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Abstract

We consider a perforated half-cylindrical thin shell and investigate the limit behavior when the period
and the thickness simultaneously go to zero. By using the decomposition of shell displacements pre-
sented in [3] we obtain a priori estimates. With the unfolding and rescaling operator we transform the
problem to a reference configuration. In the end this yields a homogenized limit problem for the shell.

Résumé

Nous étudions une coque mince demi-cylindrique perforée et donnons le comportement asymptotique
lorsque la période et ’épaisseur tendent simultanément vers zéro. En utilisant la décomposi-tion des
déplacements d’une coque, introduite dans [3], nous obtenons des estimations a priori. A 1'aide d’un
opérateur d’éclatement et de réduction de dimension, nous transposons le probleme initial en un
probleme posé dans la configuration de référence. Finalement, le probléeme limite homogénéisé est ob-
tenu.

Keywords: Homogenization; Dimension reduction; Linear Elasticity; Shell Theory; Perforated
domains

2010 MSC: 35B27, 74Q05, 74K25, 74B05

1. Introduction

We consider a thin heterogeneous half-cylindrical shell with an in-plane periodic porous structure,
whereby the periodicity ¢ is of the same order as the shell’s thickness 26 and small compared to its
in-plane surface size. This paper provides an analysis for homogenization and dimension reduction of
the shell. We want to point out that both tasks are performed simultaneously, where ( 5?“%0 0= —
€,0)—(0,

k € (0,00). This is necessary since homogenization and dimension reduction usually do not commute
as it was shown e.g. in [5]. The presented approach via the rescaling-unfolding operator is closely
related to the one given in [2, Chapter 11] for plates and for heterogeneous beams in [], but new
in the context of a linear elastic shell. There are various different homogenization techniques, as for
example asymptotic expansions presented in [I8] [20], via Gamma-convergence in [I9] and the two-scale
convergence introduced in [21]. Although, the homogenization of plates and shells is in focus of interest
of some other well-known research groups, our approach provides all the estimates and gives the limit
not in terms of energy bounds, but yields a computational tool for the effective shell coefficients on its
exact topology, which is important for applications.

Dimension reduction and homogenization of elastic plates via an asymptotic expansion technique can
be found in [7]. Dimension reduction and homogenization of a shell for the diffusion problem in
the sense of two-scale convergence was presented in [8], where it was shown that the curvature does
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not enter the homogenized model. Moreover, the homogenization for piezoelectric perforated shells
without dimension reduction were presented in [9]. We want to mention, that the dimension reduction
of a homogeneous shell was analyzed in [I3] [I7, 6]. For some notions of classical results in functional
analysis we refer to [111 [12].

In our analysis, we begin with a general extension technique (based on results developed in [3]) for
displacements acting on a perforated shell made of a network of thin cylinders to the full shell domain
(see Proposition . The result is crucial for the following analysis. We assume that the shell is fixed
along the lateral boundary and continue with a decomposition approach for thin structures introduced
in [3]. This decomposition technique allows to represent any H!-displacement of the shell through the
displacement of its mid-surface, the rotations of the small segments orthogonal to the mid-surface and
a warping term which takes into account the deformation of these small segments. This leads to Korn
inequalities and estimates for each term of the decomposition.

In Sec. [2]-[4] the rescaling and unfolding operators are introduced and the strain tensor is considered
on a reference domain. In the subsequent analysis we decompose the shell’s displacement fields in the
two orthogonal complements of extensional and in-extensional displacements, introduced in Sec.
Such an approach has been considered for homogeneous thin shells in [6].

Sec. presents assumptions on forces in the right-hand side, rescaling them in a detailed manner.
At the end the limit problem is discussed. Especially Sec. is important for applications, where the
variational problem for an anisotropic homogenized shell is presented together with an expression to
compute its effective coefficients via 6 auxiliary cell problems. We note, that the anisotropic coefficient
tensors coincide with those obtained in the homogenization of a plate in [2, Chapter 11]. In section
O] we focus on the effects of the boundary conditions in our model, which play an important role.
Especially, if we fix the shell’s curved ends we obtain a membrane dominated limit equation. In that
case clamping the lateral boundary does not change the model.

1.1. Geometrical setting

We consider a cylindrical half-shell with constant radius a. We assume that our shell consists of
a periodic structure with a periodicity cell of size ¢ in its mid-plane, and is of thickness 24, with
0 = ke € (0,00, do = a/3, where & is a strictly positive fixed constant.

Let Y’ be a bounded domain in R? having the paving property with respect to an additive subgroup
G = p,;Z @ pyZ of R? of dimension 2 and let T be an open set such that T C Y’ (Figure gives
an example of such a cell Y’). We assume the boundary of T to be Lipschitz and for simplicity we
also assume 7' connected. Denote

w=(0,ar) x (0,1), Y =Y'x(=k,k), Y*=Y'\T, Y*=Y*x(—k, k).

Y’ Y’

Figure 1: Cell Y/ and the perforated domain Y'*

In the periodic setting a.e. s’ € R? can be decomposed as

/ !/

s=efd], +ef), w



where []y+ belongs to G and {-}y/ to Y.
Set
= = {§ €eG|ef+eY' C w}, D = interior{ U (55 —&—5?)}, Ao =w)\&..
§€E,

Let us also introduce some notations for the unions of all holes

Tgi{xeﬁg‘ {f} eT}, w=w\T, & =0:\T
ey’

Consider the injective mapping ¢ : w — R? defined as
52
51
gb(Sl, 82) = | @ COs (;) R (81, 82) cuw, (12)
. (81>
a sin | —
a

and denote by S = ¢(@) the mid-surface of the whole shell (without the holes). Furthermore, we
introduce the vectors

0 0
1
. S1 t- At S1
o= ()L = (0], noBAR_Jes(T) ] (1.3)
(%) " ()
cos | — sin | —
a a

Obviously, t; and ty are linearly independent and are tangential vectors to the surface S.
Denote

o

o 0. =w X (—ke, ke), O = w* X (—ke, ke),

o OF = &(0?) the perforated shell,

e Q. = P(Q.) the shell without the holes
where ® : Q. C R? — R3 is given by

(I)(S) = ¢(517 52) + 831'1(81, 52)7 s = (517 52, 53) S Qs~ (14)
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(a) Plane domain w} with periodic (b) Shell QF with periodic holes
hexagonal holes

Figure 2: Periodic perforated plane domain transformed to a periodic shell

We easily check that if 6 = ke € (0,dq] the map ® from Q. onto Q. is a C'-diffeomorphism. That
means we have
Co S HVS(I)HL‘X’(QE) S C1 and Co S ||Vm(b_1||Loo(Q€) S Cq. (15)



The constants do not depend on €.

We denote by z the running point of the shell while s, s.t. ®(s) = z, is the running point in the
reference domain. A function u defined on Q. (resp. Q¥) can also be considered as a function defined
on €. (resp. ) which we also denote by w.

Proposition 1.1. There exists an extension operator P. from H'(QX)3 into H(Q.)? satisfying for
allu € H(Q)3
Pe(u)\Q; =1u, He(Pe(u))Hsz(QE) < C||6(u)||L2(Q;)~ (1.6)

The constant does not depend on €.

The proof of Proposition has been moved to the Appendix.

Set vo = {0} x [0,1] U {n} x[0,]] C dw. The part I'g . = ®(yo X (—ke, ke)) of the lateral boundary of
the shell is clamped. The complementary of I'y . in the lateral boundary of the shell is a free boundary.

From now on, any displacement u belonging to H(Q?)? will be extended to a displacement belonging
to HY(Q.)®. We will always denote by u the extended displacement, which will satisfy (1.6). This
displacement (still denoted u) could also be considered as an element of HY(22)3 or H'(2.)3.

1.2. Decomposition of shell displacements

In this section we introduce a decomposition for every displacement u of the shell QF as it was shown
in [3].

Definition 1.1. An elementary displacement U, associated to u € H'(Q.)? is given by

U =U(s1,52) + s3R(s1, 82), (1.7)
where (o € {1,2})
1 KE 3 KE
U= 5 . u(-, 53)dss, Ra = 2(ne)? /_NE sgu(-,83) - tadsz, Rz=0 a.e inw. (1.8)

Moreover, we have that U = Uy, Us,Us) € H'(w)? and R = (R1,R2) € H'(w)?. Every displacement
u is then decomposed as

2
Ue(:,s3) = Z (Z/la + 83Ra)ta + Usn, u= U, +u, (1.9)
a=1

where w € HY(Q.)? is a residual displacement called warping.

Denote
Vo={veH(Q.)*|v=00nTy.}, VF@={veH" (Q:)*|v=00nTy.},

Hp (w) ={® € H'(w) | ®=00nTy}.
One has
UeHi(w)?, ReHi(w)?  ueV.
Remark 1.1. The warping u fulfills the following properties
KE KE
[ atsas=o. [ sty tadss =0 (1.10)
—KE —Ke

For U and R holds
U =Ut1 +Usts +Usn, R =Rit1 + Roto.



In the next step we want to establish the strain tensor in the cylindrical coordinates. The derivatives
of the elementary displacement U, are calculated using

ou oy oUs U3

= —1t; — ,u —t —_— Z/l t
85, s 0 a5 2T a5, M g L1)
U _Othy O s |
882 089 ! dsa 2 0s2 ’
and IR OR IR,
1 *Rll’l + ——to,
881 881 Os S1 (1 12)
IR _ ath L aRgt ’
852 - 882 ! 852 z
The strain tensor for a shell displacement u € H'(Q.) is given by
T
e (1) = w (1.13)
A small computation yields, that V in the coordinates of the reference domain is given by
Vs =V, V. (1.14)

Furthermore, we still have that e, (u) is in the shell configuration. Therefore, we consider the trans-
formation matrix (t1]t2/n) and transfer our strain matrix into the reference domain by

(t1]tan) e, (u)(t1|ta|n). (1.15)
Definition 1.2. We define by e(u) the strain tensor in the coordinates of the reference domain by

7+ Vu(VO)™ + (Vu(Ve)~1H)T

e(u) = (t|t2|m) (t]t2]m). (1.16)
Hence, we obtain
a —|C—LS 00
(tl\t2|n)TVSu(V<I>)_1(t1\t2|n) = (t1|t2|1’1)TV3U 0 3 1 0
0 0 1
a+ s3 851 0sa ! 0s3 ! (1.17)

a %t ou ou
a+ s3 0sy 2 0589
a Ou ou ou

a+833781n 3752n 57831&
where
g—zz(g—z?+53%—7?+%+1(u3+a3)>t1+(g—uf+ 3%7;2+%)t
+(%+%—*(U1+83R1+U1)>
(e (0 (302,
g;; (R1+g—1€)t1+(7€2+gu2)t2+gﬂ§



We get for the strain tensor e(u) of a displacement u € V. the following components:
a o, 1 OR1 o 1
(e e 2 L)
e11(u) P [(881 + JUs + s3 Bor + — D5, + u3
OUs ORo Oy

en(t) = S s T sy
2 2 2
o 1 a 82/{2 (%Il 8R2 8R1 S3 82/[1 8% 8R1
elQ(u)_§a+53[(8751+852)+ 3(81 +352) a832 3852
oo 53\ Oty
1 a 5‘L{3 1 J0us 53\ Oty
e1a(v) = s, (G2 - g+ i) = s G (14 2 T8,
(9“3 873 8UQ o 8’&3
cas(u) = {(8 So RQ) Dsy + 883} esa(u) = Js3’

Theorem 1.1. Let u € H(Q})3 and (U, R,u) be the terms of its decomposition, then the following
inequalities are satisfied:

leUe)llz2(o.) < Clle(w)llz2(ox) (1.18)

[@llr2(0.) < Celle(u)llL2(gx) (1.19)

IVl L2(0.) < Clle(u)l 202 (1.20)

Proof. The proof is given in [3, Theorem 4.1]. O

From [3] we also obtain the full estimates of w and the components of the elementary displacement U,.

Proposition 1.2. For every u € V
C C
lullmr ey < Zlle@llzzery, IRl @) + Ul w < Szlle(@llzz - (1.21)
The constants do not depend on .

From the expression of the strain tensor e(u) one derives the following estimates:

Lemma 1.1. One has also the following estimates ((«, 3) € {1,2}?):

ou ou ou C
Lot ¢ = . R -t < = .
Hasa al Dsp “ L2 * Hasa nr “ L2(w) EI/QHe(u)”LQ(QE) (1.22)
The constant does not depend on €.
Proof. We will only show that
oUs O C
it < . 1.23
H Os1 + Jsa L2(w) = el/2 ||€(U)||L2(QE)7 ( )

since the other inequalities follow in the same way.
First observe that is umformly bounded. Then, we start with the expression of ej2(u) given by

(1.18). Due to and we obtain

8U2 82/[1 6722 8R1 83 8]/{1 S% 8R1 2 2
— — B ds< 2(0r)-
/Q [(5‘51 + 652) 83( 0s1 + 852) a Osy + a 0sa ds < Clle(w)z (Q2)

Hence, using the estimates (|1.21)

82/[2 au1 2
¢ [ (G2 + 5 ds < Cllewlcar

which proves the inequality (1.23]). O



2. The rescaling operator ¥,
From now on we consider the reference domain

N =w X (=K, K) (2.1)
and we rescale the shell in its s3 direction.

Definition 2.1. Given a measurable function U on Q., we define the measurable function T (¥) on
Q as
T (D) (81, 82,y3) = ¥(s1, $2,€Y3), for a.e. (s1,82,y3) € Q. (2.2)

Lemma 2.1. One has for every ¥ € L%().) and for the warping u
IZc(®)]| 2 () < Ce™ 2 W L2, I1Te@llz2) < Ce?lle(u)l|2(n),

| 0% () 0% ()
054 ys3

(2.3)

lz2() < Celle(u)llz0r), | lz2(@) < Ce'2lle(w)l|2(0z)-

3. Asymptotic behavior of the strain tensor

Lemma 3.1. Let {u.}. be a sequence of displacements belonging to V¥ and satisfying

le(ue)llz2(a:) < Ce*7]

with a constant independent of €.
There eists a subsequence (still denoted €) and U € H{ (w)?, R € H} (w)?, Zap € L*(w), Zaz €
L*(w) and w € L*(w; H(—k, k))? satisfying

/ H(7y3)dy3 = 07 / Ys ﬂa(H y3> dy3 =0 a.e in w, (31)
—K —K
such that
U. — U strongly in HY (W), Reo — Ra weakly in H (w),
1,0U o,
(M J.ta)éza kly in L?(w),
5 (8sa 5+ 355 s weakly in L*(w)
1/0
f( Ue ‘n+R.- ta) — Z.3  weakly in L*(w),
e \0s,
1 _ R L 5 (3.2)
6—2‘15(%) —u  weakly in L*(w; H (—k,K))>,
1 Ju. 10 _ .
ESE<8SQ) = ga‘fs(ug) — 0 weakly in L*(w x (—k,k))>,
1
g‘fs(e(us)) —~EWU, Z,1)  weakly in L*(w)>*3.
Moreover, one has
ous 1 ou
73—71/{1-1-7?,1:0, 734—732:0.
0s1  a 0s2
Proof. We start with the weak limits; they are the consequences of (|1.21]).
U. = U weakly in Hl (w)?, R.—R weakly in Hf (w)*. (3.3)

L or equivalently ||e(u5)HLz<Qs) < Ce3/2 since the displacements are extended to the whole shell.



The results in (3.2) 4 follow from Lemma and equation (|1.19)).
Both convergences (3.2))3 4 follow directly from Lemma

Now we prove
Ue3 — Us  strongly in Hf (w). (3.4)

By the Sobolev embedding and convergences 7 one has
U. — U strongly in L*(w)?, R. — R strongly in L*(w)?. (3.5)
Besides, from estimate ((1.22])2, one obtains
U 3
0s1

aua,3
682

1
— Uy +Req1 — 0 strongly in L*(w),
a

+Reo — 0 strongly in L*(w).

Hence VU, 3 strongly converges to its limit in L?(w)?, which ends the proof of (3.4). That also proves
the last equalities of the Lemma.

Now, prove the strong convergences
U: o — U, strongly in H%O (w), a=12.

By estimate (|1.22]); one immediately has

ou, 1
=l 4 ~U.3 — 0 strongly in L*(w),
0s1 a
o
Ue.2 — 0 strongly in L*(w),
852
35;,1 + 8(;/{;’2 — 0 strongly in L?(w).

Furthermore, from and the above strong convergences, one obtains the strong convergence of the
strain tensor of the displacement (L{E_rl , Z/lg’g) in L?(w)3. Since w is a Lipschitz domain, this displacement
strongly converges to its limit in Hllo (w)?. The elements of the limit strain tensor are then particularly
given by (a € {1,2})

OR

0sq

1 Y3 (9[/[1 3R2 8R1
iz g3 e’ ket
2{ 12+a882+y3851 +y3682 }’

é%(eaa) - %{Zas + %},

1
g‘se(eaa) — Zaa + 93

1
g(ffe(eu) -

1 _
gzg(egg) _ —

Putting everything together we obtain the symmetric tensor

ys OUy 827/{3 1 y3 OU, 827/{3 1 oy
Z = — ~-Z = — —(Z —
1+ a 0sy Ys 9s? 2 12 + a 0ssy Ys 0s10s2 2 ( 13+ 6y3)
_ 32U3 1 Oy
EU, Z,u) = Py — Yo ——2 (= = ,
( ) * 22 — Y3 83% 5 ( 23 + 8y3>
* * %
dys3
which ends the proof of the Lemma. O



As a consequence of the estimates in Lemma [I.1] and the above Lemma, one has a.e. in w with
U; € Ht (w) and R, € Hf (w)

ou ou ou
¢ = . t, =0, - . “t, = 0. .
084 s+ 0s3 0 084 nt+R 0 (3.6)

From the first equation in (3.6 we obtain for («, 5) = (2, 2) that % = 0. Hence Uy does not depend
52

on s, Uy = Us(s1) and due to the boundary conditions, one has Uy € H} (0, ar).
With that we conclude for («, 8) = (1,2) that

dU.
U1(51, 82) = —SQT 2 (51) + Ul(sl)-
S1

Since U belongs to Hf (w), we get Uy € Hg(0,ar) and Uy € Hg (0, ar).
This yields for the last case, («, 8) = (1, 1),

d?U, dU,
—a—1(s1).

U = —
3(51752) asg ds% d81

Since Us belongs to Hllo (w), this implies at this step
Uy € H3(0,ar), Uy € H3(0,ar),

a

2U,  dUy (3.7)
T g ).
1 1

dU:
and U(sy,s2) = (— SQﬁ(Sl) + Ui(s1), Us(s1), ass

We now focus on the second equality given in (3.6]), where we obtain with our expression for U

1dUs d3Us d2U; d?Us,

1
Rl(Sl,SQ) = 782(&781(81) + QTS:%(Sl)) + aUl(Sl) + (ZTS%(Sl), RQ(Sl, 52) = 7GTS%(51).

Observe that due to the above conditions on Us, Ry belongs to H%O (w). Now, since R also belongs
to Hp (w), we finally obtain

Uy, € Hy(0,arr), Uy € H3(0,ar).

Thus
Ri € Hf (w), Ro € H*(w)NHE, (w),

Uy € H*(w) N Hp (w), U € H (w)NHY (), Us € H*(w) N Hp (w).

4. Unfolding of the rescaled shell

Definition 4.1. The unfolding T.(¢') (resp.T=(¥)) of a measurable function defined on w (resp. Q)
is measurable on w X Y’ (resp. Q xY') and given by

/

T-(W')(s'y') =2 (E{S;LH + Ey') for a.e. (s',y') € W x Y',

Te()(s',y') =0 for a.e. (s',y') € Ao x Y/,
and )
! ! S / ’ ’ ~
Tt = o(E[Z] o) for e ) €5 0,
T()(s' ', y3) =0 for a.e. (s',y,y3) € Ac x Y.



As shown in [T], for every ¢ € L?(w) we have
7@l L2@xyny < ¥ L2(w)- (4.1)
Definition 4.2. The rescaling-unfolding operator is defined by I, = T¢ o T..

Lemma 4.1. We obtain the following estimate for the warping:
T (@) L2 (s (vy) < C'2(le(u)| r2(os)- (4.2)
Denote H},.(Y') (resp. H},.(Y)) the subspace of H} (R?) (resp. H} (R* x (—k,x)) N H(Y))

per per
containing the functions G periodic and

W= { € ngr( )3 (-, ys)dys = 0, / YsTal(- ys)dys = 0 ae. in w X Y'}.
Lemma 4.2. There exists a subsequence of {€} (still denoted {e}) and U € L?(w LHL (V)3 R e
L2 (w; HY,, (Y"))? and @ € L*(w; W) such that

TeU) — strongly in L*(w; HY(Y"))3,
T-(R ) strongly in L*(w; HY(Y"))?,
T( ) —  strongly in L*(w x Y")3,
~ (4.3)
’7'E ) 8Sa + 88771 weakly in L*(w x Y')?,
1
—QHE(UE) —~ 7 weakly in  L*(w; H(Y))?.
One has
U(s1,52,Y3) = W/ U(s1, 52,1, Y2, y3)dyrdys  for a.e. (s1,52,y3) € Q.
Y/
Moreover,
oU. 5
T (83 ‘n+R. ) — Zo3+ Zaz  weakly in L*(w; HY(Y")),
*T(%-t +%.t ) —~Zus+ 2 weakly in  L*(w; H'(Y")) -y
- € 8Sa 3 885 « af af Y ) )
where . ~
~ oUus = = oUus = 5 -~
o = 373 TR A= 373 +Ra,  Zap = ey.apl). (4.5)

Proof. The strong convergences of (4.3] .1 5.3 follow from 1 , and [I, Propostion 3.4]. Convergence
([3) , is the consequence of [I, Theorem 3.5] and 1-) is obtamed with [I, Corollary 3. 2]

The convergences of ([4.4), , follow from Lemma [3.1]and [, Theorem 3.5]. With Lemma we then
obtain the expression for Zas in and Lemma [10.3| yields the expression 2a5

To do that, first we need to 1dent1fy the different ﬁelds appearing in Lemma [10.2] Here

u&,l + Ra,l
RE,Q '

Ue «— Use 3z, Ve (_a
From (3.2)1,4, one has

1 —%Ue 1+Re1 Z13 . 2 2
- (VZ/IE;; + ( R ) = weakly in L*(w)*,

23
1 1 )
—qUen +Re1\] o~ TR R4 72 N2
ﬁ[v( 2. )} v( £y )+vy<ﬁ2> weakly in L2(w x Y")2.

10



Then, one can apply Lemma The function u is called 223.
Now we determine the Z,3’s.

Let us identify
1

(Z/{E 1) *Z/{E,?, 0

— 1) vee— | a

ue,2 0 0

Hence, by .1 3 —(e(ue) +ve) — &, and To(Vve) = Vv 4 V, 0. Here, observe that v = 0. The field
(ug,ug) given by Lemma is denoted (U, ). O

4.1. Limit of the rescaled-unfolded strain tensor

Proposition 4.1. Under the assumptions and the results of Lemma[{.3 we obtain the following weak
convergences in L*(w x Y):

+

1 A~ aRa 67/?\/05 860&
7H6(eaa(ua)) - Zaa + ey@a(u) + y3( ) a.

. D50 8yaA e’ )

éHs(elz(UE)) - %(Zlg + 2, 90(U) + yg(?r;;l + %7;21 + (?973212 n %7;2) % N %Zf)
U0 (e () = 5 (2o + g% TRt % N %)

%Ha(e?,za(ua)) - g—;g

Proof. First, note that the function y3 — converges uniformly to 1 in w x Y.

a+eys
Below, we give the limits for 2T1.(e11(u:)) and 111, (e13(uc)), since other cases follow in a similar way.

For the calculation we combine the results obtained in Lemma [3.1] and Lemma We have,

b0 = 2 (7 (2 B (U)o (2 + )]

Therefore, we get for each term in the limit

10U, 1 - .
g’]-s(85571 + gus",?,) — Zy1 4+ ey (U) weakly in L (w x Y),

OR1 OR, OR, N ,
— ) — k1 L Y
7}( D5, ) D5, + o weakly in (wxY"),
1_ /0T, 10l (a.,) Ouy o
1 g i AN kl L Y
€ ( 0s1 ) €2 Oy oy wearxly (wx¥),

1
gHg(as,g) —0 weakly in L?*(w xY).
Hence,

1

OR, OR ot
gHa(eu(ug))4311+ey,11(u)+yg,( 1 1) duy

+ weakly in  L?%(w x Y).
o " om )t on yin LiwxY)

Now we focus on

in (ers(ue)) = 22— [7;(8”5*3 - éus,l +Re)

25a+€y3 0s1
- %Hs(ﬂe,l) + Hs(ag;""’) +(1+ %)m(ag;;)}

11



Similar to the previous case we calculate the limits of each component, obtaining

1oy 1 oUs =
,7;( =2 7“5,1 + R5,1> - Zl3 + = + Rl Weakly in LZ((“) X Yl)7
€ 0s1 a o

1
“TI.(Te1) = 0 weakly in L*(w x Y),
5

Lo (Otesy _ 1 0l(Wy) O in L
(G ) = E e T ey Pl
1 01 (7 u

LML) T 2y,

€2 Oys 9ys

Hence, R
1 1 oUs ~ Ous O
= - f(z R+ = —)
. c(e1s(ue)) 5(Z1s + oo + Ry + 7 + s

Define the displacement @ belonging to L?(w; H,.,.(Y))? by

u(-,y) = 7/7(', Y1, Y2) + ysﬁ(vyhyz) + (y3(Z13t1 + Z23t2) +ﬁ('7y))7
for a.e. y € Y* and a.e. in w.

Hence, one obtains

2+ @8111 _y 822/[3 1 yiaul _y 821/{3 0
1 W 98y 3 9s? 2 2y Osg % 051059
—II. c)) — 02U
- (e(ue)) * Z99 L - 0
52
* * 0

+ & () weakly in  L%(w x Y)?*3,
where &, () is the symmetric tensor whose components are the e, ;;(@)’s. We want to note here that
we obtain the same kind of result in [4].

The aim of the following section is to determine the Z,3’s.

Remark 4.1. If we compare our results with [3, Proposition 11.13], we see that
(@) = Ey (i) + &, (u),

where the terms on the right hand side follow from the given definitions in [3].

5. Inextensional and extensional displacements

5.1. Inextensional displacements
Denote H = [H}, (w)]* x L?(w). We equip H with the scalar product

<= [ o) G e v) 5,
%(% + %) (% + %) +U3V3} dsidss.

The associated norm is equivalent to the usual norm of [Hyp, (w)]* x L*(w) .
Denote Dy the space of inextensional displacements

o 1 o o o
CLI P L

Di=JdeH - = el T
g { < ‘ 682 ’ 682+881

0s1 a

12



A displacement V belongs to D; if and only if there exists (Vi,V2) € H(0,ar) x HZ(0,ar) such that

for a.e. (s1,52) € w

Va(s1,82) = Va(s1),

Vi(s1,82) = —=s5V5(s1) + Vi(s1), Vi € HY(0,am), Vi€ H2(0,an). (5.1)
Vs(s1,55) = a(s5Vy (s1) = V{(51)),
The map V € Dy — (V1,Va) € H}(0,am) x HZ(0,ar) is one to one and onto.
Denote
D; = Dy N ([HE, ()]* x HE (w)).
Note that the limit of the mid surface displacement of the shell & belongs to Dy.
We equip D; (resp. D) with the semi-norm
Vlp, = Vsllez @),  (resp. Vb, = [Vallmzw))-
Lemma 5.1. The semi-norm || - ||p, (resp. || - |Ip,) is a norm equivalent to the norm of the product
space [HY(w)]? x L*(w) (resp. [HY(w)]?* x H?(w)).
Moreover, there exist two constants ¢, C such that for every V € Dy (resp. V € Dj) one has
C(”VlH%{&(O,aﬂ') + H‘/2||§-I§(O,a7r)) S ”VHQDI S C(”Vl”?{é(o,aﬂ') + ||‘/2||§-IU2(07@71—))7
(resp. c(VillZisoam + IVelisioam) < IVIZ < CUVA s 0.am + 1V 2180 0m)
where (V1,Va) are associated to V by (5.1).
Proof. see Appendix. O

5.2. Extensional displacements

Set

am . l

7, 82 = S92 — 5

Denote Dg the orthogonal subspace of Dy in H for the scalar product of H.
For every ¢ in L?(w), denote

s{=s1—

1 l
51) = %/O o(s1, 82)dsa, MS5(9)(s1) = %/0 (51, 82)s5dsa for a.e. s1 € (0, am).

Note that for every U € Dp, one has Ma(Uy), M5U,) € HL(0,ar) while Ma(Us), MS5(Us) €

L2(0,am) (a € {1,2}).
Let U be in Dg, it satisfies <U,V >= fw U3V3dsidsy, VYV € Dy. Thus,

/ug(sl,SQ)(sgv;(sl) —V, (s1))ds1dsa =0, VVi € HE(0,am), Vi € HZ(0,an).
That gives
Mao(Us)(s1) = Cr,  M5(U3)(s1) = Cas] + C3,
(Cy,Co,C3) € R? for a.e. s1 € (0, am).

Hence

dMy(Us) _ d> M (Us)
dsy ds%

DE:{ueH | =0 in (O,aw)}.

We equip Dg with the norm

110® 1 2 190Dy 12 110D 0P
<I>||E\// ! 3’ + 22 2=+ 22 :|d51d52

2 881 a 0589 21 0sg 0s1

Endowed with this norm, Dg is not a Hilbert space. We denote with Dy the completion of Dg for

this norm.
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Lemma 5.2. For every U in Dg, one has
Hu2||H1(O,l;L2(07a7r)) + ||Z/{1HHl(O,l;(Hl(O,aﬂ'))’) + ||u3||L2(0,l;(H2(0,a7r))’) < CHUHE (53)
Proof. See Appendix. O

Now, consider the field U, the mid-surface displacement associated to u. the solution of the variational
problem (6.5]). This field belongs to H. We decompose it as the sum of an inextensional displacement
Ur,- and an extensional one Ug .. By the definition of || - || g and Lemma we obtain

2
U, U, C
Ug|lg < -tg + -t < ——le(u, « < Ce.
e elle a,ﬁzzl 0Sa g Osp L2(w) 51/2”( )”Lz(gs)

Lemma 5.3. There exist a subsequence (still denoted {e}) and Ur € Dy such that

1
EME@1 —Ug, weakly in H(0,1; (H*(0,a))"),
1

EZ/{ENE,Q —Ug2 weakly in Hl(O,l;LQ(O,aw)),

1
EUE@?, —Upsz weakly in L*(0,1; (H*(0,am))").

Proof. From Lemma [5.2] one has

U1l
which yields the claim. O

H(0,55(H(0,am))) T IUE e 2]l 1 (0,1:2(0,am)) + UE £ 3|2 (0,152 (0,am))) < CF,

Going back to the expressions for Z,s introduced Lemma [3.1] and Proposition [f.1 we get with Lemma
that

Zop = %[%tﬁ + aazjta]
6. The linear elasticity problem
Let a;jm € L=(Y), 4,j,k,1 € {1,2,3} and it should satisfy both the symmetry condition
aijkl(y) = ajin(y) = ari; (y) for a.e. y €Y, (6.1)
and the coercivity condition (cg > 0)
aijkt(Y)Tij Tt > coTijTi; for ae. y €Y, (6.2)

where 7 is a 3 X 3 symmetric real matrix.
The coefficients ag;;,; of the Hooke’s tensor on the shell for x = ®(s) are given by

/

S S .
afjkl(x) = Q45K ({;}Y/, ?3) for a.e. z € QF, (6.3)
0;;(v) = ajpen(v) Vv eVl (6.4)

For a given applied force f. the displacement u. of a shell is the solution to the linear elasticity problem

Find u. € V" such that

/ o(ue) : e(v)de = fevdz, YveV],
Q: Q:

(6.5)

where the colon denotes the classical Frobenius scalar product.
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6.1. Assumptions on the forces
We assume that the body forces are given by

fe(s1,82,83) = €2f(51, s2) +eF(s1,82) + s3g(s1,s2) for ae. (s1,$2) €w,

where f = fit1 + fata + fan, (f1, fo, f3) € L*(w)? and g = git1 + gata, (91,92) € L*(w)*.
Regarding F', we want to choose this field so that it does not act with inextensional displacements.
First, in view of Lemma [5.2] we take

Fy € L*(0,1; H'(0,am)), Fy€ L*(w), F3¢€ L*(0,1; H*(0,an)). (6.6)
Then
/ F(s1,52) - V(s1,82)ds1ds2, V € Dg,

will be written
!
(F\V) = / < F1, Vi > H10,am),(H (0,am))) dS2 +/ Fy Vo dsidsy
0 w

l
+/ < F3,V3 >p200,ar),(H2(0,am))) dS2,
0

for every V € Dg. Due to Lemmal5.2] one has

(E V) < (IIF1 | 220,150 0.am)) + 2]l 22 () + B3Il L2 0,222 0,0n)) [V | B2 YV € D (6.7)
Recall that this field has to satisfy for all V € Dy that

/ F(s1,82) - V(s1,82)ds = 0.

Hence, for all (Vi,Va) € HE(0,an) x H3(0,ar)

Fi(s1,s2) —s5V; (s1) + Va(s1)
/ F5(s1,82) ”V2(51) ) ds = 0.
“ \F3(s1,52) a(s5Vy (s1) — Vi (s1))

We then get with partial integration and the boundary conditions for V; and V5 that

YRR PO AR

Dsy 0s? 0s1
holds for all V; € H}(0,ar) and Vo € HZ(0,ar). Hence, the field F € L?(w)? has to satisfy
dM(F: dMS(F d? Ms(F:
Moy (Fy) 4 M2y =0, dM5(F1) +M2(F2)+a# =0p (6.8)
ds, dsy dsy

In Lemma [9.2| we show that there exists a field F € L?(w)? such that
<F, V> :/ ( F11611(V) + F12612(V) + FQQ@QQ(V))dSldSQ.

Taking into account the holes, we need an additional assumption on the forces F. We will see this in
the proof of the lemma below.

From now on, we assume that F' satisfies and moreover F € H*(w)3.

2 As example, take (Fa, F3) € L2(0,an) x H?(0,an) and set

dF:
F(s1,82) = Sg ( — aﬁ(sl)tl + Fo (81)82 + .7'-3(81)n) for a.e. (s1,s2) € w.
1
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Lemma 6.1. One has

1 1
‘— fe-udac—zs?’(/ f-Z/ldsldsz—f—f/ F-Ug dsi1dss
26 o wp € Jur
2 2

+ u Jo U dsidsy + = Jo Ra d51d82)‘
3a 3

<CE (I fllr2w) + 19l 22y + 1Fll 2 () lle(w)ll 2oz

* *
We We

Furthermore

| [ g wa] < O (1Sl + lolizco + 15l s 0amy + 1P i) ey (610

The constants do not depend on .

Proof. Using the decomposition of u we can write (see Remark |1.1)

fooudr= [ f-udet (t1 T 5—3t1|t2|n)ds
Qr Qr a
3 9 2e3K3
=e”2K f-Uds dss + 2ke F -Ug ds1dsy + Ja Us ds1dss
e “e 6.11)
2 3.3 2 4 3 2 5.3 (
6; / Ja Ra dsi1dss + 2; F-Rdsidsy + cr fa Ra dsidss

s3 £ 53 o
+/ —g~ﬁd8+/ 733F-Hd5+/ —e* fsu-nds
- a ca - a
First, using the estimates (1.19), and (L.21)> one gets

/ssgg.ms‘gcgg/zHgnmw)||e(u)HL2(Q;), ‘/Q s - ds| < O/ [ 2o el ez

/6233 fsu- nds‘ < 059/2||fHL2(W)He(u)HLz(Q;)? ‘/54}7' . RdSldSQ’ < 055/2HF||L2(M)||€(U)HL2(Q;),

| 2 taRadsudsa| < CET2 P ao le(wl 20

Hence, is proved. Now, (1.21)5 also leads to

3,3

2e3k e3K3

2
‘532/@ f-Udsidss + / Go Uy, ds1dss + / Jo Ra ds1dss

ws :
< CE2(|If 2wy + N9ll 2w le(w) 22 (oz)-
Now, it remains to estimate / F -Ug dsydsy. For every function ¢ in L' (w), we denote
w?

1 s’ N
. ¢(6{;]Y/ + ez)dzld,zQ, for a.e. s’ € &,.

Mc(¢)(s") = =

Function M. (¢) belongs to L1(&.) (see [11 2] for the properties of the operator M..)

Recall that by - -2, Lemma [5.1] m and (5.3]) one has

C C
Uz < 517H€(U)HL2(Q;)7 IUE 1 (w) < E;),WH@(U)HL?(Q;)-
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One has (see [2, Proposition 1.38 ])

F- M.(Us) dsldSQ—/A*M (F) - M.(Up) dsldSQ‘ < Cellti || 12 () IV F | 12w -

F-Ug dsids, —/ M (UEg) dS]_dSQ‘ < CE||VUEHL2(w)||FHL2(w

3
[B)e wr

i

‘/F uEd51d52—/ME(F)ME(L{E)dsldsQ

*
€

*
€

Hence

C
< Cellpllm @ IFllm@ < gl Fllawlewll ;-

Since M(F) - M (Ug) is constant on every e-cell, that gives

/ M (UE) d31d52 / M (Z/{E) dSldSQ.

|Y’

Proceeding as above, one shows that

C
< aialFlm e lletlizaer-

F UE d51d52 - /ME(F) . ME(UE) dsldSQ

Summarizing the above estimates and using (6.7)) give (recall that there are no holes in A,)

||Y/| FUE d51d52

c
[t s - < TPl o llellzas,

C
and /F~UE d81d52‘ < m(||F3||L2(o,L;H2(o,M)) + |1 F| i1 o)) lle(w)] 2 (ox)
which leads to (6.10]). O

Using now u = u, as test function in (6.5) we obtain

le(ue)llzzary < Ce¥2(I1fllr2w) + lgllz2@w) + 1 F5ll L2 (0,2 m20,am)) + 1 F |l 211 (w))-

7. Unfolded limit problems
For every (Vg,V) in Dg x Dy we define the symmetric tensor £(Vg, V) by
Z11(Ve) —ysAu (V) Z12(Ve) —y3A12(V) 0
EWVE, V) = | Z212(Ve) —ysA12(V)  Z22(VE) — y3Aaa(V) 0

0 0 0
ith
aB\¥) =75 054 b dsg
and
Hve 15w B oy PV 9 oV
M) =G T ) 220 =5 = 5 (5,
82]/3 1 8]/1 0 %
A2 (V) = 051059 - aais2 - 8782(878111)
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Denote H!,,.(Y*) the subspace of H!(Y*) containing the functions G periodic and

per

D= {v= Vg, V,0) € D; x Dp x L*(Q; H,.,(Y*))*}.

p

For every v € D we consider the symmetric tensor
EWVE,V) +&(v)
and the semi-norm
[ollp = IEVE, V) + Ey(0)ll L2(wxy+)-
Lemma 7.1. Given the expressions (3.7)) for V € Dy, there exist ¢,C € Ry such that

2

cVIE, < D 1hasM)Zaw) < CIVIB,.
a,f=1

Proof. First, one has

2
Z [Aas) 17200y < C(IID2Vs] 12wy + IV Vil 22(w)) -
a,B=1

This inequality and Lemma [5.1] give the inequality in the right-hand side.
We prove the left-hand side of the inequality by contradiction. We assume that there exists a sequence
(Vi)nen in Dy, such that

2
Wallp, =1, > [1AasVa)l32() — 0asn — .
a,B=1

By Lemma and the expressions in , we can also consider a sequence (Vi.,Van)nen In
H3(0,ar) x H(0,ar) with

||V1,n||§{g(o,aﬂ) + ||V2,n||§{g(o,a7r) =1
and the components A,g can be expressed as

1 - ’ 7 1"
All(vn) = 5(85‘/2,77,(81) - Vl,n(sl)) + a(sg‘/&n(sl) - Vl,n)’

1, » (7.1)
Aa(Vp) = EVQ’n(sl) +aVy,(s1), Ao (V) =0.
We have then that there exists (V1, Vz) in H3(0,an) x H§(0,ar) such that
(Vi Vo) = (Vi,Va)  weakly in  Hg(0,ar) x Hg(0,ar).
By Sobolev embedding we then get
(Vin, Vo) — (V1,Va) strongly in  HZ(0,am) x H3(0,ar).
Moreover, since ||[Aqg|] — 0 for (o, 8) € {(1,1),(1,2),(2,2)}. We have that
(s (s1) ~ Vi) a5V (1) - W) =0, (s +aW () =0 (T)

Solving the differential equations with the respective boundary conditions we obtain that Vo = V; = 0.
Therefore, we have that (V3 ,,, V2,,) converges strongly to (0,0) in HZ(0,ar) x H3(0, ar).
Considering again equation (7.1) and with our assumption that [[A11(Vy)|[r2(w) — 0, we also get

1" 1"

(Vi ms Van) = (0,0) strongly in L?(0,am)? and then the convergence (Vi ,,Van) — (0,0) strongly in

H3(0,an) x H$(0,ar), which contradicts the fact that HVl”iﬁ(o amy T ||V2||i14(O ary = 1 coming from
0 ’ 0 )
the assumption HVL””?{S(O,M) + HVZ””?{{}(O,M) =1 for all n € N. O
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Lemma 7.2. Consider the space S = R3 x R? x H}

aer0(Y*)? with the seminorm

(T4, 78, W)||s = Z ||7'A +y37'B + €apy(W )||2L2(Y*)
a,B=1
as<p

+llexs,y (@) 7a(ye) + llezsy (@) 122+ + leas,y (@) Z2(y+)-
Then this expression actually defines a norm on S equivalent to the product-norm.

Proof. We consider the field ® € H'(R3)3 given by

=y (TA + Y37 ) +y2(7i2+y37é2),
yz( +y373)+y1<7,4 +y37 )

[ y; )?

3 +yy7’B}

Hence, we have
(74,78, W)ls = |Ey(® + W)|[L2(v+)

We will now show that ||, (P 4+ )| 2(y+) =0 = ® =0, w = 0.
Consider the case that £,(® + @) = 0, which yields that ® + @ is a rigid displacement. Hence, there
exist a,b € R3 such that

a1 + bays — b3y
S+ w=r, r(y) = | a2 + bsyr — biys
as + b1ys — bay1

Since, w is a periodic function with period p;, p,, one has (¢ —r)(y + p;) = (® —r)(y) for a.e.
y € (R?\Uge g(€+9)) x (=K, ). Considering the first two components yields the equations

T T Y o
1 1 for a.e. y3 € (—k,K).
T2 byt =0, T4+ ysT = bs,

Therefore, we obtain 74! = 73! = 732 = 72 = 72 = 71?2 = 0 and b3 = 0. Now, the equality of the
third component yields by = by = 0. Finally, we conclude that ® = 0, r is a constant displacement and
since @ € H),, o(Y*)? the displacement r = 0 and therefore @ = 0, which proves that || - ||s is a norm.
By contradlctlon we easily prove that there exists a constant C' > 0 such that

Clral + Il + 1@l 1 v+)) < (7a; 7, @D)ls,  Y(7a,75,D)) €S,
which ends the proof. O
Lemma 7.3. The semi-norm ||-|[p is a norm equivalent to the product-norm of Dy xDpx L*(Q; H),,.(Y*))?.

Proof. By the definition of || - ||p,, we have that

2
lols = Y 12as(VE) = y3has(V) + €apy @) Z2@wxy)
a,B=1

+2lle1sy (D) 172wy + 2lle2sy 017wy + 2llessy 0172 wxy-)-
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We may further note that we have

1EVE, V)72
a,f=1

2
> L(Zaﬁ(VE)+y3Aag(V1))2ds
2

2

a,f=1 a,f=1
We obtain with Lemma and the equivalence of norms that

2 2
C( > Zasllzeew) + Y IMasllrew) + H@||L2(wxy*)) < Vb,
a,B=1 a,Bf=1
2 2

2k3
26 ) 1205Vl + 5 D 1MasOV)Zec).

<C( D 1Zapllzey + Y Maplizze + [Blz2exr) )

a,f=1 a,f=1

2
Further note that Z ||Za5(VE)||%2(w) =|Vel%.

a,B=1
Besides, with Lemma [7.1] we obtain that

2
VB, < Y 1AasW)lZew) < CIVIE,-
a,f=1

Finally, we can conclude

c(IVals + VI, + [8llzzr) ) < oo < C(IVElls + Vs, + 18] 220k )-

O

Theorem 7.1. Let u. be the solution of the elasticity problem (6.5)). Then the following convergence

holds:

éHE (e(uc)) = EUE,U) + Ey(@)  strongly in L*(w x Y*)?,

where (Ug, U, 1) € D is the unique solution of the rescaled and unfolded problem

1

2K wXY*

I€2

- |Y/*|</w (rv+ gga]}a - gga%n>ds’ +(FV5)),
Proof. Take v = (Vg,V,?) such that
Ve eC'@)?nNDg, V e€C?@w)*nDy,
and consider the test function v. = v. 1 + ve 2, where

ver(s) =V(s') +eVr(s') — s3 [%EVE)(S’) . n(s’)} to(s),

vt = 5(2, (2)),

with ¥ € CY(w; H],,.(Y*)3) satisfying 0(0, s2,y) = (am, s2,y) for a.e. (s2,y) € (0,L) x Y*.

per

20

Qijkl (Es,ij(UE,u) + &jy(ﬂ)) (Es,kl(VE, V) + 5kl,y(5))d3/dy

V(VE, V,i)\) e D.

for a.e. s € Q).

(7.3)

(7.4)



We calculate the elements e12(v. 1) and ei3(ve 1), since the rest follows in a similar way. We obtain
1 a 0Vs 8VE72 82V3 8 VE,3
+¢€ — 53( )
2a+ S3 831 0s1 081082 581332
oV 6VE 1 S% 82V3 1 oV 82VE 3 10Vg 1
1 — —-= : : .

+ ( + )<882 te 882 ) (83 )<581382 a 382 +€< ))
Applying the rescaling-unfolding operator II. and dividing by ¢ yields with the properties for D; that

1 1 a aVE 2 8VE 1 82)/3 Y3 81/1

—1I : =) —2 2=

5 e(era(ve,1)) = 2a+ EY3 {( 0s1 + 089 ) Ja 081082 + a 832

eys OVp1  eys 0?Vs eys OV1 0?VE .3 0*Vps 10Vg, }

e12(ve,1) =

081082 a 0sy

¢ 05 a 05.0% " a 955 39508, ) T

Vs o
651 882 882

—(e+

g2
a’ 081082 a 08

1
— 5312(])13) — y3( ) strongly in L?(w x Y*)?.

For ey3(v.,1) we then obtain

et = S (B ) (2 Ly (2 2y

2a+s3Ll\0s1 «a 081 a Jds1  a
# O  ( 2) (- (- o) (e - )] =
In conclusion we get that

1Hs(e(ve,l)) — E(Vg, V) strongly in L?(w x Y*)°.
5

In the next step we focus on the calculation for e;;(ve2), where we once again just focus on ej2 and
e13. One has

2

et = 3 (e ) () -2t ) (42)
2 n ~
et = 5 (a6 (D) S G ) (1)

1
Considering now —II.(e12(ve 2)) and 71_[5(613(115,2)), we obtain
€ £

1 S .
—T.(e12(ve2)) — €4.12(D) strongly in L*(w x Y*),
€

1 ~ . *
—T.(e13(ve2)) — €,.13(0) strongly in L*(w x Y*),
€

which then yields
1
EHE(e(U572)) — &,(0) strongly in L?(w x Y*)?,

therefore )
gﬂa(e(vg)) — EVp, V) +&,(®)  strongly in L?(w x Y*)?.

Plugging in our test function v. into the weak formulation , applying the rescaling-unfolding
operator on both sides. Dividing by 2xe® and passing to the limit, we obtain (7.4) with the chosen
test functions (regarding the right-hand side, we use the results from Lemma d [2, Proposition
4.8] to get an integral over the Whole domain w at the limit). Then, by density of C!(w)? NDg in Dg,
C*(w)*ND; in Dy and C'(@; H,,,.(Y*)?) in L?(w; H,,,.(Y*)?), this yields for every (Vg,V,0) € D.

per

Due to the coercivity of a;;r; and Lemma we can apply Lax-Milgram theorem to the weak
formulation ([7.4)). Therefore, this problem has an unique solution. O
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8. Homogenization of the shell

In this section we want to express the warping-microscopic displacement @ with respect to the macro-
scopic Ug and U. Therefore, choosing V = 0 in equation (6.5)) leads to

/Y* aijkl (Esﬂ‘j(uE,U) + gm,y(ﬂ)) 5k17y(ﬁ)dy =0 VU S H;ET(Y*)S.

Hence, we can write @ in terms of (Ug,U). We define the 3 matrices

100 010 0 00
Mi=10 0 0], M2=M"=[10 0], M2=(0 1 0],
0 00 0 0 0 0 00
and introduce the 6 distinct correctors ((a, 8) € {1,2}?)
e H (Y*)?, P e H!, (Y*)?, where
X2 =3, xP=x3
and which are defined by
vt ( M + €5, (¢P)) .y (@)dy = 0
*az]kl ij z],y(XE ) kl,y("/}) Y )
Vi € peT(Y*) (8.1)

/* @ikl (ys M?jﬁ + gij,y(X?B)) Enty()dy =0,

Hence, we can write U as

(s’ y) = eapUp) ()X () + MapU)(s)XT (y)  for ae. (s',y) € w x V™.

8.1. The limit problems in the shell’s mid surface

Theorem 8.1. The limit displacement (Ug,U) € D x Dy solves the homogenized problem

| ot canUie)eass (Vi) + b (o @) Aerir (V) (8.2)

+ AasU)ears (VE)) + o o Mg (Z/{)Aag(v)} ds'

y'* K2 k2 OV
= |Y’|| (/w (f -V + %gaVa - Ega£n>ds’ + <F, VE>), V(VE,V) € ]D)E X ]D)I,

where 1
ag%’:’;/ﬂ, = |Y'*|/ al]kl(y) Ma +€1] y( aﬁ)i| M(Zlﬁ dya
Copars = IY*I/Y* aigha(y) [ys M + € (X7 >]y3 My dy

Proof. Consider equation (6.5) and choose the test function such that (Vg,V) € Dg x Dy and v = 0.
Moreover, with the expression for & we obtain for the left hand side in (6.5))

1

2 / aijrl(y) (ES,ij Ue,U) + &j,y(ﬂ))Es,kz(VE, V)ds'dy.
K Jouxy=*
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Hence,

[ i) [eante) )M+ E61 (07 W) + Aas O s M3 + 835,07 )]

xY*
x MG [ears (Van)(s) + ygAa/Bm(sf)} das'dy
— |Y*|</w (f V+ gaVa - igagiyn)ds’_k (F, VE>). (8.3)
Computing the expression yields,
v |/xY*aUkl( )eag(UE)( M + E&ijy(XH )) Mgl /ea,ﬁ,(yE)

’

Faggu ) Aas @) (55 M3 + €5, (7)) M,

+aijkl(y)eaﬁ(uE)( M+ Sij,y(X%ﬁ))ys My, Ao (V)

Y e (VE)

+aijkl(y)Aa5 ) (yS M%B + 5ij,y(X?ﬁ)>y3 Milﬁ Aa’ﬂ’(v) dy ds'

|Y/*| </ ( I<J2 I<J2 oy ) ,
= : 5 YaVa — S 9a73— d F7 )
vl f V+3ag V, 39 8san s+ (F,VEg)
With the expressions for the homogenized coefficients we end up with equation (8.2)). O

Denote S, the set of 2 X 2 symmetric matrices.
Lemma 8.1. There exists a constant C' > 0 such that the homogenized coefficients satisfy
ag%@,ﬂ, Tg’B TE "+ baﬁalﬁ, (Tg’BTIO‘ s O‘B ™ '’ )
+ CaBa/ﬁ/TIQBTI s > C’( +T Taﬁ) Y(TE,Tr) € S3 X So.

Proof. We first note that with the variational formulations (8.1)) we can calculate the homogenized
coeflicients as

om 1 [ « T

G‘Zﬁa’ﬁ’ = 4|Y*| /Y* aijri(y) | MijB + gijyy(XEB)} [ Mklﬁ + &k y(XE )}dy,
hom 1 [ af /ZZ‘}

baBar g = v o @ijrr(y) Y3 M + &gy (XT )} { M 7t & y(XE )]dy

1 [ are "B “arp
= ] /Y* aijr1(y) | MijB + gij,y(XEB)} [3/3 Mkl "t & v (X7 ):|dy7

om 1 [ « T Oé/ ! /(-)é\/_//
CZBQNB/ = Y| / aijri(y)|ys 1\/lz‘j5 + 5ij’y(X15)} {93 Iﬂklﬁ + iy (X7 ? )} dy.
Y* L

For every (7g,77) € Sa X S, one has

aﬁa’ﬁ'TE TE _|_ bg(gg/ﬁ/ (Tg,@TI B’ + Ta,@ a g’ ) + chom T ?BTIOC '8’

= W /Y Qijkl Mij + &”(‘I’)} [Mkl + 5kl,y(\I’):|dy7

with M = (Tgﬁ + ygTIaﬁ) M and ¥ = Tgﬂx%ﬁ + TI 5 . By the coercivity of a;ji, see (6.2)), we
obtain

/ aijr(y) [Mij + 5ij,y(‘1’)} [Mkl + 5kl,y(‘1’)}dy > Co/ [Mij + 5ij,y(‘11)} [Mij + 5ij,y(‘1’)}dy

*
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Here we are again in the context of Lemma [7.2] This then yields with the equivalence of the norms
that

[ [+ £ (0] [Mis + 6]y = Cl? + 12+ 191y

> C(TgBTgB + 7_;1,6’7_}34,8) V(TE7T1) S SQ X SQ. 0

9. Different Boundary condition

In this section we want to emphasize on a change of the boundary condition, such that the previously
free part is clamped, i.e. o = ¢([0, 7] x {0} U [0, 7] x {l}). We may note, that all presented estimates
and resulting limits are not affected by the change of boundary conditions until we consider the split
of  =U; +UE. Asin , we first obtain that U; can be presented as

UQ(Sl,Sz) = Uv2(81>7 u1(31,52) = —SgUé(Sl) + Ul(sl), U3(81782) = a(ng;(sl) — U{(Sﬂ)7

U € HY0,an), Us; € H?*(0,ar). With respect to our new boundary conditions we need that
Us(s1,0) = Us(s1,l) = 0, for a.e. s;. Hence, we have Uy(sy) = 0 for a.e. s1 € (0,ar). With
the same reasoning we get Uy(s1) = 0 for a.e. s1 € (0,am). Therefore Dy = D; = {0}.

Remark 9.1. In the applied forces we consider F such that
Fy € L?(0,1; H} (0,am)) N HY(w), Fy € H'(w), F3¢€ L*0,1; H3(0,ar)) N H' (w) (9.1)

In the case of a fully clamped shell along Ow the assumptions on the forces do not change and we obtain
D; =Dy =0. Hence, we immediately get equation (9.2)).

Lemma 9.1. For every U in Dy, where Ty is given above, one has
U]l 21 (0,1:22 (0.am)) + UL || 20,0521 0,0m))) + U1l L2 0,152 0,0m))) < ClIU -

Proof. This estimate is an immediate consequence of the fact that Dg = H{ (w) x Hg(w) x L?(w) and
Lemma [5.2] O

If we consider the linear elasticity problem presented in section [6] and getting to the limit, as presented
earlier, we obtain that the limit homogenized equation is given by

Y
[ et casterears (Verts' = Lt vy, v e by (9

Now, we show that (F,Vg) can be expressed in terms of ey g (V) for every V € Dg.
Denote F and F the fields defined by

OF ~ OF
-~ _F . — b
95, = b F(-,0) =0, Do, F

Recall that the components of F' are given by (9.1)).

Lemma 9.2. For every V € Dg one has
(F,VE) =/ ( Frienn (V) + Fizern(V) + Faen(V))dsidss,

where F11 = aF3, F12 = —2(]:1 + a@l]-'g), F22 = —]:2 + 81.%1 + a811]-'3.
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Proof. Consider V € Dg. One has
/ F3 VE; d81d82 Za/ F3 611(‘/) d81d82 — a/ F3 81V1 ClSldSQ7

a/F3611 d31d52+a/81F3 Vi dsidss.

Then
/(Fl + a@ng) V1 d51d82 = —/ (]:1 + a@l]-"g) 82‘/1 d81d82
= —2/ (.7:1 + a81.7-"3) 612(V) dsydss + / (]:1 + a@l]-'g) 01 Vo dsidss
= —2/ (.7:1 + a81]-"3) 612(V) dSldSQ — / (81]:1 + aan]-'g) V2 d51d82
and finally

/ (Fo — 01F1 — adi1 Fs) Vo dsidsy = —/ (Fo — 00 F1 — ad11 Fs) 02Va dsydsy
With those calculations we obtain for every V in Dg
/ F-Vdsidsy = / (FiVi + BV + F3Vs)dsids;
= / ((F1 + a0 F5)Vh + FoVa + aF3€11(V))d81d82
= / (= 2(F1 + ad1 Fs)ern(V) + (Fp — 01 F1 — adi1F3)Va + aFse11(V))ds1dss
= / ( —2(F1 + a0 Fz)ern(V) + (= F2 + T + a311.7?3)€22(V) + CLF3€11(V))d$1dSQ.

We conclude the proof by the density of Dg in Dg. O

10. Appendix

Figure 3: Cell Y/ and the perforated domain Y'*

10.1. Proof of Proposition
There exists kg > 0 such that

O, = {s € R*\ T | dist(s, T) < /@0} cv'*

Since the boundary of T' is Lipschitz, there exist R/, R} > 0 and N > 2 open sets Of, ..., O} such
that
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e O is included in a ball of radius R’ and is star-shaped with respect to a ball of radius Rj,
ie{l,...,N},

e O;NO, #0,ic{l,...,N -1}, and Oy N O] # 0,

N "4
e 0, ClUL,0;CY™
Set O, = Oy, X (—K,K), 0,=0; x(-k,k), i€{l,...,N}. One has

e P,: O, is included in a ball of radius R = R’ + k and is star-shaped with respect to a ball of
radius Ry = inf{R},k}, i€ {l,...,N},

o Ps: OiﬂOiH#@,ie{l,...,Nfl},andONﬂOHé@,
e P3: O, cUY,0,cy~
Set O3 = Oy, U (T x (—k,k)). Below, we will use the classical extension result

Lemma 10.1. There exists an extension operator P from H'(O,,) into H'(Of, ) satisfying for all
¢ € H(Oy,)
P@)iow, = ¢ [IV(PO)lra0s,) < ClIVll 20,

The constant only depends on 8TE|.

Proof of Proposition[I.1 For every £ € E. and O;, i € {1,...,N}, if £ s small enough, the domain
O (e£+¢€0;) is included in a ball of radius 2Re and is star-shaped with respect to a ball of radius Rye/4
(due to property P; and Lemma A2 in [3]).

Now, let u be a displacement belonging to H'(Q.)3. For every (£,i) € Z. x {1,..., N} there exists a
rigid displacement 7¢ ; such that

[Va(u = rei)llL2@eer=0:)) < Clle(w)l| 2@ 4<0,))- (10.1)

The constant doe not depend on ¢, £ and O;, it only depends on the ratio R/R; (see Theorem 2.3 in
[3]). Then, step by step we compare the rigid displacements r¢ 1, re 2, ..., 7¢, n thanks to the properties
P, and Pj3. To do that, observe that there exist two constants independent of € and £ such that

CEB|OZ' ﬂ(’)i+1| < |<I>(e§+s(’),» N Oi+1)| < 053|Oi N Oi+1|, 1€ {1,. .. 7]\/v — 1},
053|0N 001| < |(I)(€§+€ON ﬂ01)| < C€3|ON 001‘.

As a consequence, there exists a rigid displacement r¢ such that

[Ve(u —re)ll L2 (@(eerey=)) < Clle(w)]L2(@(etey=))- (10.2)

The constant doe not depend on ¢ and &.

At this point, transform the domain ®(¢£ 4+ €Y™*) by the inverse map z € Y* —— ®(e€ + £z), then
apply Lemma [10.1] in order to extend the function in the hole T and finally transform by the map
z €Y — ®(e€ + £2) and to the result add the displacement re. The L? norm of the strain tensor of
the extended displacement (now defined in ®(e€ + €Y")) is bounded by a constant (independent of €
and &) multiply by [le(u)||L2(@(c¢tev))-

We apply this process to every domain of £ + Y™, £ € =.. Finally, we obtain an extension of the
displacement u satisfying . O

3Note that if we transform the domain Ok, by a dilation, the constant does not change.
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10.2. Two Lemmas

For the definitions and properties of the unfolding operators Tz, M. we refer to [I, 2] Lemma is
proved in [2]. Let © be a bounded domain in RY with Lipschitz boundary and Y =TI\, (0,1;), I; > 0,
i=1,...,N.

Lemma 10.2. Suppose p € (1,+00). Let {(u. s, v-5)}e,6 be a sequence in WHP(Q)N x Whp(Q)N*N
(with v s a symmetric matriz) converging weakly to (u, v) in WHP(Q)N x Whr(Q)NxN,

Assume furthermore that there evist X in LP(Q)N*N and v in LP(Q;Wpléf,O(Y))NXN such that as
(€,6) = (0,0)

1
(e(ug,(;) + 'UE’(;> — X  weakly in Lf”(Q)NXN7 (10.3)

5
Te 5(Vves) = Vo+V, 0 weakly in LP(Q x Y)NVXNXN,

Then u belongs to W2P(Q)N and there exists u € LP(£); W]}éfvo(Y))N such that, up to a subsequence,

— 0 €0,+0), Ters (e(ue,(;) + 115,5) — X + e, (u) + 0 weakly in LP(Q2 x Y)NXN,

1
Y (10.4)
v

— +00, = e, (u).

Proof. First, from one obtains that e(u) + v = 0, then since €2 is a bounded domain with
Lipschitz boundary u belongs to W2P(Q)Y. We also deduce from this convergence and the Korn
inequality that u. s strongly converges to u in W17 (V.

Then, up to a subsequence, there exists Xe LP(Q x Y)N such that

1 ~
57'5,5 (e(ues) + ves) = X weakly in LP(Q x YV)V*V,

Step 1. In this first step we assume that % — 0 € [0,+00).
Introduce the function Z. s belonging to LP(€2; WP (Y))N | defined as

1
Zs,é = 57-6(116,5 - Ma(ue,ﬁ)) - Ms (vu6,5) : yc' (105)
Its gradient and symmetric gradient with respect to y are

Vyzs,é = E(vueﬁ) - Ms (vua,(S)

ey<Z€,5) = ﬁ(e(ua)g)) - M (e(ue,é)) (10.6)
= 7;(6(118,6) + Vs,é) - (7:5(V5,6) - ME(VE,(S)) - M. (6(11875) + Ve,&)-

9

Convergence (|10.3); on one side together with the fact that |V, s|/1») and 5

are bounded, give

lley(Ze s)llr@xyyy < C(6+¢) < C6.
The Korn inequality implies
1Ze sl e (swir(yyy < C6.
Consequently, up to a subsequence, there exists Z in LP (Q; WP (Y)Y such that,
1 ~
5Zes =2 weakly in LP(; whr(y))V. (10.7)
By (|10.6)) one has

57;(‘/5,5) — ME(V&’J) —+ %ME (6(115,6) + Vs,&)'

1 1
57; (e(us,é) + VE,IS) = gey(ze,zS) + s -
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Then going to the limit using(|10.7)) and [2| Proposition 1.25 and Theorem 1.41]

1 S 5 ~
57}(Vu575 +ves) = X =¢y(Z) +0(Vvy  +¥) + X weakly in LP(QxY)V*N. (10.8)

Now, we prove that

2u

0
6$ja.%'k

N
7 9 c,,C c,,C
u=172- ) Z (yﬂ/k _MY(ij/k))
jyk=1

is periodic (note that this function belongs to LP(Q; WLP(Y))N).
We proceed as in the proof of [2 Theorem 1.36], one first evaluates the difference of the traces of Z. 5
on the faces Y; = {0}x(0,1)¥~! and Y} + e;. For a.e. (z,9') € QxY7, one has

Zs,é(xa y/ + ei) - Zs,(s(x, y/)
= L (Tues)a g+ o)~ Telue ) (o, 5') — M () (a)

&rl

- %(ﬁ(ue,a)(x +eer,y) = Te(ues)(@,y) — M. (86117;16) (®)-

Let @ be in D(QxY;)Y, one has successively

/ (Zes(yf +e1) — Zeg(z,y))) - B(a,y') dody’
QXY

:/QXY F (7::(115,5)(1' +cer,y’) - Tg(uE,é)(gg’y'» _ Me(a(;l;a>(x)]  ®(z, y) dudy’

I3

O(x —cer,y') — P(z,y
[ sy HEED =D gy [
QxYy € Q

/ a(b / / a £, a £ / /
= / (ve(@) = To(ues)(ay) - 5= (. )dady' + / (525 - M(F22)) - 0l y/) dady
Q L1 xY1

XY; Q 0xy O0x1

D(x —ceq,y) — P(x,y) +ce -V, P(z,y

+ 7:5(115,6)(1" y/) . ( 1,Y ) ( Y ) 1 ( Y )
QOxY: €

aus,é
8331

M. (

)(@) - ®(a,y) dudy’
xXY7

dzdy’

then

:/Q (Ms(us,éxw) - 7;(115,5)(517724/)) . %ﬁi(l’, y/)dl‘dy/

x Y1

a® / / a € a € / /
[ (eale) = Meluen)@) (o )dody + [ (GE - M (FE2)) - 0o,y dady
Q L1

x Y1 QxYy 8;61 axl
) o AT} / . z(p , /
+ 7—5(115,5)(%3/) . (:L' €e,y ) (xay ) +cep \Y% (IL’ Y )dedy/
QXY 3

The last right-hand side is equal to (see [2, Proposition 1.24])

[ (Mewes)@) ~ Tewes) @) - o iy
QxYy 1
+/Qu5,5(x) . </Ygiz(x,y')dy’—/\/l€(/y g—i(a:,y')dy’)dx

aua,ﬁ ’ o ’ ’
+ o (@'(/Y@(w,y)dy Me(/y<1>(:v,y)dy)dw

®(x —ceq,y') — P(x,vy) +cey - Vu@(x, vy
+/ To(ues) (@ y) - ( 1Y) — P(@,y) + e (z,9)
QxY; €

dxdy’.
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Divide by ¢ and then pass to the limit using [2 Propositions 1.38 and 1.39]. It yields

/ Z6,§(1‘7y/ + ei) - Z6,5(x7yl)
QxYy

5 - ®(z,y) drdy’

0P 0 0%®
— —-0(Vu(z)y°) - =— (a9 d;vdy’—i—f/ u(z) - = (z,v) dedy’
QxY: ( (@) ) 63:1( ) 2 Jaxy, (@) 633%( )
N
8211 ’
= 0 )y’ - ®(x,y ) dzdy'.
/Ml D gy (-0l iy
N 2
Hence, for a.e. (z,y) € QxY1, Z(z,y + e) — Z(z,y) = QZ 0’u (2)y,¢. We obtain similar
) -C. ) 1 ) 7 ) & axlaxk k-

equalities for the difference of the traces of Z over the other faces of Y. That proves the claim. Then,
a straightforward calculation gives (using Ve(u) + Vv = 0)

5 al de(u) = al
ey(u) = ey(Z) — 92 Y Y = €y(Z) + QZ Txkylé-
k=1

k=1

With (10.8]), that gives the convergence (10.4]);.

€
Step 2. In this step we assume that 5 — 400.
Again we consider the function Z. s introduced in (10.5)). Now, it satisfies

1Ze 5|l Lo (w10 (vy) < Ce.

Hence, up to a subsequence, there exists Z in LP(Q; WLP(Y))N such that,
1 ~
~Z.s5s —7Z weakly in LP(Q;WhP(Y))V. (10.9)
€

Observe that

1 01
ETE(@(UE,&) + v€75) = gng(e(uw) + v€75) — 0 strongly in LP(Q x Y)V*N,
1 01
EME (e(uws) + vws) = gg/\/le (6(115,5) + v&(;) — 0 strongly in LP(Q)V*V,

One has
7-€(v5,5) - Ms(vs,é)

e

1 1 1
E’E‘(e(us,zs) + Vs,é) = gey(zsﬁ) =+ + EME (e(us,é) + Vs,ﬁ)-
Passing to the limit in the above equality gives

ey(Z) +Vvy°+v=0.

Then, as in the previous step we prove that

N
5 1 0%u
b=7 - (@C—M )
2 2 D0y Vil v (Y5uk)
J,k=1
is periodic. Thus (10.4)s is proved with u = —v. O

As a consequence of Lemma one has (see also [2, Lemma 11.11))
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Lemma 10.3. Suppose p € (1,+00). Let {(ucs,ve6)}es be a sequence in WHP(Q) x WLr(Q)N
converging weakly to (u,v) in WHP(Q) x WHP(Q)N . Assume furthermore that there exist X in LP(Q2)N
and O in LP(Q WEE (V)N such that as (¢,8) — (0,0)

per,0
1
1)
Tes(Vves) = Vo+ V0 weakly in LP(Q x Y )NxN,

(Vues +ve5) = X weakly in P )N,

Then u belongs to WP (Q) and there exists u € LP(€; W;e’f,o(Y)) such that, up to a subsequence,

1 I .
if % — 6 €0, +0), 57;5 (Vues +ve5) = X 4+ Vyu+ 00 weakly in LP(Q x YV,

0 (10.10)
if 5 — +o00, v = Vyu

Proof. Consider the field u. 5 € WHP(Q)Y and the symmetric matrix field v. s € W1P(Q)V* defined
by
Ug 5 = (u6,57 Oa v 7O)a (Ve,ﬁ)ll = Vl,e,
1 e
(Ve,s)1i = (Ves)in = Ui (Ve.s)ij = 0if (i,5) € {2,...,N}>.

These fields satisfy the assumptions of Lemma and the convergences (|10.3)). Therefore, the results

in (10.4) give (10.10). O

10.8. Postponed Proofs
Proof of Proposition[5.1 Step 1. We start by showing the norm equivalences.
Take V € Dy (resp. Dy), one has

enn(V) = —éVg, e12(V) = ez (V) = 0.
Now, the 2D-Korn inequality gives (recall that V; = Vo = 0 on T'y)
Vil @) + DVelinw < ClIVsliZa)-
Then we obtain
VI (2 x 2wy = Vil ) + Vel w) + 1VsllZ2) < ClVallZa) = ClIVIB,-

On the contrary, to estimate || - [[p, by | - [|[z1(w)2xL2(w) from above, we can use Young’s inequality
such that

I, = Valiae = [ V3 as
OVINZ 1., OWN\2 OV [0V o1
< P - P i =
_/w[(a,ﬁ) +a2V3+(332) +(852) +(851)+V3]d8
< (Il oy + V2l + 1sll32) ) = CIVIRs @z

Step 2. We prove the inequalities.
With expression (5.1))5 we get

nwa=mwh@=/%mwz
w

ar l
= “2/0 /O [(55Vs (51))% = 255V; (s1)Vy (s1) + (V4 (51))%] dsads

< C(IVa 122(0.0m) + V2 12 0.0m)) -
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First we note that Va(s1) = Vy(s1) = 0 for s; € {0, an}, which follows by the expressions in (5.1)) and
since V1(0, s2) = Vi (am, s2) = Va(0, s2) = Va(am, sg) = 0 for a.e. sy € (0,1). Moreover, we obtain with
the Poincaré inequality in H{ (0, ar) and HZ(0,ar) that,

H‘/QH%{z(O,GJT) + ||V1||§{1(O,arr) < C(”‘/Z ||%2(0,a7r) + ||V1 H%P(O,aﬂ))
<C [ (5% = 2550 V] + (V] P)as
w
<c [ @y - viras =y,
The second inequality is again obtained in a similar way, where we need to use that

IVall3rs0am) + 1Vil3s0am < C (15 20,0y + 1V Wtz 00m) )
which follows from the Poincaré inequality. O

Proof of Lemma[5.2 Since Dg is the completion of Dg for the norm || - ||g, if we prove the estimates
of the Lemma for Z/{ € Dpg, then by density they will be satisfied for every element in Dg.
Let U be in Dg, recall that

o, U

"6M11 U ‘ 95, s __HzlnE. (10.11)

oUs ’
Jds1  a

882

< s, |52

< s, |5

L2(w) L2(w) L2 (w

Recall also that there exists (O, Cy, C3) € R3 such that
MQ(Z/[g)(Sl) = (1, M;(U3)(81) = 02511: + C3, fora.e. s1 € (O,CLTI').
Step 1. In this step we prove

Mo @) 1(0,am) + MU 1 0,07) + (| M2(U2)]22(0,am)

. (10.12)
HMo(Us)| + | M5(Us)[| L2 (0.am) < ClIU] 5

Set ( )
ME(Us) (s1) = @%7
for a.e. s1 € (0,am). (10.13)

! Sa(s
Moo (Us)(s1) = %/0 Uz(«ﬁdz)%

One has M$§(Us), Mao(Us) € HE(0, ar).

We first show that Mo (U .
[

HU Iz
L2(0,ax) \/
By plugging in the definition for Mo (U;) we get

1d/lw )d +1/lu( )

1ds1 Jy 1151, 82)as2 al J, 3(81, §2)as2 L2 (0.am)

We interchange differentiation and integration, s.t. with Jensen
1 fhoau 1 a1,
(A —U)d u
[ ) Gt dw)as| <\t e, = e

31



Moreover, we have

dMy (U 1 2 o dMo(Uy) 1 2
H 2l 1) ~ Mo (Us) :/ (% = Ma(Us)) dsy
L2(0, aTr) a L2(0,ax) O 51 a
dMy(Uy) 1 2
HM+M2(Z/{3) 7
a L2(0,am)
since by partial integration
G dMo (U dMs (U
/ %Mz(u?,)dsl [MZ(UI)MQ Us / M (U) 2( S)d s1 =0.
0 1
Therefore, we obtain
dMy (U 1 2
H) + |2 Mot <l
L2(0,am) a L2(0,am)

The Poincaré inequality in Hg (0, ar) and the previous results lead to

dMs (U
[ Ma(Ui)| (0,0 <CH21)

<ClU|e

L2(0,am)

and since Mz (Us) is independent of s; we obtain |[Ma(Us)| < C||U||g. Below we show the inequality

< |l 5. (10.14)
L2(0,am)

HdMS(Ul) L LdM5ts) | G
a

dsy a

Plugging in the definition for M$§ and Mg we get again with Jensen and since s§ € (—1/2,1/2)

dsy a

HdMa(bﬁ) L LdM5s) G
a

L2(0,am)

<
L2(0,a)

= ZUs)s

\71(851 a = Ol e-

‘ ‘ aul
L?(w)

o c
881 s ) 2

1
*Z/[g) s5dsg
a

Now, we prove the inequality

1 — 2
[ M) + = M) +|CsP? < Clul%. (10.15)

L2(0,ar)

With the Poincaré inequality and since Cs € R and M§(Us), MS(Us) € HL(0, ar) we obtain

2
HM" )+~ M54s) +1Csl?
L2(0,am)
1d ? C
< o || Emsen + 5 R |2 < Clls,
dsy adsy L2(0,am) a L2(0,am)
using
T sd 1 d ~ Cy
— M5 ——Mj —ds; = 0.
/0 (dslMQ(ul)—'_ ad31M2(u3)> a s1=0
In the following we show the inequality
d U 1~
HM”(Q) + = MS(Us) < CllU|l g (10.16)
a L2(0,am)
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With the previous result, partial integration and (10.11)) we get

dMas(Us) 1 —~
|t M)

S1 a L2(0,am)

d Mo (U 1~
= HM — MEUh) + M5(Uh) + — M5 (Us)

L2(0,am)

d

<H/\/122(Z’{2) MS(Uy) ‘ HM (Uy) + M(Ug) ’

L2(0,am)

where we have for the first term by plugging in the definition and swapping integration with differen-
tiation

l l
81/[2 82(82 — l) 1 / l
- —————=dso — = | Ui(-,s2)(s2 — =)ds
H 0 831 2 2 0 1(s52)(es 2) ’ L2(0,a)
8Ll2 62/{1 82(82 — l) ’ 82/{2 82/[1
= “ds <Cll=—+ — <C|U|g-
H 881 882) 2 2 L2(0,am) - 0s1 0sg L2(w) - ” ”E

d
Integrating Md272(7/12) + Mc(ug) over (0,arm) and due to the above estimate (10.16)), one obtains

S
|Ca| < C|lU||g and then agam with (10.16]) and (10.14))-(10.15)

d/\/lzz (U
Q) 22(0.0m) + IMEU) 0.0 + M5 i1 00 < Clidl + [ Z2ED | < o
Since Mas(Us) € HI(0,ar), < CHM’ < C|U]|. The Poincaré-
dsy L2(0,am)
Wirtinger inequality gives
[Uo = Ma(Us)| 22wy < CllU| - (10.17)

82(82 — l)

Multiply Us — Ma(Us) b and then integrate with respect to sy to get

<ClU|lg-

it + o],

Therefore
[Ma(Ua)l 22 0,am) < CllU| E- (10.18)

Step 2. We show the 3 inequalities in equation (5.3) by using Poincaré-Wirtinger inequality. We start
with [[Us||12() < C|U| g. With the inequalities in (10.17)-(10.18) we get

[Uellz2@w) < Uz = Ma(Us)|[12(w) + [[M2(U2)||L2(w) < CllU 5. (10.19)
Recall that if X is a separable Hilbert space, then the Poincaré-Wirtinger inequality is valid in

Whr(0,1; X) (p € [1,400]). From (10.19) and (10.11))3 we get
H(‘)Z/{g Haz,ﬁ
0s1 0s2

Then the Poincaré-Wirtinger inequality and estimate (10.12)); in H'(0,7; (H'(0,an))’) give
UL 1| L2000 (E2 (0,am))) < Uy — Ma(Ur) 220,087 (0,0m))) + M2 Ui) | L2 (0,051 (0,am))) < ClIU||E-

< Clu| e

L2(0,l;(H'(0,am) L2(0,l;(H'(0,am))")

The above inequality leads to

H s < C|U|| g, which together with (10.11)); yields
1

L2(0,15(H2(0,a7)))
Usl L2 (0,1:(2(0,am))) < CllU -

This ends the proof of the lemma. O
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