Skip to Main content Skip to Navigation
Conference papers

Automatic recognition of Virtual Reality sickness based on physiological signals

Abstract : Virtual Reality (VR) sickness seems one of the main limitations to the large-scale adoption of VR technologies. This disturbance seems to induce physiological changes that affect the sympathetic and parasympathetic activities of the users. Thereby, it seems relevant to measure users' physiological data in order to prevent and reduce VR sickness. This paper presents the results of an initial real-life experiment of VR sickness detection based on physiological data. The electrodermal, cardiac and subjective data of 27 participants was recorded during VR sessions. Machine Learning algorithms were trained and the best model (Gradient Boosting) explained 48% of the VR sickness variance. These results demonstrate the opportunity to develop an automatic and continuous tool to detect the appearance of VR sickness based on physiological signals. This tool will prove very valuable to the VR industry.
Document type :
Conference papers
Complete list of metadatas

Cited literature [26 references]  Display  Hide  Download
Contributor : Nicolas Martin <>
Submitted on : Thursday, September 12, 2019 - 11:11:09 AM
Last modification on : Friday, January 10, 2020 - 10:31:25 AM
Long-term archiving on: : Saturday, February 8, 2020 - 5:14:26 AM


Files produced by the author(s)


  • HAL Id : hal-02284832, version 1



Nicolas Martin, Nicolas Mathieu, Nico Pallamin, Martin Ragot, Jean-Marc Diverrez. Automatic recognition of Virtual Reality sickness based on physiological signals. IBC, 2018, Amsterdam, Netherlands. ⟨hal-02284832⟩



Record views


Files downloads