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Abstract
Autonomous robots are being increasingly in-
tegrated into manufacturing, supply chain and
retail industries due to the twin advantages
of improved throughput and adaptivity. In
order to handle complex Industry 4.0 tasks,
the autonomous robots require robust action
plans, that can self-adapt to runtime changes.
A further requirement is efficient implementa-
tion of knowledge bases, that may be queried
during planning and execution. In this paper,
we propose RoboPlanner, a framework to gen-
erate action plans in autonomous robots. In
RoboPlanner, we model the knowledge of world
models, robotic capabilities and task templates
using knowledge property graphs and graph
databases. Design time queries and robotic
perception are used to enable intelligent action
planning. At runtime, integrity constraints on
world model observations are used to update
knowledge bases. We demonstrate these solu-
tions on autonomous picker robots deployed in
Industry 4.0 warehouses.

1 Introduction
Advances in robotics, cyber-physical systems and indus-
trial automation has come to the forefront with Industry
4.0 [Lasi et al., 2014], with the following key require-
ments:

1. Interoperability: Machines, Internet of Things (IoT)
[Greengard, 2015] enabled devices and humans con-
nected and coordinating with each other.

2. Information transparency: Physical systems en-
hanced with sensor data to create added value in-
formation systems.

3. Technical Assistance: Use of intelligent devices to
aid in informed decision making. Robotic automa-
tion may be identified to perform repetitive, unsafe
or precise tasks.

4. Decentralized Decisions: The ability of such systems
to make autonomous decisions; only critical cases
will involve human intervention.

A fundamental characteristic required in Industry 4.0
deployments is the ability of autonomous robotic devices
to self-configure in dynamic goal and deployment condi-
tions. Autonomic computing [Huebscher and McCann,
2008] models have been proposed to create self-aware
robotic systems that respond to both high level goals
as well as external stimuli [Faniyi et al., 2014]. This has
led to the development of Cognitive Robotic Architectures
[Levesque and Lakemeyer, 2010][Beetz et al., 2010], that
are at the intersection of robotics, IoT and Artificial In-
telligence [Russell and Norvig, 2015].

Cognitive robots are able to intelligently execute tasks
based on high level goals, dependent on world model
knowledge and sensory perceptions to generate efficient
actions [Levesque and Lakemeyer, 2010]. In order to
be deployed in dynamic Industry 4.0 environments, the
robots must be autonomous and adaptive to runtime
changes. Given a high level task such as “pick ball from
warehouse rack”, the autonomous robot must identify
appropriate action plans to perform this task. As the
robots are intended to be learning world models, knowl-
edge bases are needed to populate information about the
world, object, perception and action sequences needed.
Any runtime anomalies are dealt with through further
queries and eventual exception handling.

Distilling these high level requirements, an au-
tonomous planning module for robots should include: (i)
Knowledge Bases that efficiently capture relationships
between world models, objects, robot actions and tasks
(ii) Action Plans that are efficiently decomposed from
a high level goal task; this involves querying the knowl-
edge base as well as triggering perceptions in case of
knowledge mismatch (iii) Techniques to Reconfigure ac-
tions at runtime, when plans cannot be executed due
to constraints (iv) Rules for consistent Updates to the
world model, which allows multiple robots to coordinate
or analyze exceptions during execution. While individ-
ual modules may have been developed in the robotic and
embedded software communities, integrating these fea-
tures into a common framework for industrial deploy-
ments remains a challenge.

In this paper, we propose RoboPlanner, a structured
technique to generate design time action plans for au-
tonomous robots. In order to enable autonomy in de-



ployments, we integrate knowledge bases, design time ac-
tion planning and runtime adaptation modules. Knowl-
edge representation and queries are enabled using effi-
cient graph database technologies [Angles and Gutier-
rez, 2008]. Design time action plans as provided us-
ing the formal concurrent programming knowledge Orc
[Kitchin et al., 2009], that allows structured composition
of action plans. To take care of runtime adaptation, we
provide general rules for triggering perception and ex-
ception handling. An integrity check is also provided
to update the graph database with runtime knowledge.
This framework is implemented over a realistic industrial
use case involving autonomous picking robots employed
in Industry 4.0 warehouses [Wurman et al., 2008].

Principal contributions of this paper:
1. RoboPlanner Knowledge Base module that formally

models robotic world models, capabilities, object
descriptions and task templates.

2. RoboPlanner Action Planner that uses design-time
queries/updates to knowledge graph databases, in-
cluding exception handling.

3. RoboPlanner Runtime simulation, adaptation and
performance analysis of action plans using graph
queries. This may be used to generate executable
task templates for physical robots.

4. RoboPlanner integrity checks for runtime updates
to the knowledge base.

5. Demonstration of the framework over an Industry
4.0 warehouse automation task.

The rest of this paper is organized as follows: Section 2
provides an overview of Industry 4.0 warehouse automa-
tion and the autonomous robots deployed in them. The
RoboPlanner modules are described in Section 3. Details
of knowledge base representation using graph databases
are covered in Section 4. Section 5 describes the tech-
niques used for action plan generation. Simulation, per-
formance analysis and knowledge updates in autonomous
robot deployments are presented in Section 6. The paper
ends with related work and conclusions.

2 Warehouse Automation
In this section, we introduce Industry 4.0 warehouse
automation tasks that may be fulfilled by autonomous
robots. A high level description of autonomous robots is
also introduced, which is used to build the RoboPlanner
framework in proceeding sections.

2.1 Industry 4.0 Warehouses
Industrial warehouses are employed as buffers in supply-
chains to maintain excess product, when there are vari-
ations in procurement/customer demand [Bartholdi and
Hackman, 2016]. Considerable effort has gone in reduc-
ing the stowing and procurement times in such ware-
houses, with automated picking robots [Zhang and et al.,
2016] being throughput of pick & place tasks.

Fig. 1 presents a high level view of operations taking
place in automated warehouses. Once a delivery order
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Figure 1: Automation for Warehouse Pick & Place Tasks.

is received, the products are procured from the ware-
house. As shown in Fig. 1, autonomous Picker robots
(such as KUKA KMR Quantec1) are being proposed for
Industry 4.0 automating pick & place tasks. The robots
are intended to be autonomous, with adaptation seen
for varying pick-up locations, product dimensions and
rates of procurement. When the required products are
procured, they are collated and checked for final packing
and product shipment.

In order to successfully integrate robotic entities into
complex industrial deployments, it is crucial to develop
a unified modeling framework for autonomous robots.

2.2 Autonomous Robots
To model the robotic components in warehouses, we
make use of the Autonomous Robot abstraction, inspired
by intelligent agents [Russell and Norvig, 2015]. Typical
activities, for instance with a pick & place robot in a
smart warehouse, include:

1. Goals: Understanding goals of each task and sub-
task, such as, placing correct parts into correct bins
within the given time constraints.

2. Perception: Object identification and obstacle de-
tection using camera and odometry sensors that
sense the environment. This aids the robot in object
detection and identification. Robot location, view
and environment may also be perceived.

3. Actions: Identifying granular actionable subtasks,
such as, moving to particular location, picking up
parts of orders or sorting objects. Constraints may
be placed on the robot capabilities, motion plans
and accuracy in performing such actions.

4. Knowledge Base: Using domain models of the world
for goal completion, such as warehouse environment
maps, rack type and product features. The robot
capabilities and necessary algorithms should enable
completion of goals.

Algorithm 1 presents an overview of an intelligent
robot’s perception and action via a Knowledge Base
[Russell and Norvig, 2015]. The knowledge base coor-
dinates the appropriate action in relation to an individ-
ual robot’s perception. The knowledge base should also
include descriptions of domain ontology, task templates,
algorithmic implementations and resource descriptions.

1https://www.kuka.com

https://www.kuka.com


Algorithm 1: Stateful Intelligent Robotic Agent.
1 Input: Robot Perception; Knowledge Base; Robot State;
2 Output: Robot Action;
3 Robot State ← Interpret(Perception);
4 Knowledge Base ← Update(Knowledge Base, Perception);
5 Action ← Choose-Best-Action(Knowledge Base);
6 Robot State ← Update(State, Action);
7 Knowledge Base ← Update(Knowledge Base, Action);

To integrate the above elements into robotic interac-
tions for Industry 4.0, we propose the RoboPlanner au-
tonomous architecture framework.

3 RoboPlanner Modules
In this section, we provide details about the various mod-
ules to be integrated within RoboPlanner. These mod-
ules cover the principal requirements of cognitive robotic
architectures [Levesque and Lakemeyer, 2010][Beetz
et al., 2010], including knowledge representation, action
planning, reconfiguration and knowledge updates. Fig.
2 provides an overview of the modules that are integrated
within RoboPlanner :
◦ Design Time Action Planning Module: This

module is responsible for generating efficient action
plans, when input with a high level goal. The mod-
ule decomposes the goal into atomic tasks, and ap-
plies workflow specification languages (such as Orc
[Kitchin et al., 2009]) to complete the goal task.
Action planning involves querying the Knowledge
Graph Database Module to ascertain requirements
for goal completion. Robot perception may also be
triggered to acquire further information for action
planning.
◦ Knowledge Graph Database Module: An inte-

gral part of all autonomous/cognitive robotic archi-
tectures is the knowledge base. We model this using
graph databases [Angles and Gutierrez, 2008], that
maintain relationships between data in a graphical
form. Entities such as the world model, robotic
algorithms and task templates are stored in the
database. The knowledge database is queried both
at design time for action generation and at runtime
for knowledge updates.
◦ Runtime Execution Module: The action plans

are executed by one or multiple autonomous robots
to complete the task. Translation of the action
plan to a robot specific middleware language such
as ROS2 may be done. The execution module may
be aided by robotic perception. Knowledge that is
gained during the execution is to be updated to the
graph knowledge database, after satisfying some in-
tegrity constraints.
◦ Adaptation Monitoring Module: This modules

monitors runtime deployments of intelligent robots

2http://www.ros.org/

to estimate plan completion. While robotic per-
ception may be used to aid in unforeseen circum-
stances, more severe exceptions may require re-
planning. Performance degradation (leading to non-
completion of plans), may also trigger re-planning.
Knowledge of instances that trigger re-planning are
learnt and updated.

The following sections dive further into the modeling and
implementation of these modules.

4 Robotic Knowledge Base
The robotic knowledge base is modeled using property
graphs, with data stored in graph databases. Queries
using the Gremlin graph query language are also studied.

4.1 Knowledge Graphs
In order to model knowledge bases inherent in intelligent
automation, we make use of property graphs [Angles
and Gutierrez, 2008]. Property graphs are attributed,
labeled, directed graphs. This is an alternative to se-
mantic ontologies [Grimm et al., 2007] and tuple data-
stores that are use in implementations such as Knowrob
[Tenorth and Beetz, 2013] and CRAM [Beetz et al.,
2010]. Our knowledge base has the following knowledge
graphs included:
◦ World Models: Describes the environment map and

layout, including object locations.
◦ Object Templates: Describes the target objects of

interest, including shape, size, colour and location.
◦ Robot Capabilities: Provides robot models, capabil-

ities, sensors and actuators that are integrated to
perform tasks.
◦ Robotic Algorithms: Navigation, manipulation and

task allocation algorithms that are used within
robotic actions.
◦ Task Templates: High level task requirements and

corresponding outputs are provided.
Fig. 3 provides the property graph models for world
models, task templates, object templates, robot ca-
pabilities and robot algorithms. To describe proper-
ties between edges, we limit ourselves to four relations:
isOfType, hasProperty, requires and produces.
isOfType provides hierarchical sub-class relationships;
hasProperty extends property descriptions using key–
value pairs; requires provides pre-conditions to extract
knowledge from the graph; requires provides post con-
dition effects of executing the node. These relationships
may be queried to extract information from the knowl-
edge base.

Fig. 3a provides the capabilities of a Pick Robot that
Robot Model, Capabilities, Perception; it requires
Target, World Model, Algorithms and produces the
Pick, Place Actions. Algorithms necessary for the
robotic executions are provided in Fig. 3d, with path
planning, image template matching and grasp manip-
ulation algorithms included. Explicit definitions of

http://www.ros.org/
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Figure 3: Knowledge Property Graphs for Autonomous Robots.

each task is provided in Fig. 3b, for instance with
the Place task, which requires World Model, Target
Object, Picker Robot and produces Placed Object. Fig.
3e provides an example of the Warehouse world model,
which hasProperty Map and Object. In order to extract
the property of Object Location requires a Map of the
area. Fig. 3c provides properties of objects in the world

model, including their Location, Shape and Contour Map.
Note that the property graph modeling approach pro-
vides extensibility and reuse of information across mul-
tiple autonomous robotic deployments.



4.2 Graph Database Queries
Semantic ontologies typically store data in tuple data-
stores that reduce expressivity provided in graph repre-
sentations [Angles and Gutierrez, 2008]. Scalability is
another hindrance in representation, update and query
of large ontologies. Graph databases are emerging as an
appropriate tool to model interconnectivity and topol-
ogy of relationships among large knowledge data sets
[Angles and Gutierrez, 2008]. Principal advantages in-
clude: (i) Being able to keep all the information about
an entity in a single node and show related information
by arcs connected to it; (ii) Queries can refer directly
to this graph structure, such as finding shortest paths
or determining certain subgraphs; (iii) Graph databases
provide efficient storage structures for graphs, thus re-
ducing computational complexity in operations. Graph
databases are also emerging as high-performance back
end stores when making use of complex dialogue and
chatbot engines [M. Maro and Origlia, 2017].

To implement the property graphs in Section 4.1, we
make use of the multi-modal OrientDB database3. Ori-
entDB uses a generic vertex persistent class V and a
class for edges E. Unlike ontologies that store data us-
ing triple stores, graph databases maintain the graph-
ical structure with vertices and edges. In the graph
data model, nodes are physically connected to each other
via pointers, thus enabling complex queries to be ex-
ecuted faster and more effectively than in a relational
data model [Angles and Gutierrez, 2008]. Properties are
represented as Key–Value pairs that may be queried.

An example graph database (of the World Model in
Fig. 3e) with vertices, edges and properties in OrientDB
is presented below:
gremlin> g.V.map

==>{Name=WorldModel}
==>{Name=Objects, Properties=ObjectProperties,

Location=ObjectLocation}
==>{Name=Warehouse}
==>{Name=Map, Rack=RackConfig, Layout=WarehouseLayout,

Aisles=AislesConfig}
gremlin> g.E

==>e[#26:0][#10:0-isOfType->#9:0]
==>e[#29:0][#10:0-hasProperty->#11:0]
==>e[#30:0][#10:0-hasProperty->#9:1]
==>e[#33:0][#9:1-requires->#11:0]

In order to query this graph, we use Gremlin4, a
domain-specific (DSL) open source programming lan-
guage focusing on graph traversal and manipulation.
The following types of queries may be made:

1. Filtering: Filter out vertices or edges according to
given property labels. For instance, the query may
g.v().Name be used to filter out properties such as
Name of a vertex.
gremlin> g.v(’10:0’).Name

==>Warehouse
gremlin> g.v(’10:0’).bothE

==>e[#26:0][#10:0-isOfType->#9:0]
==>e[#29:0][#10:0-hasProperty->#11:0]
==>e[#30:0][#10:0-hasProperty->#9:1]

3https://orientdb.com/
4http://tinkerpop.apache.org/

2. Complex Queries: Queries can combine mul-
tiple vertices, edges and properties. Queries
can also provide range or equality con-
straints to numeric property values. For in-
stance, the complex query g.V.has(’Name’,
’Warehouse’).out(’hasProperty’).map matches
the vertex with property key–value pair (Name,
Warehouse), output edge with property hasProperty
and produces an output of the vertices.
gremlin> g.V.has(’Name’, ’Warehouse’).

out(’hasProperty’).map
==>{Rack=RackConfig, Layout=WarehouseLayout,

Aisles=AislesConfig, Name=Map}
==>{Properties=ObjectProperties, Name=Objects,

Location=ObjectLocation}

3. Graph Traversal: Another advantage of stor-
ing data using graph databases is the abil-
ity to traverse graphs. For instance, the
query g.v().outE.inV.name.path traverses the out-
put edges (outE) of a vertex, and provides the path
traversed.
gremlin> g.v(’10:0’).outE.inV.name.path

==>[v[#10:0], e[#26:0][#10:0-isOfType->#9:0],
v[#9:0], null]

==>[v[#10:0], e[#29:0][#10:0-hasProperty->#11:0],
v[#11:0], null]

While we have made use of Gremlin as the language
for explicit graph database querying, this can also be
a backend for an efficient dialogue/chatbot implemen-
tation [M. Maro and Origlia, 2017]. Questions such as
“Where is the target?” or “What are the target’s prop-
erties?” or “Can the robot lift this?” can be translated
into efficient knowledge base queries as defined above.
It is of interest to translate this knowledge to efficient
action plans for the robot to act upon, which is explored
next.

5 Action Plan Generation
In order to study the design time action planning mod-
ule, we formalize the interaction between the planner
and knowledge base. An overview of the concurrent pro-
gramming language Orc is also provided, that is later
used to simulate action planning.

5.1 Orc Language
In order to implement robotic action plans, we make
use of the formal specification language Orc. The Orc
concurrent programming language is grounded on formal
process-calculi to specify complex distributed computing
patterns [Kitchin et al., 2009]. The execution of pro-
grams in Orc makes use of Expressions, with the atomic
abstraction being a site. To create complex expressions
based on site invocations, Orc employs the following
Combinators:
◦ Parallel Combinator (|): Given two sites s1 and s2,

the expression s1 | s2 invokes both sites in parallel.
◦ Sequential Combinator (>x>,�): In the expression

s1 >x> s2 (shorthand s1 � s2), site s1 is evaluated

https://orientdb.com/
http://tinkerpop.apache.org/


initially, with every value published by s1 initiating
a separate execution of site s2.
◦ Pruning Combinator (<x<, �): In the expression

s1 <x< s2 (shorthand s1 � s2), both sites s1 and
s2 execute in parallel. If s2 publishes a value, that
value is bound to x and the execution of s2 is ter-
minated.
◦ Otherwise Combinator (;): The expression s1 ; s2

first executes site s1. If s1 publishes no value and
halts, then s2 is executed instead.

The val declaration in Orc binds variables to values.
The def declaration defines a function. Orc further con-
tains built-in sites incorporating distributed computing
paradigms such as channels, semaphores and synchro-
nization primitives (further details available in the Orc
website5).

5.2 Action Planning Module
As specified in Fig. 2, action planning involves interact-
ing with the knowledge base to efficiently plan manipu-
lation, navigation and task planning actions. However,
perception and exception handling must also be built in
to take care of insufficient knowledge.

To formalize the process of generating action plans re-
quired to satisfy goals, we present Algorithm 2. Given
an input goal (e.g. pick ball from rack using picker
robot), the first step (lines 3, 4 in Algorithm 2) is to ver-
ify and subdivide goals from the task descriptions avail-
able (pick target, being an atomic subgoal). For each
of these subgoals, there are pre-conditions to be satisfied
(lines 6–8 in Algorithm 2): subgoals require (actions,
targets), actions require (targets, object attributes, capa-
bilities), targets require (object attributes). The object
attributes of interest (environment rack, locations) can
either be derived from the world model knowledge base
or by querying robot perception (robot sensor observa-
tion and interpretation, environment point cloud). The
target of interest (ball) can either be identified from the
object templates knowledge base or by querying robot
perception (robot sensor observation and interpretation,
perception algorithms). The capability to complete goal
(robot model, arm length, battery state) is also extracted
from the robot capability knowledge base. Finally, the
action (pick ball) needed to satisfy the subgoal is derived,
dependent on the specified target, object attributes and
capability (line 12 in Algorithm 2). The actions con-
sist of both navigation (path planning) and manipulation
(grasping, lifting) procedures. This process is used iter-
atively for each subgoal to derive the action plan needed
to enact the goal (line 13, 14 in Algorithm 2). In case
there are Exceptions observed within the subgoal plan-
ning, re-planning is triggered.

An example of such an action plan in presented in Fig.
4, wherein the high level input task of: picker | pick |
ball | rack is decomposed iteratively to complete the
task. Queries to the knowledge base enable generating

5https://orc.csres.utexas.edu/

Algorithm 2: Generating Action Plans for Goals via
Knowledge Bases.

1 Input: Input Goal; Knowledge Base[World Model, Object
Templates, Task Descriptions, Robot Capability,
Algorithms];

2 Output: Action Plan;
3 Goal ← Verify(Input Goal, Knowledge Base[Task Descriptions]);
4 Subgoals ← Decompose(Goal, Knowledge Base[Task

Descriptions]);
5 for each Subgoal do
6 (Action?, Target?) ← Requirements(Subgoal);
7 (Target?, Object Attributes?, Capability?) ←

Requirements(Action);
8 Object Attributes? ← Requirements(Target);
9 if Object Attributes? is a member of Knowledge

Base[World Model] then
Object Attributes ← Query(Object Attributes?,

Knowledge Base[World Model]);
else

if Object Attributes? can be obtained by Perception
then

Object Attributes ← Perception(Object
Attributes?, Knowledge Base[World Model, Robot
Capability, Perception Algorithms]);

else
Exception ← Object Attributes?

10 if Target? is a member of Knowledge Base[Object
Templates] then

Target ← Query(Target?, Knowledge Base[Object
Templates]);

else
if Target? can be obtained by Perception then

Target ← Perception(Target?, Knowledge
Base[World Model, Robot Capability, Perception
Algorithms]);

else
Exception ← Target?

11 Capability ← Query(Capability?, Knowledge Base[Robot
Capability]);

12 if Capability satisfies Action then
Action ← Query(Action?, Target, Object Attributes,

Capability, Knowledge Base[Navigation/Manipulation
Algorithms]);

else
Exception ← Action?

13 if Exception is null then
Action Plan ← Update(Action);

else
Trigger Re-planning of Subgoal

14 return Action Plan satisfying Input Goal;

information to identify targets (target?) or atomic ac-
tions (action?). Perception triggering and re-planning
in case of exceptions are also provided. Such a pro-
cess of decomposing high level expressions to actionable
tasks has also been employed in the automated planning
community with Hierarchical Task Networks [Erol et al.,
1994].

Note that though we have represented this via graph
queries, another view would be request-responses with a
dialogue agent [A. Bordes and Weston, 2017], represent-
ing the knowledge base. The dialogue agent could be
used to further clarify queries that may be ambiguous.
A typical conversation instance could be:
user: pick ball
RoboPlanner Dialogue Agent: recognize two target := ball;

colour? red colour? blue. Which color?
User: pick red ball
RoboPlanner Dialogue Agent: target := ball; colour := red;

action := pick; proceed?
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Table 1: A (Non-exhaustive) List of Artifacts in the Action
Planning Framework.

Artifacts Instances

world model warehouse | factory | home environment |
shipyard

object template ball | box | obstacle | component
robot capabili-
ties

picking | movement | obstacle avoidance |
detection

perception depth camera | odometry sensor | gyroscope
task templates delivery | scheduling | monitoring

robot algorithms localization & mapping | edge detection | path
planning

target ball | bin | book | package | conveyor belt
action pick | grasp | move | follow | drop | hold

goal action? | target? | world model? | robot
capability?

User: yes

Such a system unifies the modeling of both knowledge ac-
quisition from a central repository, robotic updates and
queries that may be made to human participants. The
action plans that are formulated result in valid goal ful-
fillment, due to varied knowledge sources incorporated.

To further generalize this action planning framework,
we provide instances of multiple artifacts in Table 1. We
emphasize that the procedure outlined in Algorithm 2
and Fig. 4 is structured to be generic, allowing action
plans to be generated with various world models, robotic
capabilities and task templates. Such a structured way
of planning actions will prove valuable across multiple
deployments.

6 Simulation and Analysis
In this section, we provide an end-to-end simulation of
the design time planning and runtime adaptation pro-
cess, with further analysis on performance aspects. Fur-
ther constructs to ensure graph database integrity with
knowledge base updates are provided.

6.1 Action Planning Simulation
Given a high level goal task such as “Pick Ball from
Rack using Picker Robot”, the first step is to decompose
goals into appropriate sub-tasks. The tasks are mapped
to appropriate Knowledge Bases (using the member func-
tion in Orc), depending on whether they represent ac-
tions, targets, robotic components or properties. The

following code provides a map of the atomic terms to in-
dividual knowledge base elements (Line 12 in Knowledge
Resolution). For instance, the term rack is located as a
member of the World model knowledge base (Line 15 in
Knowledge Resolution).
1 +++ Knowledge Resolution +++
2
3 -- Knowledge Base Pointers
4 include " KB.inc "
5 val b=[ World_model, Object_template, Robot_cap,

Task_template, Robot_algo ]
6
7 -- Mapping Process
8 def search (a,b) = Ift member ( a,head (b)) >> Println (

a+" in "+head(head(b))) | Iff member ( a,head (b)
) >> search ( a,tail (b))

9 def plan(a) = search (a,b)
10
11 --Input Goals
12 map( plan, ["pick","ball","rack"," picker "])
13
14 --Orc Output ---------------------------------------
15 rack in World_model
16 ball in Object_template
17 picker in Robot_cap
18 pick in Task_template

Once the appropriate knowledge base elements are rec-
ognized, Gremlin queries are used to obtain dependencies
from the Graph database. We assume that the knowl-
edge base is pre-populated with property graphs as de-
scribed in Section 4. Terms used in Fig. 3, such as
hasProperty and requires are used in conjunction with
Gremlin graph database filtering and complex queries,
to populate local robotic knowledge bases (Lines 9–20
in Knowledge Query). While we represent this as explicit
queries, alternate implementations may use dialogue en-
gines to extract necessary information from the knowl-
edge base via question-answers [A. Bordes and Weston,
2017][M. Maro and Origlia, 2017]. We make use of the
def class declaration that allows us to implement sites
within Orc [Kitchin et al., 2009], which provides encap-
sulation similar to classes in object-oriented program-
ming. we make use of the Ref site in Orc, that creates
a rewritable storage location. The following Orc code
presents these aspects:
1 +++ Knowledge Query +++
2
3 -- Reference store for retrieved data
4 val World_model = Ref ([])
5 def append_model (v) = World_model? >m>
6 append ([v],m) >q> World_model:= q
7
8 -- Gremlin Query site
9 def class gremlin ()=

10 def find(v,D) = g.V.has (v,D).map >v>
11 append_model (v)
12 def hasProperty (v,D) = g.V.has (v,D) .outE
13 (’ hasProperty ’) .inV.map >v> append_model (v)
14 def requires (v,D) = g.V.has (v,D) .outE
15 (’requires ’) .inV.map >v> append_model (v)
16 def isOfType (v,D) = g.V.has (v,D) .outE
17 (’isofType ’) .inV.map >v> append_model (v)
18 def produces (v,D) = g.V.has (v,D) .outE
19 (’produces ’) .inV.map >v> append_model (v)
20 stop
21
22 -- Searching Dependencies for " rack "
23 val gremlin = gremlin ()
24 gremlin.find ("Name","rack") | gremlin.hasProperty ("

Name"," Objects ") | gremlin.requires ("Name","



Map") | gremlin.isOfType ("Name"," WorldModel ")
>> World_model?

25
26 --Output -----------------------------------------
27 [" WorldModel ", ("Map", " WarehouseLayout "),
28 (" Objects ", " ObjectLocation ", " ObjectProperties "),

"rack"]

Action planning with procedures outlined in Section 5
can now be performed, with the high level goals be-
ing enacted through decomposition. Queries are made
to the knowledge base to determine if the query terms
are located in the world or target models, the ab-
sence of which triggers perception (Lines 9–11 in Action
Planner). Similarly, queries for the robot and action
models are triggered, which can trigger runtime excep-
tions such as lack of robot capabilities (Lines 14–17 in
Action Planner). We also introduce a function to trig-
ger re-planning replan action, that looks for exceptions
and may add capabilities such as a new robot model or
action template (Lines 20–21 in Action Planner). The
following Orc code presents these aspects:
1 +++ Action Planner +++
2
3 -- Knowledge Base, Perception and Exception Pointers
4 include " KB.inc "
5 val perception = Dictionary ()
6 val exception = Dictionary ()
7
8 -- Queries for world and object templates, with

perception
9 def query1 (v,db) = Ift member (v,db) >> (v,db) |

Iff member (v,db) >> perception.p := v >>
perception.p?

10 def world (w) = query1 (w, world_model )
11 def target (o) = query1 (o, object_template )
12
13 ---Queries for robot capabilities and actions, with

exceptions
14 def query2 (v,db) = Ift member (v,db) >> (v,db) |
15 Iff member (v,db) >> exception.ex := v >>

add_capabilities (v,db)
16 def robot (r) = query2 (r, robot_cap )
17 def action (a) = query2 (a, task_template ) >> (

query2 ((" navigation ","task"," manipulation ")
,robot_algo )) | replan_action (a))

18
19 -- Replanning procedures for runtime exceptions
20 def add_capabilities (v,db) = merge (db,[v])
21 def replan_action (a) = Ift ( exception.ex? = null)

>> stop | Iff ( exception.ex? = null) >>
exception.ex := null >> action (a)

The output of a typical action plan is now presented,
which is input goals that are similar to those planned at
design time. Once the query results from various knowl-
edge models are obtained, the action can be performed
that includes navigation, manipulation and task com-
pletion (Lines 14–15 in Design Time Simulation). Such
an execution is straightforward as neither external per-
ception or exceptions are triggered. The following Orc
code presents these aspects:
1 +++ Design Time Simulation +++
2
3 --Input goals
4 robot (" picker ") | action ("pick") | object ("ball") |

world ("rack")
5
6 --Output -------------------------------------------
7 Target Query Triggered for ball

8 World Model Query Triggered for rack
9 Robot Capability Query Triggered for picker

10 Action Query Triggered for pick
11 ("ball", ["ball", "cube"])
12 (" picker ", [" picker "])
13 ("rack", [" warehouse ", "rack"])
14 ((" navigation ", [" navigation ", " manipulation ", "

task"]), ("task", [" navigation ", " manipulation
", "task"]), (" manipulation ", [" navigation ", "
manipulation ", "task"]))

15 Action Completed pick

6.2 Runtime Adaptation Simulation
An important aspect of autonomous robotic deployment
is runtime adaptation to changes. The goals are modified
with the robot type replaced by mover, action collect
and the target object replaced by cylinder. As these re-
quirements are not pre-populated into the graph knowl-
edge base, adaptation and exception handling proce-
dures are triggered in Algorithm 2. We notice that
perception is triggered to identify the target cylinder
(Lines 12–13 in Runtime Adaptation Simulation). Ex-
ceptions are also triggered for the lack of collect actions
and mover robot capabilities, that are further added into
the knowledge base (Lines 15–21 in Runtime Adaptation
Simulation). Post this adaptation, the action execution
is completed. The following Orc code presents these as-
pects:
1 +++ Runtime Adaptation Simulation +++
2
3 --Input goals
4 robot (" mover ") | action (" collect ") | target ("

cylinder ") | world ("rack")
5
6 --Output -------------------------------------------
7 Action Query Triggered for collect
8 Target Query Triggered for cylinder
9 Robot Capability Query Triggered for mover

10 World Model Query Triggered for rack
11 ("rack", [" warehouse ", "rack"])
12 Perception Trigged for cylinder
13 "cylinder"
14 Action Replan Triggered
15 Exception Trigged for mover
16 Adding knowledge of mover
17 Updated KB ["mover", "picker"]
18 Action Query Triggered for collect
19 Exception Trigged for collect
20 Adding knowledge of collect
21 Updated KB ["collect", "pick", "drop", "assign"]
22 ((" navigation ", [" navigation ", " manipulation ", "

task"]), ("task", [" navigation ", " manipulation
", "task"]), (" manipulation ", [" navigation ", "
manipulation ", "task"]))

23 Action Completed collect

6.3 ROS Smach Code Generation
To deploy the action plans to physical/virtual robots,
we make use of the open source ROS Smach 6 frame-
work. This is a finite state machine where states and
transition of the robot may be described with respect
to complex tasks. We auto-generate this from the Orc
task list, by referencing robot capabilities, world model
and task templates seen in Fig. 3. An example of the

6http://wiki.ros.org/smach

http://wiki.ros.org/smach


Figure 5: KUKA Picker Robot API Call Integration via ROS
Smach.

Figure 6: Latency Measurements dependent on Knowledge
Base Queries.

ROS Smach code generated is presented below, that pro-
duces the output of each state transition as succeeded,
aborted or preempted. The PERCEPTION task, if success-
ful is followed by ROBOT ARM MOVEMENT; else an abort or
preemption is triggered:

ActivityDiagram PickPlace produces outcomes
(succeeded,aborted,preempted)
has activities{

Activity PERCEPTION {
inputData: {WORLD}
requireCapability: {robot.camera}
conditions {
if (outcome is succeeded) nextActivity :ROBOT_ARM_MOVEMENT,
if(outcome is preempted) final outcome :PickPlace.preempted,
if(outcome is aborted) final outcome :PickPlace.aborted}}

Activity ROBOT_ARM_MOVEMENT {
inputData : {WORLD ROBOT TASK TARGET}
requireCapability: {robot.movement}
conditions {
if (outcome is succeeded) nextActivity :ROBOT_GRIPPER_GRASP,
if(outcome is preempted) final outcome :PickPlace.preempted,
if(outcome is aborted) final outcome :PickPlace.aborted}

}...}

Integrating RoboPlanner with physical robotic simu-
lator for action planning, such as that shown in Fig. 5,
is then done using ROS API calls mapped to each ROS
Smach task. ROS also provides ROS bridge interfaces
to call physical robot sensor-actuator APIs via the task
planning framework. This presents an end-to-end sys-
tem for autonomous robot action planning (refer to Fig.
2), with knowledge integration, design time action plan-
ning, runtime execution and adaptation.

6.4 Performance Analysis
Given that we propose the use of knowledge bases and
Gremlin graph queries to retrieve the language, perfor-
mance impact of the queries must be analyzed. This
is specially important in the case of Industry 4.0 de-
ployments, where automation is intended to improve
throughput. To estimate query and update times in
OrientDB graph databases, we run the following stress
test on a Linux workstation with 4 core i5-6200U CPU
@ 2.30GHz, 4 GB RAM, which simulates the hyper-
connected graph traversal over 50 nodes:
Starting workload GSP (concurrencyLevel=4)...
- Workload in progress 100% [Shortest paths blocks

(block size=50) executed: 50/50]
- Total execution time: 2.768 secs
- Executed 50 shortest paths in 2.762 secs
- Path depth: maximum 8, average 5.286, not connected 0
- Throughput: 18.103/sec (Avg 55.240ms/op)
- Latency Avg: 211.996ms/op (58th percentile) - Min: 55.838ms -

99th Perc: 576.653ms - 99.9th Perc: 576.653ms -
Max: 576.653ms - Conflicts: 0

The average graph traversal latency is seen to be
around 211 milliseconds, that outperforms conventional
perception and object recognition algorithms (2300 mil-
liseconds in [Zhang and et al., 2016]). Using these
mean values for exponentially distributed latency out-
puts, Monte-Carlo runs are performed over 20, 000 runs.
Fig. 6 demonstrates outputs for various cases with the
Knowledge Base having 100%, 90% and 70% of the ac-
tion planning information (triggering perception and ex-
ception handling in case of missing knowledge). For in-
stance, over the base case of 70% plan information in the
Knowledge Base, the 95% percentile latency improves by
56.5% (90% queries answered by knowledge base) and by
73.9% (90% queries answered by knowledge base). This
demonstrates that continuous learning and runtime up-
dates have a significant impact on autonomous robotic
performance. Thus, it is crucial to maintain an updated
knowledge base within the RoboPlanner framework.

6.5 Graph Database Integrity
While the multi-modal OrientDB satisfies ACID (Atom-
icity, Consistency, Isolation, Durability) properties for
databases, integrity checks are to be maintained when
updating the databases. Integrity constraints are rules
which define the set of consistent database states or
changes of state. Typically, three types of checks are
performed [Rabuzin et al., 2016]:

1. Schema instance: Entity types and type checking
integrity.

2. Referential integrity: This checks that the nodes
and edges are uniquely named and that the edges
are provided with labels and start/end vertices.

3. Functional dependencies: Value restrictions on par-
ticular attributes. Defining minimum and maxi-
mum property value.

These checks are incorporated into the below Orc code
for knowledge base updates. We notice that type check-
ing (Line 4 in Database Update Integrity), redundancy



Table 2: Autonomous / Cognitive Robotic Architectures.

Feature Modules

CRAM [Beetz
et al., 2010]
RoboEarth
[Tenorth and Beetz,
2013]

ACT-R/E[Trafton
et al., 2013]

SOAR [Laird et al.,
2012]

OpenRobots On-
tology (ORO)
[Lemaignan et al.,
2010]

RoboPlanner

Application Do-
mains

Cognitive Service
Robots, Knowledge
Sharing among
Robots

Human–Robot
Coordination

Autonomous Mobile
Robots

Cognitive Service
Robots

Autonomous
Robots

Knowledge Base
KnowRob [Tenorth
and Beetz, 2013]
OWL Ontologies

Declarative knowl-
edge (fact-based
memories); Proce-
dural knowledge
(rule-based memo-
ries)

Semantic Memory
Models – Symbolic
and Episodic

ORO OWL and RDF
Triplestore

Graph Databases
with World
Model, Robot
Capabilities, Al-
gorithms and
Task Templates

Knowledge
Queries

Knowrob (Prolog)
queries, that can be
extended to other
ontology queries

High level model in-
teractions

STRIPS [Russell and
Norvig, 2015] like
decision procedures

SPARQL Queries
Gremlin Knowl-
edge Graph
Queries

Action Planning

CRAM Plan Lan-
guage (CPL) allow-
ing concurrent, par-
allel processes

Intentional (Goal)
module

Procedural memory
module

CRAM integration
with logical rules

Orc Specifications
with Knowledge
Base queries; ROS
Smach Code

Runtime Excep-
tion Handling

COGNITO reason-
ing system that
processes failure
traces

Utility based re-
wards; Visual and
Aural modules

Reenforcement
Learning

Human expert inter-
vention

Adaptation and
exception han-
dling modules

Runtime Knowl-
edge Base Up-
dates

No Explicit Mention Knowledge chunks
updated

Chunks of memory
data updated

RDF Triple updates
with consistency
checks

Graph database
update with in-
tegrity checks

Performance Eval-
uation No Explicit Mention

Accuracy of Ac-
tions with respect
to World Model
changes

Cognitive Reactivity
measured

ORO Server perfor-
mance evaluation
(updation, queries)

Graph database
performance, ex-
ception handling
delay

of input data (Line 0 in Database Update Integrity) and
valid range of properties (Line 11 in Database Update
Integrity) are included. When a robot produces a run-
time update, the site update node(key,value) checks for
integrity before pushing it to the knowledge base (Line
15 in Database Update Integrity).
1 +++ Database Update Integrity +++
2
3 --Type information
4 type world_model = {. Name :: String, Colour ::

String, Location :: ( Number,Number,Number ) .}
5 val new_world_model = Dictionary ()
6
7 -- Integrity check site
8 def class integrity ()=
9 val range = range

10 def redundancy_check ( key,value ) = Ift(key =
value ) >> false | Iff(key = value ) >>
true

11 def value_check ( key,range ) = Ift( member (
key,range )) >> true | Iff( member (
key,range )) >> false

12 stop
13
14 def class update ()=
15 def update_node ( key,value ) = Read(key) >aa> (

integrity.redundancy_check ( key,value )
,integrity.value_check ( key,value )) >>
new_world_model.aa := value

16 stop

Such integrity checks and superior performance as-
pects can prove useful in other applications such as in-
telligent chatbots and dialogue engines, where updated
knowledge bases and real time responses are crucial.

In summary, our work demonstrates the following:
1. RoboPlanner Knowledge Base module that formally

models robotic world models, capabilities, object

descriptions and task templates – Fig. 3 and inputs
to Knowledge Resolution/Knowledge Query examples
in Section 6.

2. RoboPlanner Action Planner that uses design-time
queries/updates to knowledge graph databases, in-
cluding exception handling – Algorithm 2, Fig. 4
and Action Planner/Design Time Simulation exam-
ples in Section 6.

3. RoboPlanner Runtime simulation, adaptation and
performance analysis of action plans using graph
queries – Runtime Adaptation Simulation example
in Section 6 and Fig. 6. Executable task templates
as ROS Smach codes as presented in Section 6.3.

4. RoboPlanner integrity checks for runtime updates
to the knowledge base – Database Update Integrity
example in Section 6.

Such modules will prove useful across a host of Industry
4.0 deployments invoking autonomous robots.

7 Related Work
Industry 4.0 deployments [Lasi et al., 2014] propose the
use of autonomous robotic entities to complete complex
tasks. Commercial deployments have been used in ware-
houses [Bartholdi and Hackman, 2016][Zhang and et al.,
2016] to improve throughput of automated tasks. Ama-
zon7 has deployed hundreds of autonomous robots to aid
in reducing costs of warehouse logistics [Wurman et al.,
2008]. Inspiration is drawn from the use of autonomic
computing technologies [Huebscher and McCann, 2008],

7https://www.amazonrobotics.com/

https://www.amazonrobotics.com/


that allow robotic runtime reconfiguration and adap-
tation. Architectures with self-aware, self-configuring
and self-optimizing capabilities have also been proposed
[Faniyi et al., 2014], that may be applied to such au-
tomation frameworks.

This has led to recent research on cognitive robotic
systems [Levesque and Lakemeyer, 2010], with architec-
tures such as RoboEarth [Tenorth and Beetz, 2013] and
CRAM [Beetz et al., 2010] being proposed. While a
few of these make use of semantic ontologies to repre-
sent knowledge, others make use of biological memory
models to cache information. A review of cognitive ar-
chitectures applied in multiple domains such as vision,
learning, memory models and robotics have been pro-
vided in [Kotseruba and Tsotsos, 2018]. Table 2 provides
a detailed comparison between RoboPlanner and other
cognitive/autonomous robotic architectures. We notice
that OWL based ontologies [Grimm et al., 2007] and
queries using SPARQL/Prolog are heavily used, which
suffer from performance deterioration when the knowl-
edge base is large. Automated planners such as ROSPlan
[Cashmore and et al., 2015] make use of logical PDDL
transitions at task design time, rather than runtime ex-
ecutions. In particular, runtime exception handling and
consistent model updates have not been fully considered
in these frameworks.

In RoboPlanner, we propose the use of graph databases
[Angles and Gutierrez, 2008] for knowledge represen-
tation, which maintain graph relationships within the
database. Efficient graph queries are useful in dia-
logue and chatbot engines as presented in [M. Maro and
Origlia, 2017]. We also propose using the Orc concur-
rent programming language, that may be use in conjunc-
tion with industrial workflow specifications (redacted for
double blind review). Aspects of the Orc framework are
similar to Hierarchical Task Networks [Erol et al., 1994],
with complex expressions being sub-divided into atomic
tasks. Orc further provides granularity in controlling
concurrency, temporal actions and runtime behavior,
that is more suited for action planning in robotics. A
related programming approach is the GOAL agent pro-
gramming language [Hindriks and Dix, 2014], that makes
use of belief-desire-intention approaches to programming
intelligent agents. Aspects of knowledge modeling, ac-
tion templates and goal functions may be mapped to
similar axioms provided in our framework. Such an ap-
proach may be extended to multiple autonomous robotic
deployments.

8 Conclusions
Autonomous robots are being increasingly used in In-
dustry 4.0 deployments to solve problems via intelligent
adaptive mechanisms. A central tenet in such deploy-
ments is eliciting efficient action plans that may be exe-
cuted at runtime. In this paper, we generate action plans
through graph knowledge base queries via the RoboPlan-
ner framework. Knowledge about robotic world models
and capabilities are encoded in efficient graph database

models, that may be efficiently queried to extract in-
formation for task completion. Using the concurrent
programming language Orc, action plans are generated
that can handle robotic runtime exceptions and percep-
tion information. End-to-end design/runtime simula-
tions and performance analysis demonstrate the advan-
tages of maintaining the robotic knowledge base.
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