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ABSTRACT
Many of the existing cloud database query optimization algo-
rithms target reducing the monetary cost paid to cloud service
providers in addition to query response time. These query opti-
mization algorithms rely on an accurate cost estimation so that
the optimal query execution plan (QEP) is selected. The cloud
environment is dynamic, meaning the hardware configuration,
data usage, and workload allocations are continuously changing.
These dynamic changes make an accurate query cost estimation
difficult to obtain. Concurrently, the query execution plan must
be adjusted automatically to address these changes. In order to
optimize the QEP with a more accurate cost estimation, the query
needs to be optimized multiple times during execution. On top
of this, the most updated estimation should be used for each
optimization. However, issues arise when deciding to pause the
execution for minimum overhead. In this paper, we present our
vision of a method that uses machine learning techniques to
predict the best timings for optimization during execution.
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1 INTRODUCTION
Many of the existing cloud database query optimization algo-
rithms target reducing the monetary cost paid to cloud service
providers in addition to query response time. The time and mon-
etary costs needed to execute a query are estimated based on the
data statistics that the query optimizer has available when the
query optimization is performed. These statistics are often not
accurate, which may result in inaccurate estimates for the time
and monetary costs needed to execute the query [3, 12]. Thus,
the QEP generated before the query is executed may not be the
best one. One approach can be applied to solve this issue. Adap-
tively optimizing the QEP during the query execution to employ
more accurate statistics will yield better QEP selection, and thus
will improve query performance [3, 6] . QEP is not executed as
whole at one time but is divided and executed part by part. After
completion of one part of the QEP, data statistics are updated so
that the rest part of the QEP is re-optimized adopting the new
data statistics. The new QEP is expected to be changed as it either
contains different operators or is scheduled to be executed on
different machines. Such changes result in a different way of
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executing a QEP which brings different response time and mon-
etary cost. However, re-optimizing a QEP costs time overhead
which in turn produces extra monetary cost as well. To avoid
unnecessary re-optimization and decide whether or not a QEP
should be re-optimized is not an easy task. In the work [6], the
authors manually set check points between different operators of
a QEP. Re-optimizations at these check points are necessary but
still not accurate. The work [3] proposed a query optimization
method where the query is re-optimized multiple times during
its execution based on stages. Stages are formed automatically
by the query optimizer and operators that do not rely on the
completion of others are grouped together. Every time one stage
is finished, the query is re-optimized by force. We implemented
this algorithm in our previous work [11]. However, our experi-
mental studies show that after applying many re-optimizations,
the QEP remains the same compared to the original one. This is
because the stages are not aligned with the best timing to apply
the re-optimization. This wastes time as unnecessary optimiza-
tion increases overhead. In this paper, we provide our vision of a
method using machine learning techniques to predict whether a
QEP should be optimized or not during the query execution, so
that the overall overhead of re-optimization is further reduced
as unnecessary re-optimization is avoided more accurately.

The rest of the paper is organized as follows. Section 2 dis-
cusses the related works. Section 3 discusses the effects of query
re-optimization. Section 4 presents how to predict query re-
optimization by machine learning. Section 5 discusses the feature
selection and machine learning model selection issues according
to the status of our current work. Section 6 provides conclusion
and future work.

2 RELATEDWORK
There are several works [4–9] that study when a query should be
re-optimized. Some of them are interactive, which means human
input is required in the re-optimization process. [6] presents a
mid-query re-optimization algorithm. In this work, a few point-
ers are put over different locations of the QEP and whenever the
query operators before the pointers finish, the query will be re-
optimized. These locations are chosen based on a set of rules built
by the authors. The locations that satisfy these rules indicate that
re-optimization is worthwhile. For example, the re-optimization
will take place before a Join operator. [7] introduces an algo-
rithm for re-optimizing the schedule to run different queries.
In this work, the algorithm compares the distance between an
initial schedule and the ideal schedule which is defined by multi-
ple human defined rules. Whenever the distance exceeds some



threshold, the schedule is re-optimized. [4] also presents another
mid-query re-optimization algorithm where a statistic-collect op-
erator is introduced to be placed at key points and used to collect
the updated data statistics during the query execution. These
updated statistics are used to re-optimize the QEP itself and the
memory allocation to execute the query. The estimated execution
time after re-optimization is compared to the estimated execution
time before the same QEP is re-optimized. If the difference in exe-
cution time exceeds a manually set threshold, the re-optimization
is conducted. However, as presented in our previous work [11],
taking human input into the decision-making process greatly
increases time overhead and introduces a source of unreliable
accuracy. In [8], instead of using human input, reinforced learn-
ing is used for the optimizer to decide which physical operators
the optimizer should select (the optimizerâĂŹs actions) based on
the current data statistics (the optimizerâĂŹs states). But still,
inaccurate data statistics will result in sub-optimal selection of
physical operators. [9] presents a query re-optimization algo-
rithm to estimate the cost of the current query by looking at the
similar queries answered in the past. This method uses previous
known column statistics to predict unknown column statistics
by using the joint probability density function. However, in this
work, a matrix inversion is required to calculate the cost of the
unknown column statistics. Applying such an operation online
would cost a lot of time overhead. [5] presents an algorithm to
adaptively optimize the QEP on cloud databases. This work as-
sumes that users are willing to accept incomplete query results if
the cost is under usersâĂŹ budget. However, the optimization in
this work considers either time cost or monetary cost, not both.
All these existing works, while using query re-optimization to
improve query response time, are not concerned about monetary
costs at the same time or are not designed for cloud databases.

To fill the gaps in the existing works, the approach we envision
in this paper emphasizes on addressing a number of important
issues. First, the approach utilizes query re-optimization not only
for query response time but also monetary costs at the same
time for cloud databases. Second, to achieve a greater accuracy in
terms of the timing for re-optimization to occur and to do so au-
tonomously, the approach uses a machine learning model trained
by historical queries to predict when to do re-optimization in-
stead of manually deciding. Third, to reduce the time overhead,
the approach consists of the offline and online processes. The
offline process takes the majority of the time to build the ma-
chine learning model, while the online process is only applying
the model to do the prediction, which limits the time overhead.
Fourth, the approach always uses the actual data statistics so that
the optimizer is always able to select the correct QEP.

3 QUERY RE-OPTIMIZATIONS
In a traditional DBMS, queries are first converted to multiple
QEPs. Following this, all the QEPs are then evaluated by the query
optimizer to obtain the time costs. In some systems, additional
costs like monetary cost, network bandwidth, and hardware uti-
lization are also calculated. Finally, the optimizer chooses the
best QEP and sends it to the execution engine. However, unlike
traditional DBMS, we apply mid-query re-optimization (Figure
1). This means a query plan can be optimized for multiple times
during execution. In a traditional DBMS, the QEPs are optimized
by the cost estimation(s) which are evaluated based on data sta-
tistics such as the cardinality of a column, number of rows in a
table, etc. However, such data statistics are often not accurate

User

Optimizer

scheduler

Execution

All stages
finished?

Statistic
Updater

Query and User Constraints

Staged Optimized Operator Tree

One Stage of Operators

Runtime Information

No

Updated Statistics
and Constraints

Updated Op-
erator Tree

Estimation

Query Result

Yes

Figure 1: The query re-optimization procedure.

when the estimation is evaluated. Thus, the QEP generated may
not be the most efficient. Re-optimizing the QEP during query
execution to employ more accurate statistics will yield better
QEP selection, and thus will improve query performance. In
our previous work [10], we discover that query re-optimization
will enable the optimizer to select better physical operators to
execute the QEP and select better hardware configurations to
execute the QEP (such as the number of containers and the type
of containers). These optimizations are beneficial for improving
either the overall query execution time or the monetary cost or
both. Figure 2 shows the result of executing the query from our
previous work [10]. In the experiment query, there is a Join of
two subqueries. The data size of each subquery is unknown. We
want to see how the physical operator of this Join will change
depending on the data size of the subquery. So, we purposely
made the data size of the right side of the Join operator small
enough to fit in the cache. As a consequence, the Shuffle Join
operator will be changed to the Broadcast Join operator only
after re-optimization. Broadcast Join is executed around 40%
faster than Shuffle Join in our environment. The results show
the overall time cost using re-optimization has approximately
20% improvement on average over no re-optimization, while the
monetary costs of the two approaches were close, with only a 4%
difference. This increase of monetary cost is due to the fact that
the more powerful containers being selected are the containers
which charge more hourly.
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Figure 3: The procedure of collecting training data.

4 MACHINE LEARNING BASED QUERY
RE-OPTIMIZATION DECISION PROCESS

4.1 Overview
Though we find that re-optimization improves the query re-
sponse time, the re-optimization itself increases the overhead.
Besides that, not all the re-optimizations are effective for the QEP,
that is, some re-optimizations may yield no changes. These re-
optimizations are unnecessary and increase overhead. In order to
avoid this issue, we envision a method using a machine learning
model built on past data (training data) to predict whether or
not a future re-optimization would be useful. If the prediction
indicates that the re-optimization will have no effect on the QEP,
then the query will not be re-optimized.

4.2 Architecture
Figure 3 shows the architecture of how the training data is col-
lected. First, we collect the training data by running random
queries on our current system and observing the data statistics.
This way the prediction model can be applied to all queries. If re-
optimization is only for most costly/most representative queries,
then in this first step, the training data should be collected from

Figure 4: A QEP is divided into different stages after being
compiled from the query.

running only random but most costly/representative queries. Af-
ter a query is submitted, we record the current data statistics in
the system. These current statistics are called Statcurr. Then, the
query is sent to the optimizer and an optimal QEP is generated
by using the optimizer in a traditional DBMS. This QEP includes
the stage information and on which nodes these stages will be
executed. Figure 4 shows an example of a QEP generated by the
query optimizer for the following query:

SELECT Department , count (Name )
FROM STUDENT
GROUP BY Department
WHERE Grade <= 'C ' ;

In Figure 4, TS, SOR, FIL and AGG stand for TableScan, Sort, Filter
and Aggregate operators, respectively. The subscripts distinguish
the same operators that are executed in parallel on different
data. After that, Stage 1 is sent to the query execution engine.
During the execution, we update the data statistics using the
method mentioned in the work [3] and we call these updated
statistics Statupdate. Since these statistics are collected from the
actual running query, Statupdate is more accurate than Statcurr
which is obtained from the estimation. The difference between
the Statupdate and Statcurr, called Statdiff, is then used in the
machine learning model to predict whether the re-optimization
is effective. For example, the current selectivity and the updated
selectivity of column A are 0.5 and 0.1, respectively, then the
difference 0.4 is added as one feature of the training dataset. This
process is applied to all the features. The selected features are
shown in Table 1.

If the re-optimization is predicted to be effective, the QEP is
then re-optimized using the updated data statistics. Following
this, the next stage (Stage 2) is executed based on the new QEP.
The process is then repeated for the rest of the stages. In this
example, Stage 2 is possibly changed. At this point, Stage 2 after
the re-optimization is compared to the Stage 2 before the re-
optimization to observe any potential changes. We define that a
QEP is changed if one of the following three aspects occurs: 1)
changes in the physical operator types; 2) changes in the number
of containers; or 3) changes in the types of containers.



Figure 5: The procedure of applying the prediction model
to decide re-optimization.

A change in the physical operator types means that if there
exists any physical operator in the current QEP that is different
from the physical operators in the previous QEP, then the QEP
has changed. For example, in our previous experiment, the change
in the physical operator from Shuffle Join to Broadcast Join is
defined as a change in the physical operator types. This change
highly influences query execution time. Thus, by detecting such
changes in QEP after a re-optimization, this re-optimization is
probably effective, and the re-optimization will be applied if the
similar situation is encountered.

A change in the number or types of containers means the total
number of containers used to execute the current QEP is differ-
ent from that of the previous QEP. Such changes are also called
changes in the degree of parallelism. For example, the TableScan
containers are distributed into four containers before the re-
optimization and use three containers after the re-optimization.
This change highly influences the monetary cost of query execu-
tion. Thus, such re-optimization becomes useful if such changes
are detected. Similarly, a change in the types of containers means
the QEP after the re-optimization is executed on different types of
containers, either more powerful ones or weaker ones. Detecting
such changes may influence the monetary cost as well.

4.3 Feature Selection
The three changes discussed in Section 4.2 usually occur when-
ever the estimated data size has also changed. This is because the
optimizer uses these estimations to decide how to execute the
query and howmany containers should be used. Thus, in order to
tell whether the re-optimization is effective, we use data features
that are highly relevant to the changes in data size estimation.

Assume in the current DBMS, there exist the C={C1,C2,...,Cn }
columns in all the tables. The differences in selectivity (DIFF_SELECTIVITY ),
number of distinct values (DIFF_NVD) and histogram (DIFF_HISTOGRAM)
of each column are used as the data features in the training data
used for prediction as shown in Table 1, and the binary value
YES/NO is used as the predicted class, where YES means the re-
optimization is predicted to be useful and NO otherwise. Many
works show that the selectivity, number of distinct values and the
histogram influence the data size estimation [6, 12, 13]. Thus, the
differences in these three features result in changes to data size
estimation of intermediate results. Hence, they become relevant
in deciding the effectiveness of re-optimization

In our preliminary work to test our vision, we have collected
the training data from running 5000 random queries on a DBMS
for 24 hours and collected the data for the above features. Then

Table 1: List of Features and their types

DIFF_SELECTIVITY(C1)
DIFF_SELECTIVITY(C2)
DIFF_SELECTIVITY(Cn)
DIFF_NDV(C1)
DIFF_NDV(C2)
DIFF_NDV(Cn)
DIFF_HISTOGRAM(C1)
DIFF_HISTOGRAM(C2)
DIFF_HISTOGRAM(Cn)

a prediction model was trained using these data and applied
to a new query to predict whether or not the re-optimization
should be conducted after each stage of this query is executed.
Figure 5 illustrates how this model is applied during the query
execution. The query is first converted to a QEP and Stage 1 is
submitted for execution. The prediction model is used to check
whether or not the re-optimization should be conducted. Only
a âĂŸYESâĂŹ prediction will trigger re-optimization. By doing
this, the unnecessary re-optimization discussed previously is
eliminated.

5 DISCUSSION
5.1 Additional Feature Selection
Some additional features can also be added to the training model,
although the utility of new features may not be immediately
clear. For instance, we considered adding the total available CPU
usage to the feature list. However, the metric of the total available
CPU appears to not be relevant in predicting re-optimization.
For instance, take the statement âĂĲIf the total available CPU
is low, then the re-optimization will not be conducted.âĂİ The
answer to this statement is false as when we collect the training
data, re-optimizations are conducted anyway no matter how low
the available CPU usage is. Re-optimization is only influenced
by the estimation of data size. The CPU usage only determines
which containers should be assigned. Thus, this attribute is not
relevant.

5.2 Machine Learning Model Selection
We postulate that several machine learning techniques can be
applied to predict whether or not re-optimization should be con-
ducted. Pre-processing data to reduce the number of features
before processing with a machine learning model is necessary.
As in our model, the number of features is linearly related to the
accumulative number of columns in all tables. If there is a high
number of columns, there will be too many predictors. Principle
Component Analysis (PCA) can be a useful option to find out
what features are important.

Unsupervised learning such as clustering has been used in
query optimization [14]. In our case, clustering can be used to
determine if re-optimization is useful by identifying a specific
pattern of data statistics for the DBMS. There exist serval popular
clustering algorithms such as K-means and DBSCAN [1], which
are used on a situational basis. In our study, we think K-means is
suitable as the value of K is fixed. In order to predict whether or
not re-optimization should be conducted, we can set the K value
to two. Two clusters are formed, one is for the âĂĲYESâĂİ cases
and another one is for the âĂĲNOâĂİ cases. Similar data statistics
collected after re-optimizations are measured by the normalized



Figure 6: An Example of a decision tree showing that re-
optimization should take place

Euclidean distance function and are grouped together to form
these two clusters. When new data statistics arrive, they are mea-
sured to determine to which cluster they belong. If it belongs
to the âĂĲYESâĂİ cluster, then a re-optimization is necessary.
Besides unsupervised learning such as the K-means clustering,
supervised learning can also be used to predict whether or not
re-optimization would be necessary. Supervised learning is not
without issue, however. For instance, it is usually hard to get
labeled data for training a model. In our case, labels can be easily
obtained by observing the effect of re-optimization on past QEPs.
As there are a fair amount of supervised learning algorithms, sev-
eral possible options exist for prediction. For instance, a binary
classifier decision tree can be examined to classify whether or
not re-optimization should be conducted. Each feature will be
represented by a node split into either âĂĲYESâĂİ or âĂĲNOâĂİ.
Figure 6 shows an example of this partial decision tree. When the
final classification is âĂĲYESâĂİ, then a re-optimization is neces-
sary. Also, the performance of several other supervised learning
algorithms like Neural Networks, Support Vector Machines, and
Linear Regression were studied in [2] for cloud provisioning, but
not for query re-optimization. We are currently investigating
which machine learning models are most suitable for our study.
An appropriate machine learning model should be highly accu-
rate in prediction (i.e. having low error rates when applied to the
training data and test data). The training data must be selected
carefully to avoid the cases of model overfitting, i.e., the cases
where the model provides a low training error rate, but a high
testing error rate. In addition, an appropriate model should incur
a low overhead while being applied online for re-optimization
prediction and should perform effectively in reducing the overall
query response time and monetary cost.

6 CONCLUSION AND FUTUREWORK
In this paper, we provide our vision of a model that utilizes ma-
chine learning techniques to study previously observed statistics
data from a running system in order to build a prediction model.
This model is used to predict whether or not a query should be
re-optimized in order to avoid unnecessary re-optimizations. By
doing this, a queryâĂŹs execution time and/or monetary cost can
be further reduced. In future work, we plan to fully implement
the approach we envisioned and use it to predict additional be-
haviors of a DBMS. For example, we would like to study methods
for increasing or decreasing the number of executing contain-
ers based on current data statistics. We believe that predicting

additional useful behaviors will make the query re-optimization
process more efficient. In addition, we will also extend our ap-
proach to predict, independently of query stages, when a query
re-optimization should be done, and to predict how many times
such query re-optimizations should occur.
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