The ALICE Muon Forward Tracker commissionning: first beam tests
Manuel Guittiere

To cite this version:
Manuel Guittiere. The ALICE Muon Forward Tracker commissionning: first beam tests. 137th LHCC Meeting, Feb 2019, Genève, Switzerland. hal-02283834

HAL Id: hal-02283834
https://hal.archives-ouvertes.fr/hal-02283834
Submitted on 11 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
MFT upgrade overview

Muon Forward Tracker technology

- 5 disks equipped on both sides with silicon pixel sensors (920 ALPIDE sensors). Ladder structure: FPC + sensors.
- ALPIDE technology: Monolithic Active Pixel Sensor (MAPS), CERN/CEA development.

Beam test setup (June 2018 at CERN PS)

- ALPIDE Telescope: 3 chips (at 220, 160 and 140 mm from disk front plane).
- Trigger signal: plastic scintillators upstream.
- First hit maps from MFT disk prototype

Physics motivations

Main ALICE improvements with MFT

- Extend the open heavy flavour Physics program at large pseudo-rapidity, measurements down to low p_T.
- Increase S/N ratio matching tracks with MUON Spectrometer.
- Add high-precision vertexing capabilities to the MUON spectrometer (Currently limited by the front absorber).
- e.g. prompt/non-prompt charmonium discrimination.

New high-precision measurements accessible thanks to MFT upgrade are summarised in the Table 1.1.

Schematic view of B decay J/ψ identification

Main beam test motivations

- Test readout and tracking capabilities from a half disk prototype using MOSAIC readout boards (1 board/ladder).
- Estimate resolution on track reconstruction (Expected sensor intrinsic spatial resolution \sim5 μm).
- Estimate detection efficiency (Expected detection efficiency $>99.5\%$).

Beam test data and methods

Collected data specifications

- Total Number of reconstructed tracks: \sim3.10^{7}.
- 2 acquisition configurations: 1 front ladder + 1 back ladder (17 runs) and 1 front + 2 back (38 runs).
- 2 back-bias voltage configurations: 0V and -3V.

Cluster pattern study

- Cluster pattern distribution for one chip on a ladder. Distributions consistent for all chips.

Resolution and efficiency calculations

- Alignment performed using Millepede with x, y, z and θ coordinates as free parameters.
- Resolution $\sigma_{x,y}$ and $\sigma_{x,y}$ calculated in the transverse plane in each direction (x or y).
- Horizontal direction (y): $\sigma_{y_{\text{ref}}} = \sqrt{\sigma_{y_{\text{with}}}^2 + \sigma_{y_{\text{without}}}^2}$, where "with" and "without" mean taking into account or not the ladder point to do the tracking.
- Efficiency defined as the ratio between the number of tracks found in 2 ladders (1 back + 1 front) and the number of tracks found in the reference ladder (e.g. back = ref to estimate front eff).

Results of beam test data analysis

Resolution

- Estimated Resolution for beam test data \sim7 μm for y direction (\sim7.5 μm for x direction).
- Consistent with expected resolution \sim4 μm considering multiple-scattering effects.

Efficiency

- Estimated detection efficiency consistent with expected efficiency ($>99.5\%$).

Table 1.1: New physics measurements made possible by the MFT addition.

<table>
<thead>
<tr>
<th>Observable</th>
<th>pT coverage (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charge</td>
<td>$p_T > 3$</td>
</tr>
<tr>
<td>Energy</td>
<td>E_{in}</td>
</tr>
<tr>
<td>recoiling angles</td>
<td>$\Delta \phi > 1$</td>
</tr>
<tr>
<td>Reconstructed tracks</td>
<td>$p_T > 3$</td>
</tr>
<tr>
<td>Charged hadrons</td>
<td>$p_T > 3$</td>
</tr>
<tr>
<td>Degree of freedom</td>
<td>$p_T > 3$</td>
</tr>
<tr>
<td>Visible fraction</td>
<td>$p_T > 3$</td>
</tr>
</tbody>
</table>

Schematic view of B decay J/ψ identification

Cluster pattern study

- Cluster pattern distribution for one chip on a ladder. Distributions consistent for all chips.