T. Berkelman, P. Garret-engele, and N. E. Hoffman, The pacL gene of Synechococcus 604 sp. strain PCC 7942 encodes a Ca 2+ -transporting ATPase, Journal of Bacteriology, vol.176, pp.605-4430, 1994.

, Physical characteristics of magnetic bacteria and their 607 electromagnetic properties in the frequency range of 1-400 GHz, BioMagnetech 608 Corporation, BioMagnetech Corporation, 1990.

M. Blondeau, M. Sachse, C. Boulogne, C. Gillet, J. M. Guigner et al., , p.610

K. Benzerara, Amorphous calcium carbonate granules form within an intracellular 611 compartment in calcifying cyanobacteria, Frontiers in Microbiology, vol.9, p.1768, 2018.

M. Blondeau, K. Benzerara, C. Ferard, J. M. Guigner, M. Poinsot et al., , p.613

F. Panet, Impact of the cyanobacterium Gloeomargarita lithophora on the 614 geochemical cycles of Sr and Ba, Chemical Geology, vol.483, pp.88-97, 2018.

E. Boros and M. Kolpakova, A review of the defining chemical properties of soda lakes 616 and pans: An assessment on a large geographic scale of Eurasian inland saline surface 617 waters, PLoS One, p.202205, 2018.

I. A. Bundeleva, L. S. Shirokova, O. S. Pokrovsky, P. Bénézeth, B. Ménez et al., , p.619

S. Balor, Experimental modeling of calcium carbonate precipitation by 620 cyanobacterium Gloeocapsa sp, Chemical Geology, pp.44-60, 2014.

N. Cam, T. Georgelin, M. Jaber, J. Lambert, and K. Benzerara, In vitro synthesis of 622 amorphous Mg-, Ca-, Sr-and Ba-carbonates: What do we learn about intracellular 623 calcification by cyanobacteria?, Geochimica Et Cosmochimica Acta, vol.161, pp.36-49, 2015.

N. Cam, K. Benzerara, T. Georgelin, M. Jaber, J. Lambert et al., Selective uptake of alkaline earth metals by cyanobacteria forming intracellular 626 carbonates, Environmental Science & Technology, vol.50, pp.11654-11662, 2016.

N. Cam, K. Benzerara, T. Georgelin, M. Jaber, J. Lambert et al., Cyanobacterial formation of intracellular Ca-carbonates in undersaturated 629 solutions, Geobiology, vol.16, pp.49-61, 2018.

Y. Chang, R. Bruni, B. Kloss, Z. Assur, E. Kloppmann et al., , 2014.

, Structural basis for a pH-sensitive calcium leak across membranes, Science, vol.344, pp.632-1131

D. E. Clapham, Calcium signaling, Cell, vol.131, pp.1047-1058, 2007.

E. Couradeau, K. Benzerara, E. Gerard, D. Moreira, S. Bernard et al., , p.635

P. Garcia, An early-branching microbialite cyanobacterium forms intracellular 636 carbonates, Science, vol.336, pp.459-462, 2012.

R. J. Debus, The manganese and calcium ions of photosynthetic oxygen evolution, 1992.

, Biochimica et Biophysica Acta (BBA) -Bioenergetics, vol.1102, pp.269-352

D. Demaegd, A. Colinet, A. Deschamps, and P. Morsomme, Molecular evolution of 640 a novel family of putative calcium transporters, PLoS ONE, vol.9, p.100851, 2014.

A. L. Demain and N. A. Solomon, Manual of industrial microbiology and biotechnology, p.642, 1981.

D. C. Domínguez, Calcium signaling in bacteria, Molecular Microbiology, vol.54, pp.291-297, 2004.

D. C. Domínguez, M. Guragain, and M. Patrauchan, Calcium binding proteins and 645 calcium signaling in prokaryotes, Cell Calcium, vol.57, pp.151-165, 2015.

F. Garcia-pichel, E. Ramírez-reinat, and Q. Gao, Microbial excavation of solid 647 carbonates powered by P-type ATPase-mediated transcellular Ca 2+ transport, Proceedings 648 of the National Academy of Sciences, vol.107, pp.21749-21754, 2010.

J. A. Gilabert, Cytoplasmic calcium buffering, Calcium signaling 650, pp.483-498, 2012.

S. Golubic and S. Lee, Early cyanobacterial fossil record: Preservation, 652 palaeoenvironments and identification, European Journal of Phycology, vol.34, pp.339-348, 1999.

C. R. Gonzalez-esquer, J. Smarda, R. Rippka, S. D. Axen, G. Guglielmi et al., , p.654

C. A. Kerfeld, Cyanobacterial ultrastructure in light of genomic sequence data, 2016.
URL : https://hal.archives-ouvertes.fr/pasteur-01381297

, Photosynthesis Research, vol.129, pp.147-157

N. D. Gray, The unique role of intracellular calcification in the Genus Achromatium, 657 Inclusions in Prokaryotes, pp.299-309, 2006.

N. Gray and I. Head, The Family Achromatiaceae, 2014.

E. Lory, &. F. Stackebrandt, and . Thompson, The Prokaryotes: Gammaproteobacteria (p, pp.660-661

B. S. Guida and F. Garcia-pichel, Extreme cellular adaptations and cell differentiation 662 required by a cyanobacterium for carbonate excavation, Proceedings of the National 663 Academy of Sciences, vol.113, pp.5712-5717, 2016.

S. Guindon, J. Dufayard, V. Lefort, M. Anisimova, W. Hordijk et al., , 2010.

, New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the 666 performance of PhyML 3.0, Systematic Biology, vol.59, pp.307-321

C. Jansson and T. Northen, Calcifying cyanobacteria-the potential of 668 biomineralization for carbon capture and storage, Current Opinion in Biotechnology, vol.21, pp.669-365, 2010.

H. Jiang, H. Cheng, K. Gao, and B. Qiu, Inactivation of Ca 2+, 2013.

, Synechocystis sp. strain PCC 6803 promotes cyanobacterial calcification by 672 upregulating CO2-concentrating mechanisms, Applied and Environmental Microbiology, vol.673, pp.4048-4055

G. E. Jones, L. G. Royle, and L. Murray, Cationic composition of 22 species of bacteria 675 grown in seawater medium, Applied and Environmental Microbiology, vol.38, pp.800-805, 1979.

N. A. Kamennaya, C. M. Ajo-franklin, T. Northen, and C. Jansson, Cyanobacteria as 677 biocatalysts for carbonate mineralization. Minerals, vol.2, pp.338-364, 2012.

T. J. Kochan, M. H. Foley, M. S. Shoshiev, M. J. Somers, P. E. Carlson et al., Updates to Clostridium difficile Spore Germination, Journal of Bacteriology, pp.680-00218, 0200.

V. Krivtsov, E. G. Bellinger, and D. C. Sigee, Elemental composition of Microcystis 682 aeruginosa under conditions of lake nutrient depletion, Aquatic Ecology, vol.39, pp.123-134, 2005.

H. G. Lawford and J. D. Rousseau, Establish medium requirements for high yield 684 ethanol production from xylose by existing xylose-fermenting microorganisms, 1995.

B. D. Lee, W. A. Apel, and M. R. Walton, Screening of cyanobacterial species for 687 calcification, Biotechnology Progress, vol.20, pp.1345-1351, 2004.

J. Li, M. Oliver, I. Cam, N. Boudier, T. Blondeau et al., Biomineralization patterns of intracellular carbonatogenesis in cyanobacteria: 690 Molecular hypotheses. Minerals, 6, p.10, 2016.

M. Mansor, T. L. Hamilton, M. S. Fantle, and J. Macalady, Metabolic diversity and 692 ecological niches of Achromatium populations revealed with single-cell genomic 693 sequencing, Frontiers in Microbiology, vol.6, p.822, 2015.

A. Marchler-bauer, Y. Bo, L. Han, J. He, C. J. Lanczycki et al., , 2016.

. Cdd/sparcle, functional classification of proteins via subfamily domain architectures. 696 Nucleic acids research, vol.45, pp.200-203

M. U. Merz, The biology of carbonate precipitation by cyanobacteria. Facies, vol.26, pp.698-81, 1992.

D. Moreira, R. Tavera, K. Benzerara, F. Skouri-panet, E. Couradeau et al., , p.700

P. García, Description of Gloeomargarita lithophora gen. nov., sp. nov., a 701 thylakoid-bearing, basal-branching cyanobacterium with intracellular carbonates, and 702 proposal for Gloeomargaritales ord, nov. International Journal of Systematic and 703 Evolutionary Microbiology, vol.67, pp.653-658, 2017.

L. V. Nazarenko, I. M. Andreev, A. A. Lyukevich, T. V. Pisareva, and D. A. Los, , 2003.

, Calcium release from Synechocystis cells induced by depolarization of the plasma 706 membrane: MscL as an outward Ca 2+ channel, Microbiology, vol.149, pp.1147-1153

S. Norland, M. Heldal, and O. Tumyr, On the relation between dry matter and volume 708 of bacteria, Microbial Ecology, vol.13, pp.95-101, 1987.

A. A. Novoselov, D. Silva, J. Schneider, X. C. Abrevaya, M. S. Chaffin et al., , p.710

C. R. Filho and S. De, Geochemical constraints on the Hadean environment from 711 mineral fingerprints of prokaryotes, Scientific Reports, vol.7, p.4008, 2017.

O. S. Pokrovsky, R. E. Martinez, S. V. Golubev, E. I. Kompantseva, and L. S. Shirokova, Adsorption of metals and protons on Gloeocapsa sp. cyanobacteria: A surface 714 speciation approach, Applied Geochemistry, vol.23, pp.2574-2588, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00316096

R. I. Ponce-toledo, P. Deschamps, P. López-garcía, Y. Zivanovic, and K. Benzerara, , p.716

D. , 2017) An early-branching freshwater cyanobacterium at the origin of chloroplasts

, Current Biology, vol.27, pp.1-6

G. D. Price, S. Maeda, T. Omata, and M. R. Badger, Modes of active inorganic carbon 719 uptake in the cyanobacterium, Synechococcus sp. PCC 7942, Functional Plant Biology, vol.720, pp.131-149, 2002.

M. Ragon, K. Benzerara, D. Moreira, R. Tavera, and P. Lopez-garcia, 16S rDNA-722 based analysis reveals cosmopolitan occurrence but limited diversity of two cyanobacterial 723 lineages with contrasted patterns of intracellular carbonate mineralization, Frontiers in 724 Microbiology, vol.5, p.331, 2014.

R. Riding, Cyanobacterial calcification, carbon dioxide concentrating mechanisms, p.726, 2006.

, Proterozoic-Cambrian changes in atmospheric composition, Geobiology, vol.4, pp.299-316

R. Rippka, J. Deruelles, J. Waterbury, M. Herdman, and R. Stanier, Generic 728 assignments, strain histories and properties of pure cultures of cyanobacteria, Journal of 729 General Microbiology, vol.111, pp.1-61, 1979.

M. A. Rouf, Y. Zivanovic, N. Zeyen, D. Moreira, K. Benzerara et al., Spectrochemical Analysis of inorganic elements in bacteria, Journal of Saghaï, p.733, 1964.

P. García, Metagenome-based diversity analyses suggest a significant contribution 734 of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. 735 Frontiers in Microbiology, vol.6, 2015.

M. H. Saier, V. S. Reddy, B. V. Tsu, M. S. Ahmed, C. Li et al., , 2016.

, The transporter classification database (TCDB): Recent advances. Nucleic Acids 738 Research, vol.44, pp.372-379

K. L. Shuttleworth and R. F. Unz, Influence of metals and metal speciation on the 740 growth of filamentous bacteria, Water Research, vol.25, pp.1177-1186, 1991.

S. Singh and A. K. Mishra, Regulation of calcium ion and its effect on growth and 742 developmental behavior in wild type and ntcA mutant of Anabaena sp. PCC 7120 under 743 varied levels of CaCl2, Microbiology, vol.83, pp.235-246, 2014.

M. Stewart, A. P. Somlyo, A. V. Somlyo, H. Shuman, J. A. Lindsay et al., Distribution of calcium and other elements in cryosectioned Bacillus cereus T 746 spores, determined by high-resolution scanning electron probe x-ray microanalysis, Journal of Bacteriology, vol.747, pp.481-491, 1980.

R. C. Team, R: A language and environment for statistical computing, 2013.

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the 750 sensitivity of progressive multiple sequence alignment through sequence weighting, 751 position-specific gap penalties and weight matrix choice, Nucleic Acids Res, vol.22, p.4673, 1994.

H. W. Van-veen, T. Abee, G. J. Kortstee, W. N. Konings, and A. J. Zehnder, , 1994.

, Translocation of metal phosphate via the phosphate inorganic transport system of 755 Escherichia coli, Biochemistry, vol.33, pp.1766-1770

R. Waditee, T. Hibino, Y. Tanaka, T. Nakamura, A. Incharoensakdi et al., , 2001.

, Halotolerant cyanobacterium Aphanothece halophytica contains an Na

, homologous to eukaryotic ones, with novel ion specificity affected by C-terminal tail, 759 Journal of Biological Chemistry, vol.276, pp.36931-36938

R. Waditee, G. S. Hossain, Y. Tanaka, T. Nakamura, M. Shikata et al., Isolation and functional characterization of Ca 2+, p.761, 2004.

, cyanobacteria. Journal of Biological Chemistry, vol.279, pp.4330-4338

L. E. Webb, Calcium dependence of the filamentous bacterium Haliscomenobacter 764 hydrossis, Water Research, vol.22, pp.1317-1320, 1988.

L. A. Warren and F. G. Ferris, Continuum between sorption and precipitation of Fe(III) 766 on Microbial Surfaces, Environmental Science & Technology, vol.32, pp.2331-2337, 1998.

X. C. Yu and W. Margolin, Ca 2+ -mediated GTP-dependent dynamic assembly of 768 bacterial cell division protein FtsZ into asters and polymer networks in vitro, Embo 769 Journal, vol.16, pp.5455-5463, 1997.

, Evidence of high Ca uptake by cyanobacteria forming 776 intracellular CaCO3 and impact on their growth