points where meteorological information is available476

in a given area (for example all pixels of the satellite) and assessing the pixel with the highest value of the477

cost function, which should serve as an approximation of the location of the PV plant.478

Panels (2),(3):479

An overview of the search of the maximum value of the cost function in the space formed by the three480

unknown parameters is given in these two plots. With the cost function having been assessed for all values481

in the three-dimensional space formed by the unknown parameters, the result of the optimization is a four-482

dimensional array that requires simplification for a visualisation of the results.483

In panel (2), the maximum value of the cost function obtained for each value of the module orientation484

is displayed in colour as a function of the azimuth angle (abscissa) and tilt angle (ordinate). A blue square485

represents a small value of the cost function and a red pixel a high value of the cost function (no colour scale486

is given). The module orientation corresponding to the maximum value of the cost function is displayed by a487

white cross and the module orientation provided by the meta-information is represented by a white diamond.488

In panel (3) the maximum value of the cost function obtained for each value of the angular loss coefficient489

(ordinate) is represented as a function of the angular loss coefficient (abscissa). The red cross represents490

the optimal angular loss coefficient.491

Panels (4):492

In this table, the available meta-information on the PV plant and the results of the parameter estimation493

are summarized. Common statistical measures of the simulation error obtained with the estimated parameters494

and the used meteorological data are also indicated.495

Panels (5),(6):496

In panel (5), a scatter plot of the power measurements corrected for the temperature effect at 25◦C497

(ordinate) as a function of the effective irradiation (abscissa) is displayed. The colour of the scatter points498

represents the local scatter point density. A blue point corresponds to a point with a low local density and a499

red point to a high local density. The power curve estimated at 25◦C is superimposed using a black dashed500

line.501

In panel (6), the effect of the air temperature (x-axis) on the PV power (ordinate) is illustrated for four502

values of the effective irradiation. The different values of the effective irradiation are recognizable by the503

colour of the scatter points (very light blue, light blue, blue and green points), which correspond to effective504
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irradiation values of 300, 500, 700 and 900 W/m2, respectively. The red dashed lines are the values of the505

LUT corresponding to the different effective irradiations.506

Panels (7):507

The measured power values (colour of the scatter points) are displayed as a function of the solar azimuth508

(abscissa) and elevation angles (ordinate). White-to-blue points correspond to small power values (0 to 0.15509

kW/kWp), while red points represent large power values (0.6 to 0.8 kW/kWp). Isolines of the incidence510

angles resulting from the estimated module orientation are shown (90, 60, 30 and 0◦). Under clear-sky511

conditions, with the maximum power being reached at small incidence angles, a correspondence should be512

observable between the scatter points and the isolines of the incidence angles. Thus, the comparison of the513

two allows for verification of the estimated module orientation.514

Panels (8):515

The differences between the measurements and the power calculated with the estimated parameters (colour516

of the scatter points) are displayed as a function of the solar azimuth (abscissa) and elevation angles (or-517

dinate). A light green point corresponds to a simulation error close to zero while blue points (red points)518

represent a simulated power 0.025 kW/kWp smaller (larger) than the measured power.519

As in the previous plot, sun positions corresponding to incidence angles of 90, 60, 30 and 0◦ are displayed520

by three black lines and a black circle, respectively. This representation can be useful for identifying local521

shading effects on the power measurements.522

Panels (9):523

Time series of the simulation and measurements are compared for the entire training period. The mea-524

surements are shown by the blue line. To improve the readability of this graphic all simulated values were not525

displayed, but instead only the daily maximum of the simulated power. Additionally, the maximum daily sim-526

ulated value that would have been reached under a clear-sky situation is represented by the yellow line. These527

two values of the simulation allow for the quick verification of the yearly shape of the measurements being528

well described by the simulation. These various outputs allow for verification that the seasonal variation of529

the PV power is described well by the estimated parameters.530

Panels (10):531

With the focus of panel (9) being on the yearly behaviour of the power data, the daily behaviour is532

represented in panel (10). For a better visibility, only clear-sky days are displayed here. Power measurements533

are displayed as a function of the solar azimuth instead of as a function of time, in order to avoid the effect534

of the yearly variation of the solar noon.535

The power measurements are displayed for all selected clear-sky days by a light grey line. To avoid clutter,536

simulated power values are only displayed for 5 days chosen arbitrarily from amongst the set of clear-sky537

days. For these example days the measurements are displayed by a bold black line and the simulation by a538

red line.539
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