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ABSTRACT

Data sharing is important in the medical domain. Sharing data al-
lows large-scale analysis with many data sources to provide more
accurate results (especially in the case of rare diseases with small
local datasets). Cloud federations consist in a major progress in
sharing medical data stored within different cloud platforms, such
as Amazon, Microsoft, Google Cloud, etc. It also enables to ac-
cess distributed data of mobile patients. The pay-as-you-go model
in cloud federations raises an important issue in terms of Multi-
Objective Query Processing (MOQP) to find a Query Execution
Plan according to users preferences, such as response time, money,
quality, etc. However, optimizing a query in a cloud federation is
complex with increasing heterogeneity and additional variance,
especially due to a wide range of communications and pricing
models. Indeed, in such a context, it is difficult to provide accurate
estimation to make relevant decision. To address this problem, we
present Dynamic Regression Algorithm (DREAM), which can
provide accurate estimation in a cloud federation with limited
historical data. DREAM focuses on reducing the size of historical
data while maintaining the estimation accuracy. The proposed al-
gorithm is integrated in Intelligent Resource Scheduler, a solution
for heterogeneous databases, to solve MOQP in cloud federations
and validate with preliminary experiments on a decision support
benchmark (TPC-H benchmark).

1 INTRODUCTION

Medical data sharing is full of promises. It allows large-scale med-
ical data analysis to diagnose diseases more accurately. To reach
this goal, the distributed clinics need to optimize queries on shared
medical data with data sources in a cloud federation. For instance,
in health-care, information of a given patient may be owned by
different hospitals that may use various providers. Pay-as-you-go
models in cloud federations and elasticity thus raise an important
issue in terms of Multi-Objective Query Processing (MOQP) to
find a Query Execution Plan (QEP) according to users preferences,
such as time, money, quality, etc. However, optimizing queries in
a cloud federation raises issues of heterogeneity and variability
of cloud environment, such as wide-range communications and
pricing models.

In variable environment like a cloud federation with various
database systems, we should build a model to estimate the cost
values for the MOQP. A cloud federation may rely on various
hardware and systems. In addition, it also depends on the variety
of physical machines, load evolution and wide-range communica-
tions. As a consequence, estimation is complex with the variability
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of environment. In this context, a challenging problem is how to
estimate accurate values for MOQP without precise knowledge of
execution environment in a cloud federation consisting of different
sites.

Cost modeling can be classified into two classes: without
[23, 26, 34] and with machine learning algorithms [11]. How-
ever, in a cloud federation with variability and different systems,
cost functions may be quite complex. In the first class, cost mod-
els introduced to build optimal group of queries [23] are limited
to MapReduce [8]. Besides, PostgreSQL cost model [34] aims
to predict query execution time for this specific relational Data
Base Management system. Moreover, OptEx [26] provides esti-
mated job completion times for Spark [28] with respect to the
size of the input dataset, the number of iterations, the number of
nodes composing the underlying cloud. However, these papers
only mention the estimation of execution time for a job, not for
other metrics, such as monetary cost. Meanwhile, various machine
learning techniques are applied to estimate execution time in re-
cent researches [1, 15, 30, 35]. They predict the execution time
by many machine learning algorithms. They treated the database
system as a black box and try to learn a query running time pre-
diction model using the total information for training and testing
in the model building process. It may lead to the use of expired
information. In addition, most of these solutions solve the opti-
mization problem with a scalar cost value and do not consider
multi-objective problems.

In this paper, we introduce a medical system on a cloud feder-
ation called Medical Data Management System (MIDAS). It is
based on the Intelligent Resource Scheduler (IReS) [11], an open
source platform for complex analytics workflows executed over
multi-engine environments. In particular, we focus on Dynamic
Regression Algorithm (DREAM) to provide accurate estimation
with low computational cost. DREAM is then implemented and
validated with preliminary experiments on a decision support
benchmark (TPC-H benchmark [31]).

The remaining of this paper is organized as follows. Section 2
presents the research background. DREAM is presented in Sec-
tion 3, while Section 4 presents experiments to validate DREAM.
Finally, Section 5 concludes this paper and lists some perspectives.

2 BACKGROUND

Our work is a part of the MIDAS project, which aims to provide a
data management system for cloud federation. In this section, we
introduce an architecture of the system, concepts and techniques,
allowing us to implement the proposed medical data management
on a cloud federation.

First of all, an overview of MIDAS and the benefits of cloud
federation where our system is built on are introduced. After that,
an open source platform, which helps our system managing and
executing workflows over multi-engine environments is described.
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The concept of Pareto plan set related to MOQP in MIDAS is then
defined. In addition, Multiple Linear Regression is also introduced
as the basic foundation of our proposed algorithm for MOQP.

2.1 MIDAS

MIDAS is a medical data management system for cloud federa-
tion. The proposal aims to provide query processing strategies to
integrate existing information systems (with their associated cloud
provider and data management system) for clinics and hospitals.
Figure 1 presents an overview of the system. Integrating the sys-
tem within a cloud federation allows to choose the best strategy
for MOQP. The different cloud resource pools allow the system
to run in the most appropriate infrastructure environments. The
system can optimize workflows between different data sources
on different clouds, such as Amazon Web Services [3], Microsoft
Azure [4] and Google Cloud Platform [16]. The proposed system
is developed based on the Intelligent Resource Scheduler (IReS)
for complex analytics workflows executed over multi-engine envi-
ronments on a cloud federation.

2.2 Cloud federation

A cloud federation enables to interconnect different cloud com-
puting environments. Cloud computing [2] allows to access on
demand and configurable resources, which can be quickly made
available with minimal maintenance. According to the pay-as-
you-go pricing model, customers only pay for resources (storage
and computing) that they use. Cloud Service Providers (CSP)
supply a pool of resources, development platforms and services.
There are many CSPs on the market, such as Amazon, Google
and Microsoft, etc., with different services and pricing models.
For example, Table 1 shows the pricing of instances in two cloud
providers. The price of Amazon instances are lower than the price
of Microsoft instances, but the price of Amazon is without storage.
Hence, depending on the demand of a query, the monetary cost is
lower or higher at a specific provider.

In medical domain, cloud federation may lead to query data on
different clouds. For example, mobile patient data can be analyzed
with many distributed sources of data to provide more accurate
results. Data management in a cloud federation is thus a critical

issue in terms of multi-engine environment and Multi-Objective
Query Processing.

2.3 Pareto plan set

Let a query g be an information request from databases, presented
by a set Q of tables. A Query Execution Plan (QEP) includes
an ordered set of operators (select, project, join, etc.). The set
of QEPs p of g is denoted by symbol . The set of operators is
denoted by O. A plan p can be divided into two sub-plans p; and
p2 if p is the result of function Combine(py, pz, 0), where o € O.

The execution cost of a QEP depends on parameters, which
values are not known at the optimization time. A vector x denotes
parameters value and the parameter space X is the set of all
possible parameter vectors x. In MOQP, N is denoted as the set of
n cost metrics. We can compare QEPs according to n cost metrics
which are processed with respect to the parameter vector x and
cost functions ¢"(p, x). Let denote C as the set of cost function c.

Let p1, p2 € P, p1 dominates p; if the cost values according to
each cost metric of plan p; is less than or equal to the correspond-
ing values of plan p; in all the space of parameter X. That is to
say:

C(p1,X) < C(p2,X) | Yn € N,¥x € X : ¢"(p1, x) < " (p2, x).
(1)
The function Dom(py, p2) € X yields the parameter space region
where p; dominates ps [32]:

Dom(Pl,Pz) = {X €eX | VneN: Cn(Pl,x) < Cn(PZ,x)}~ (2)

Assume that in the areax € A, A C X, p; dominates pz, C(p1, A) <
C(p2, A), Dom(p1,p2) = A C X. p; strictly dominates p,if all
values for the cost functions of p; are less than the corresponding
values for pz [32], i.e.

StriDom(p1,p2) = {x € X | ¥n € N : " (p1,x) < " (p2, %)}
(3)
A Pareto region of a plan is a space of parameters where there is
no alternative plan has lower cost than it [32]:

PaReg(p) = X \ ( U StriDom(p*, p)). )
preEP

24 IReS

Intelligent Multi-Engine Resource Scheduler (IReS) [11] is an
open source platform for managing, executing and monitoring
complex analytics workflows. IReS provides a method of opti-
mizing cost-based workflows and customizable resource manage-
ment of diverse execution and various storage engines. Interface
is the first module which is designed to receive information on
data and operators, as shown in Figure 1. The second module
is Modelling, as shown in Figure 1, is used to predict the exe-
cution time by a model chosen by comparing machine learning
algorithms. For example, Least squared regression [25], Bagging
predictors [6], Multilayer Perceptron in WEKA framework [33]
are used to build the cost model in Modelling module. The mod-
ule tests many algorithms and the best model with the smallest
error is selected. It guarantees the predicted values as the best
one for estimating process. Next module, Multi-Objective Opti-
mizer, optimizes MOQP and generates a Pareto QEP set. In Multi-
Objective problem, the objectives are the cost functions user con-
cerned, such as the execution time, monetary, intermediate data,
etc. Multi-Objective Optimization algorithms can be applied to the
Multi-Objective Optimizer. For instance, the algorithms based
on Pareto dominance techniques [7, 9, 10, 19, 21, 22, 29, 36, 37]



Table 1: Example of instances pricing.

Provider Machine  vCPU Memory (GiB) Storage (GiB) Price
Amazon  al.medium 1 2 EBS-Only $0.0049/hour
al.large 2 4 EBS-Only $0.0098/hour
al.xlarge 4 8 EBS-Only  $0.0197/hour
al.2xlarge 8 16 EBS-Only  $0.0394/hour
al.4xlarge 16 32 EBS-Only $0.0788/hour
Microsoft B1S 1 1 2 $0.011/hour
B1IMS 1 2 4 $0.021/hour
B2S 2 4 8 $0.042/hour
B2MS 2 8 16 $0.084/hour
B4MS 4 16 32 $0.166/hour
B8MS 8 32 64 $0.333/hour
are solutions for Multi-objective Optimization problems. Finally, Let denote
the system selects the best QEP based on user query policy and 1 x11  x21 xL1
Pareto set. The final query plan is run on multiple engines, as 1 x12 X2 XL2
shown in Figure 1. A= , (8)
2.5 Multiple Linear Regression 1 XM Xom XLM
A cost function of Multiple Linear Regression (MLR) model [27] ¢y
is following defined: e
c=ﬁ0+ﬁ1x1 +...+ﬁLxL+6, (5) C= ’ (9)
where f;,1 =0, ..., L, are unknown coefficients, x;,I = 1, ..., L, are lcm
the independent variables, e.g., size of data, computer configura- - ﬁ
tion, etc., ¢ is cost function values and € is random error following 0
normal distribution (0, o) with zero mean and variance o. The B= b (10)
fitted equation is defined by: |
¢ = Po+ Pixt + ..+ Prxr. (6) 1AL
To minimize the Sum Square Error (SSE), defined by:
EXAMPLE 2.1. A query Q could be expressed as follows: M
SELECT p.PatientSex, 1i.GeneralNames SSE = Z(Cm —ém)z, (11)
FROM Patient p, GenerallInfo i m=1
WHERE p.UID = i.UID the solution for B is retrieved by:
B=ATaATC. (12)

where Patient table is stored in cloud A and uses Hive database en-
gine [18], while Generallnfo table is in cloud B with PostgreSQL
database engine [24]. This scenario leads to concern two metrics
of monetary cost and execution time cost. We can use the cost
functions which depend on the size of tables of Patient and Gener-
allnfo. Besides, the configuration and pricing of virtual machines
cloud A and B are different. Hence, the cost functions depend on
the size of tables and the number of virtual machines in cloud A
and B.

" = Bro + Prixpa + ProxGe + Prsxnodea + PraXnoden

eme = Bmo + Bmixpa + Bm2XGe + Bm3XnodeA + PmaXnodeB

where ¢11 ¢MO gre execution time and monetary cost function;
Xpa,XGe are the size of Patient and Generallnfo tables, respec-
tively, and xp,o4eAs XnodeB are the number of virtual machines
created to run query Q.

There are M historical data, each of them associates with a re-
sponse cp,, which can be predicted by a fitted value ¢, calculated
from corresponding x;,,, as follows:

@)

Cm = Po+ prxim+ ... + Prxpmsm=1,.., M.

2.6

Our proposed method is integrated into Modelling module to pre-
dict the cost values with low computational cost in MOQP of a
cloud environment. However, the machine learning algorithms
in Modelling module of IReS need entire of training datasets. It
may lead to use expired information. Hence, the proposal algo-
rithm aims to improve the accuracy of estimated values with low
computational cost.

In addition, MOQP could be solved by Multi-objective Opti-
mization algorithms or the Weighted Sum Model (WSM) [17].
However, Multi-objective Optimization algorithms may be se-
lected thanks to their advantages when comparing with WSM.
The optimal solution of WSM could be not acceptable, because
of an inappropriate setting of the coefficients [13]. Furthermore,
the research in [20] proves that a small change in weights may
result in significant changes in the objective vectors and signif-
icantly different weights may produce nearly similar objective
vectors. Moreover, if WSM changes, a new optimization process
will be required. Hence, our system applies a Multi-objective Op-
timization algorithm to the Multi-Objective Optimizer to find a
Pareto-optimal solution.

Motivation



In conclusion, our solution aims to improve the accuracy of cost
value prediction with low computational cost and to solve MOQP
by Multi-objective Optimization algorithm in a cloud federation
environment. To provide accurate estimation while reducing the
number of previous measures, our algorithm is proposed based on
Multiple Linear Regression.

3 DYNAMIC REGRESSION ALGORITHM

Most of cost models [12, 23, 34] depend on the size of data.
Hence, our cost functions are functions of the size of data. In
particular, cost function and fitted value of Multiple Linear Re-
gression model are previously defined in Section 2.5. The bigger
M for sets {cm, x7p, } is, the more accurate MLR model usually is.
However, the computers is slowing down when M is too big.

Furthermore, the target of Multi-Objective Query Processing is
the Multi-Objective Optimization Problem [36], which is defined
by:

minimize(F(x) = (fi(x), fo(x).... fic(x)7). (13)

where x = (x1, ..., xL)T € Q ¢ RL is an L-dimensional vector of
decision variables, Q is the decision (variable) space and F is the
objective vector function, which contains K real value functions.

In general, there is no point in Q that minimizes all the objec-
tives together. Pareto optimality is defined by trade-offs among
the objectives. If there is no point x € Q such that F(x) dominates
F(x*), x* € Q, x* is called Pareto optimal and F(x*) is called a
Pareto optimal vector. Set of all Pareto optimal points is the Pareto
set. A Pareto front is a set of all Pareto optimal objective vectors.
Generating the Pareto-optimal front can be computationally ex-
pensive [5]. In cloud environment, the number of equivalent query
execution plans is multiplied.

EXAMPLE 3.1. Assuming that a query is processed on Amazon
EC2. If the pool of resources includes 70 vCPU and 260GB of
memory, the number of different configurations to execute this
query is thus 70 x 260 = 18,200. Hence, the system can generate
18,200 equivalent QEPs from a give execution plan.

Example 3.1 shows that a query execution plan can generate
multiple equivalent QEPs in cloud environment. The smaller M for
sets {cm, X1, } 18, the faster speed for the estimation cost process
of Multi-Objective Query Processing for a QEP is. In the system
of computationally expensiveness in cloud environment as in
Example 3.1, a small reduction of computation for an equivalent
QEP estimation will become significant for a large number of
equivalent QEPs estimation.

The most important idea is to estimate MLR quality by using
the coefficient of determination. The coefficient of determination
[27] is defined by:

R? =1 - SSE/SST, (14)

where SSE is the sum of squared errors and SST represents the
amount of total variation corresponding to the predictor variable X.
Hence, R? shows the proportion of variation in cost given by the
Multiple Linear Regression model of variable X. For example, the
model gives R? = 0.75 of time response cost, it can be concluded
that 3/4 of the variation in time response values can be explained
by the linear relationship between the input variables and time
response cost. Table 2 presents an example of MLR with different
number of measures. The smallest dataset is M = L + 2 = 4
[27], where M is the size of previous data and L is the number
of variables in Equation (5). In general, R? increases in parallel
with M. In particular, R? should be greater than 0.8 to provide a
sufficient quality of service level. As a consequence, M should

Table 2: Using MLR in different size of dataset.

Cost X1 X2 M R?
20.640 0.4916 0.2977
15.557 0.6313 0.0482

20.971 0.9481 0.8232

24.878 0.4855 2.7056 4 0.7571
23.274 0.0125 27268 5 0.7705
30.216 09029 2.6456 6 0.8371
29978 0.7233 3.0640 7 0.8788
31.702 0.8749 4.2847 8 0.8876
20.860 0.3354 2.1082 9 0.8751
32.836  0.8521 4.8217 10 0.8945

be greater than 5 to provide enough accuracy. Hence, when the
system requires the minimum values of R? is equal to 0.8, M > 6
is not recommended. In general, R? still rises up when M goes
up. Therefore, we need to determine the model which is sufficient
suitable by the coefficient of determination.

[ Training set P»[ DREAM ]—»[ Ne"";:'"'"g

coefficient of

%[ Modelling }

determination

Figure 2: DREAM module.

Our motivation is to provide accurate estimation while reducing
the number of previous measures based on R?. We thus propose
DREAM as a solution for cloud federation and their inherent
variance, as shown in Table 2. DREAM uses the training set to
test the size of new training dataset. It depends on the predefined
coefficient of determination. The new training set is generated
in oder to have the updated value and avoid using the expired
information. With the new training set, Modelling uses less data
in building model process than the original approach.

Cost modeling without machine learning [23, 26, 34] often
uses the size of data to estimate the execution time for the specific
system. Besides, the machine learning approach [11, 33] can use
any information to estimate the cost value. Hence, our algorithm
uses the size of data as variables of DREAM. In (6), ¢ is the cost
value, which needs to be estimated in MOQP, and x1, x2, . . . are
the information of system, such as size of input data, the number
of nodes, the type of virtual machines. If R* > Rf equire’ where

f equires is predefined by users, the model is reliable. In contrast,
it is necessary to increase the number of set value. Algorithm 1
shows a scheme as an example of increasing value set: m = m + 1.

In this paper, we focus on the accuracy of execution time es-
timation with the low computational cost in MOQP. The origi-
nal optimization approach in IReS uses Weighted Sum Model
[17] with user policy to find the best candidate. However, Multi-
objective Optimization algorithms have more advantages than
WSM [13, 20]. Hence, after having a set of predicted cost func-
tion values for each query plan, a Multi-objective Optimization
algorithm, such as Non-dominated Sorting Genetic Algorithm II
[10] is applied to determine a Pareto plan set. At the final step,
the weight sum model S and the constraint B associated with the



Algorithm 1 Calculate the predict value of multi-cost function

1: function ESTIMATECOSTVALUE(Rfequire, X, Mmax)
2 forn=1to N do

3 RZ « 0 //with all cost function

4 end for

5: m=L+2/latleastm=L+2

6 while (any Rf, < Ri_require) and m < Myqx do
7 for ¢,(p) C én(p) do

8 R? =1-SSE/SST

9: Cn = Pno + Pr1xi + ... + Purxr
10: end for
11: m=m+1
12: end while
13: return ¢N(p)

14: end function
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Figure 3: Comparing two MOQP approaches

Algorithm 2 Select the best query plan in P

function BESTINPARETO(P, S, B)

1:

2 Pg—pePIVn<|B|:cu(p) < Bp

3 if Pg # 0 then

4 return p € Pg|C(p) = min(WeightSum(Pg, S))
5: else

6 return p € P|C(p) = min(WeightSum(P, S))
7 end if

8: end function

user policy are used to return the best QEP for the given query
[17]. In particular, the most meaningful plan will be selected by
comparing function values with weight parameters between ¢,
[17] at the final step, as shown in Algorithm 2. Figure 3 shows the
different between two MOQP approaches.

Our algorithms are developed based on the MLR described
above using x; for size of data and ¢; for the metric cost, such as
the execution time, energy consumption, etc.

Table 3: Comparison of mean relative error with 100MiB
TPC-H dataset.

Query BMLy BML,y BML3y BML DREAM

12 0.265 0.459 0220 0485 | 0.146
13 0.434 0.517 0.381 0.358 | 0.258
14 0.373 0.340 0335 0358 [ 0.319
17 0.404 0.396 0.267  0.965 [ 0.119

4 EVALUATION

DREAM has been implemented on top of IReS platform. It has
been validated with experiments.

4.1 Implementation

Our experiments are executed on a private cloud [14] with a
cluster of three machines. Each node has four 2.4 GHz CPU, 80
GiB Disk, 8 GiB memory and runs 64-bit platform Linux Ubuntu
16.04.2 LTS. The system uses Hadoop 2.7.3 [24], Hive 2.1.1 [18],
PostgreSQL 9.5.14 [24], Spark 2.2.0 [28] and Java OpenJDK
Runtime Environment 1.8.0. IReS platform is used to manage
data in multiple database engine and deploy the algorithms.

4.2 Experiments

TPC-H benchmark [31] with two datasets of 100MB and 1GB is
used to have experiments with DREAM. Experiments with TPC-H
benchmark are executed in a multi-engine environment consisting
of Hive[ 18] and PostgreSQL[24] deployed on a private cloud [14].
In TPC-H benchmark, the queries related to two tables are 12,
13, 14 and 17. These queries with two tables in two different
databases, such as Hive and PostgreSQL, are studied.

4.3 Results

To estimate the quality of DREAM in comparison with other
algorithms, Mean Relative Error (MRE), a metric used in [1] is
used and described as below:

1 ¢i —cil
— 15
M; — (15)

where M is the number of testing queries, ¢; and c; are the predict
and actual execution time of testing queries, respectively. IReS
platform uses multiple machine learning algorithms in their model,
such as Least squared regression, Bagging predictors, Multilayer
Perceptron.

In IReS model building process, IReS tests many algorithms
and the best model with the smallest error is selected. It guar-
antees the predicted values as the best one for estimating pro-
cess. DREAM is compared to the Best Machine Learning model
(BML) in IReS platform with many observation window (N, 2N,
3N and no limit of history data). The smallest size of a window,
N = L+2[27], where L is the number of variables, is the minimum
data set DREAM requires. As shown in Tables 3 and 4, MRE
of DREAM are the smallest values between various observation
windows. In our experiments, the size of historical data, which
DREAM uses, are very small, around N.

1l
—

S CONCLUSION

This paper is about medical data management in cloud federa-
tion. It introduces Dynamic Regression Algorithm (DREAM) as a
part of MIDAS and on top of IReS, an open source platform for



Table 4: Comparison of mean relative error with 1GiB TPC-
H dataset.

Query BMLy BML,y BML;y BML DREAM
12 0349 0854 0341 0.480 | 0.335
13 0396 0843 0457 0487 | 0.349
14 0468 0664 0539 079 | 0318
17 0620 0611  0.681 0970 = 0.536

complex analytics work-flows executed over multi-engine envi-
ronments. DREAM aims to address variance in a cloud federation
and to provide accurate estimation for MOQP. Preliminary results
with DREAM and TPC-H benchmark are quite promising with
respect to existing solutions.

In the future, we plan to validate our proposal with more cloud
providers (and their associated pricing model and services) and
data management systems. We will also define new strategies to
choose QEPs in a Pareto Set.
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