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Abstract Given repeated observations of several sub-

jects over time, i.e. a longitudinal data set, this pa-

per introduces a new model to learn a classification of

the shapes progression in an unsupervised setting: we

automatically cluster a longitudinal data set in differ-

ent classes without labels. Our method learns for each

cluster an average shape trajectory (or representative

curve) and its variance in space and time. Representa-

tive trajectories are built as the combination of pieces

of curves. This mixture model is flexible enough to han-

dle independent trajectories for each cluster as well as

fork and merge scenarios. The estimation of such non

linear mixture models in high dimension is known to

be difficult because of the trapping states effect that

hampers the optimisation of cluster assignments dur-

ing training. We address this issue by using a tempered
version of the stochastic EM algorithm. Finally, we ap-

ply our algorithm on different data sets. First, synthetic

data are used to show that a tempered scheme achieves

better convergence. We then apply our method to dif-
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ferent real data sets: 1D RECIST score used to mon-

itor tumors growth, 3D facial expressions and meshes

of the hippocampus. In particular, we show how the

method can be used to test different scenarios of hip-

pocampus atrophy in ageing by using an heteregenous

population of normal ageing individuals and mild cog-

nitive impaired subjects.

Keywords Longitudinal data analysis · Mixture

model · Branching population · Stochastic Optimiza-

tion · Statistical Model · Riemannian manifold.
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1 Introduction

The emergence of large longitudinal data sets (subjects

observed repeatedly at different time points) has al-

lowed the construction of different models improving

the understanding of biological or natural phenomenon.

Longitudinal studies have numerous applications: un-

derstating of the differences of progression in neurode-

generative disease such as Alzheimer’s, chemotherapy

monitoring, facial recognition, etc.. Such medical stud-

ies enable to retrieve the global progression of the dis-

ease while explaining the inter subject variability. In

particular, it would be interesting to highlight the in-

fluence of a disease on a normal ageing process and to

be able to differentiate those two processes. Clinicians

are also interested in the possibility to detect the mo-

ment when a disease begins to manifest itself, i.e. the

moment at which a subject branches from the normal
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dynamic. For instance, in the case of the Alzheimer’s

disease, we still do not know if the disease has a very

early genesis, leading to a specific aging pattern from an

early age or if it is a sudden deviation from the normal

ageing process. Another example is the monitoring of

tumors along treatment. Indeed, it is well known that

the whole population will not react the same way to a

given drug. Therefore, clustering patients would enable

a specific care. In both situations, the evolution may

not be smooth in the sense that the disease can show

variations in dynamics according to the stage of its de-

velopment. To tackle those problems, we consider that

populations can follow different dynamics over time.

Moreover, in order to detect subgroups with specific

patterns, we implement an unsupervised clustering of

the dataset. Here, our populations are therefore hetero-

geneous but without prior knowledge on the sub-groups

composing them, thus preventing from the use of super-

vised approaches.

We design our model such that it is able to detect a

certain fixed number of different dynamics in the pop-

ulation and, for each of them, to estimate a representa-

tive trajectory of that population together with the in-

ter subjects variability. The difficulty is in fact further

increased in this spatiotemporal setting since cluster-

ing may take various forms: sub-groups may follow in-

dependent trajectories, or they may follow trajectories

that fork or merge at specific time-points. The former

case is relevant to discover pathological sub-types hav-

ing different disease course. The latter is interesting for

a disease that is seen as a progressive deviation from a

normal aging scenario.

Usually, shape spaces are built by considering shape

data as points on a Riemannian manifold (for instance,

Kendall spaces (Kendall, 1984), currents (Vaillant and

Glaunès, 2005) or varifolds (Charon and Trouvé, 2013)).

In such shape spaces, descriptive (Donohue et al., 2014)

or generative (Jedynak et al., 2012; Durrleman et al.,

2013; Allassonnière et al., 2015) models have been con-

structed. To deform the shapes, different frameworks

can be used, among others diffeomorphic demons (Ver-

cauteren et al., 2009) or the Large Deformation Dif-

feomorphic Metric Mapping (LDDMM) framework. We

will here use the last. It allows us to compute the de-

formation from one shape to the other by coding de-

formations as geodesics on a Riemannian manifold and

using flows of deformations (Miller et al., 2006). Given

a data set of shapes, it is then possible to construct an

atlas. An atlas is composed of a shape that is represen-

tative of the population, as well as the spatial variabil-

ity within this population (Fletcher, 2013; Allassonnière

and Kuhn, 2010; Lorenzen et al., 2005; Su et al., 2014).

The next logical step is to handle longitudinal data sets.

Once again, the trajectory of a shape from one time

point to the other will be constructed by using flows

of diffeomorphisms (Bône et al., 2018; Lorenzi et al.,

2011; Singh et al., 2016; Muralidharan and Fletcher,

2012; Kim et al., 2017; Chakraborty et al., 2017). In this

framework, a longitudinal atlas consists of a representa-

tive trajectory, or template, and of the spatiotemporal

variability of the population. The representative tra-

jectory is a long-term scenario of changes informed by

sequences of short-term individual data. It can be seen

as a geodesic (Bône et al., 2018; Schiratti et al., 2017) or

a piecewise geodesic (Allassonniere et al., 2017) curve

on the manifold. For instance in the case of a sphere,

a geodesic on the manifold is just a great circle. Spa-

tial and temporal deformations are then considered to

generate subjects from this representative trajectory. In

particular, the temporal reparametrization can be con-

sidered as a general diffeomorphism (Su et al., 2014) or

as an affine reparametrization combining acceleration

and offset coefficients (Bône et al., 2018).

All these methods however assumed that observa-

tions are drawn from an homogeneous population that

may be summarized by a single representative trajec-

tory. Several clustering methods have already been pro-

posed to create atlases from cross sectional datasets in

an unsupervised way (Allassonnière and Kuhn, 2010;

Srivastava et al., 2005) or for longitudinal datasets of

continuous trajectories in a supervised way (Abdelka-

der et al., 2011). However, if (Hong et al., 2015) pro-

poses a test to detect if there is one cluster or more in

a longitudinal population, there is, to our knowledge,

no paper proposing a method to detect those clusters

in an unsupervised way in the longitudinal framework

while also creating the corresponding atlases. This will

be one of the goals of this paper. Our algorithm should

be able to detect sub populations that could be differ-

ent from those expected and so highlight unexpected

dynamics. Such a behaviour can be interesting to test

different models or to highlight in a population some

characteristics that were previously considered without

influence on the phenomenon under study.

In this paper, we explain with more details and

examples the work presented in (Debavelaere et al.,

2019) where the population is supposed to contain a

certain fixed number of unknown clusters. To tackle this

problem, we construct a mixed-effect generative model.

To estimate the different parameters, we choose to use

a variant of the Expectation-Maximization algorithm

called the Markov Chain Monte Carlo Stochastic Ap-

proximation Expectation Maximization algorithm
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(MCMC-SAEM) (Delyon et al., 1999; Allassonnière et al.,

2010). However, using those algorithms in a clustering

context leads to the problem of trapping states: chang-

ing class assignment is often more costly than adjust-

ing the parameters of the current clusters, resulting in

very few updates of class assignment during optimiza-

tion. Solutions have already been presented in the case

of cross sectional data sets analysis but at very high

computational costs (Allassonnière and Kuhn, 2010).

Here, we choose to introduce temperate distributions in

our Expectation-Maximization algorithm to avoid be-

ing trapped in the initial labelling.

In this paper, we will first explain in section 2 the

geometrical framework allowing us to compute the rep-

resentative trajectories and deformations towards the

subjects. Because this framework allows us to define

our model by a finite number of parameters, we will

present in section 3 the statistical model and the al-

gorithm used to estimate those parameters. Finally, we

will apply our work to different data sets. We will quan-

titatively validate it on simulated 2D data. We will then

perform experiments on real data: we will work with 1D

RECIST score used to monitor the growth of a tumor

(Therasse et al., 2000), with a data set of 3D faces ex-

pressing different expressions and with a 3D data set

of hippocampi of patients with or without Alzheimer’s

disease.

2 Geometrical model

We will first present the geometrical model that allows

us to compute the representative trajectory of each of

our clusters as well as the deformations towards the

subjects.

2.1 Construction of the representative trajectory

In the following, we consider a longitudinal data set of n

subjects, each being observed ki times: (yi,j)1≤i≤n,1≤j≤ki
at time (ti,j)1≤i≤n,1≤j≤ki , where each observation yi,j
is a point of Rd, d ∈ N.

We first want to explain how to construct a longitu-

dinal trajectory in a set of shapes that will, later on, de-

fine our group average. We choose to use the Large De-

formation Diffeomorphic Metric Mapping (LDDMM)

framework to define our shape deformations. Therefore,

we can deform an initial shape using the flow of a ve-

locity vt ∈ V for t ∈ [0, 1] and for V a fixed Hilbert

space: 
∂φvt
∂t

= vt ◦ φvt

φv0 = Id .
(1)

Given velocities (vt)t∈[0,1], this equation creates dif-

feomorphisms (φvt )t∈[0,1] that will deform the ambient

space and so, in particular, our initial shape y0. Hence,

given velocities (vt)t∈[0,1], (φvt (y0))t∈[0,1] will define a

longitudinal trajectory of shapes.

Each of those diffeomorphism φvt belongs to the set

G = {φv1|v ∈ V }. This group of deformation maps is

provided with a right invariant metric via

d(Id, φ) =

√
inf

{∫ 1

0

||vt||2V dt|φ = φv
}
. (2)

This exactly states that G is given the structure of

a manifold on which distances are computed as the

length of minimal geodesic paths connecting two ele-

ments. Given this structure, we will no longer allow

any diffeomorphism to be our group average but only

diffeomorphisms such that t 7→ φvt follows a geodesic

path in G.

We need now to ask ourselves how to choose veloc-

ities verifying this condition. Since we only study dis-

crete shapes, we can place ourselves in the finite dimen-

sional setting and suppose that our velocities (vt)t∈[0,1]

belong to a Reproducing Kernel Hilbert Space V with

kernel Kg. V is in fact the set of squared integrable

functions regularized by the convolution by the kernel

Kg. A vector v in V can then be written using a set of

ncp control points (ci)1≤i≤ncp
and momentum vectors

(mi)1≤i≤ncp in Rd: for x ∈ Rd,

v(x) =

ncp∑
i=1

Kg(ci, x)mi . (3)

The value of v at a point x is obtained as the interpo-

lation of the momenta at the control points.

Hence, to create a longitudinal trajectory, we now need

to choose an initial shape and a set of control points

and momenta defining the velocities (vt)t∈[0,1] such that

(φt)t∈[0,1] defines a geodesic in G.

It has been shown in (Miller et al., 2006) that if the

initial velocity field v0 is the interpolation of momentum

vectors at control points as in Eq. (3), then the velocity

field defining a geodesic path in G keeps the same form:

vt(x) =

ncp∑
i=1

Kg(c(t)i, x)m(t)i . (4)
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Fig. 1 The initial control points are the red points, the

initial momenta, the red vectors. The blue vector field

is created using the initial momenta and control points.

Finally, we compute the deformation of the initial shape

by this vector field.

Moreover, m(t) and c(t) are then time dependent

momenta and control points solutions of the Hamilto-

nian equations:{
ċ(t) = Kg(t)m(t)

ṁ(t) = ∇c(t)
(
m(t)TKg(t)m(t)

) (5)

with initial conditions m(0) = (m(0)k)1≤k≤ncp
, c(0) =

(c(0)k)1≤k≤ncp
and where Kg(t) is the ncp × ncp kernel

matrix (Kg(ci(t), cj(t)))1≤i,j≤ncp
.

To sum up, to define our longitudinal trajectory of

shapes, we now only need to set an initial shape and an

initial set of momenta and control points. By integrat-

ing the Hamiltonian equations (5), one can compute

the evolution of those control points and momenta over

time and obtain the velocity vector at any time t (Eq.

(4)). By integrating the flow equation (1), we obtain dif-

feomorphisms (φt))t∈[0,1] deforming the ambient space.

By applying this diffeomorphism at a point cloud or

mesh y0, we are finally able to deform it.

We finally note Expc0,t0,t(m0) = φvt the diffeomor-

phism obtained above with the initial condition φvt0 =

Id. This deformation process involving the Riemaniann

Exponential is showed on an example figure 1.

However, in order to deal with possible change of

dynamics in the population, we do not only want to

consider geodesics but piecewise geodesics. Hence, we

will modelize our group trajectories as a combination

of K different geodesics following each other, generaliz-

ing the work done in (Allassonniere et al., 2017) in di-

mension 1. In particular, each of the geodesics defining

γ0 describes a dynamic of the population on a partic-

ular time segment, different from the others. The time

at which the group average goes from one dynamic to

the other will be called rupture times. The component

of the piecewise geodesic following a rupture time will

then be defined using the Exponential operator defined

previously, applied at the value of the trajectory at that

rupture time.

We now formalize this: we introduce a subdivision

of R: (tR,1 < ... < tR,K−1 < tR,K := +∞) where

(tR,k)1≤k≤K−1 are called rupture times i.e. times when

the representative curve switches from one geodesic to

another. It is at those times that the population switches

from one dynamic to the other. Given a set of ini-

tial control points c1 ∈ Rncp×d, of rupture times tR ∈
RK−1, an initial shape x1 and K momenta (m0,m1, ...,

mK−1), we define the representative trajectory as:



γ(t)(x1) = Expc1,tR,1,tR,1−t(m
0) · x11t≤tR,1

+

K−1∑
k=1

Expck,tR,k,t−tR,k
(mk) · xk1tR,k≤t≤tR,k+1

with, for k ≥ 2 :

ck = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · ck−1

xk = Expck−1,tR,k−1,tR,k−tR,k−1
(mk−1) · xk−1

Here, the ck and xk are respectively the position of the

control points and the value of the representative curve

at times tR,k. For k ≥ 2, they are fixed to assure the

continuity of the trajectory.

It can be noticed that the first rupture time has a par-

ticular role as we must define a geodesic before it, de-

termining the trajectory from −∞ to the first rupture

time and another after it, determining the trajectory

from the first rupture time to the second. The control

points c1 and momenta m0, m1 are used to compute the

velocities at the time tR,1 defining the geodesic before

and after it. The other momenta m2, ...,mK−1 and con-

trol points c2, ..., cK−1 define the subsequent geodesics.

The construction of a piecewise geodesic is applied

on an example figure 2.

2.2 Deformations towards the subjects

We now know how to construct a longitudinal trajec-

tory that will play the role of a representative trajec-

tory. From this representative trajectory featuring the

group characteristic path, we want to generate indi-

vidual trajectories following different behaviours. To

achieve this goal, we take into account both temporal

and spatial differences by introducing a time reparametriza-

tion and a diffeomorphic spatial deformation.
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Fig. 2 Example of a piecewise geodesic with 3 parts. At

the first rupture time tR,1, the blue control points and

red momenta code the exponential before it. The green

momenta codes the exponential after the first rupture

time. Both the control points and the shape are trans-

ported by this diffeomorphism until the second rupture

time tR,2. It is this transported shape and those trans-

ported control points that will be used, along with the

orange set of momenta, to compute the deformation

after the second rupture time.

2.2.1 Time reparametrization

Each individual can follow its own rhythm of progres-

sion, different from the representative curve and varying

from one time segment to another, hence the need to

introduce time reparametrizations.

For each subject i, let ξi,0, ...ξi,K−1 be acceleration co-

efficients and τi,0, ..., τi,K−1 time shifts. We write for

every subject i:

ψi,0(t) = tR,1 − eξi,0 (tR,1 − t+ τi,0) (6)

and, for each time segment k ≥ 1,

ψi,k(t) = tR,k + eξi,k (t− tR,k − τi,k) . (7)

ψi,k codes the temporal reparametrization of the sub-

ject i on the time segment k. Once again, a first time

reparametrization must be defined before the first rup-

ture time.

The time shifts τi,k are offsets that allow the subjects

to be at different stage of evolution while the accelera-

tion factors ξi,k allow an inter-subject variability in the

pace of evolution on each geodesic (quicker evolution if

ξi,k > 0, slower if ξi,k < 0). Both of those factors allow

us to represent behaviors in the population observed by

clinicians.

Different conditions must be verified to assure the

continuity of the time reparametrizations. First, as the

representative trajectory goes through a change of dy-

namics at the rupture times, each subject has its own

rupture times tR,i,k such that tR,k = ψi,k(tR,i,k) i.e.

tR,i,k = tR,k + τi,k. Before the individual rupture time

tR,i,k, the time reparametrization is computed using

ψi,k−1 and after it, using ψi,k. Hence, to assure the

continuity of the global time reparametrization at each

of those rupture times, we also fix all the time shifts

Fig. 3 Example of a time reparametrization. At the

top, the representative trajectory. At the bottom, a

time reparametrization towards the subject i observed

at two times: ti,1 and ti,2. The individual rupture time

of the subject i is obtained as a translation of the rup-

ture time by τi,0, here chosen positive. On the first time

segment, ξi,0 is negative and the progression is slower

than the one of the representative trajectory. On the

second time segment, ξi,1 is positive and the progres-

sion is quicker.

but τi,0 by continuity conditions: we impose for all k

ψi,k−1(tR,i,k) = ψi,k(tR,i,k), i.e.: τi,0 = τi,1 and, for

k ∈ [|2,K − 1|],

τi,k = τi,k−1 + (tR,k − tR,k−1)(e−ξi,k−1 − 1) . (8)

From now on, we note τi = τi,0.

It can be remarked that the choice of this particu-

lar temporal reparametrization simplifies the computa-

tions needed to assure the continuity of the final tra-

jectory at each of the rupture time. Indeed, if we had

chosen, on each component, a diffeomorphic temporal

reparametrization without constraint (as done in Su

et al. (2014) in the geodesic case), more complex equal-

ities should have been imposed at each of the individual

rupture times. This reparametrization has also the ad-

vantage to be easily interpreted.

Finally, we set:

ψi(t) = ψi,0(t)1t≤tR,i,1
+

K−1∑
k=1

ψi,k(t)1tR,i,k≤t≤tR,i,k+1
.

To summarize, those equations mean that the subject

i at the instant t is obtained from the representative

trajectory shifted by τi and accelerated on each time

segment by eξi,k . The time reparametrization process

is summarized figure 3.
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2.2.2 Space deformations

Concerning the space deformations, as proposed in (Bône

et al., 2018), we will account the space variability by us-

ing exp-parallelizations, i.e. the generalization of par-

allelism to geodesically complete manifolds (Schiratti

et al., 2015). More precisely, we introduce for each sub-

ject i a space-shift momentum wi. We note P
(w)
γ the

parallel transport which transports any vector w ∈ Rncp×d

along the trajectory γ. Practically, we compute it us-

ing the fanning scheme (Louis et al., 2017). Then, to

code the deformation field at a time t, we transport the

momentum w along the curve γ(t) and then compute

the flow given by this new momentum. The given tra-

jectory is the exp-parallelization of γ by wi. Hence, we

define:

ηt(w) = Expγ(t)(c1),0,1(Pγ(t)(w)) .

Finally, given x1 the value of the representative curve

at the first rupture time, the deformation of the repre-

sentative curve γ by the space shift w is given by:

γw(t) = ηt(w) ◦ γ(t) ◦ x1 .

We give examples of the space deformation process first

on Fig. 4 by computing the exp-parallelization of a tra-

jectory on a sphere and then on Fig 5 by presenting an

example in a space of shapes.

We model this space shift as a linear combination of

ns sources: we suppose that w = As with A a ncp × ns
matrix called the modulation matrix and s ∈ Rns the

sources. This matrix plays the role of the source separa-

tion matrix also known as the modulation matrix in the

Independent Component Analysis. This helps to reduce

the dimension by highlighting the principal sources of

deformation. By projecting all the columns of A on

(m0, ...,mK−1)⊥ for the metric Kg, we impose orthog-

onality between the deformations towards the subjects

and the velocity field defining our representative trajec-

tory. It has been shown in (Schiratti et al., 2017) that

this condition is necessary to assure the identifiability

of the model by preventing the algorithm to consider

an acceleration with respect to the representative tra-

jectory as a space shift.

Finally, we deform the template γ(t)(x1) by setting:

γi(t) = γw(ψi(t)) .

2.3 Mixture and branching process

This construction builds a piecewise geodesic model

of progression. Until now, it can only process homo-

geneous populations. We propose an extension for the

Fig. 4 Example of parallel transport on a sphere. On

the left, we draw a trajectory γ and the momenta to

transport w. On the center, we transport w along γ.

On the right, we compute the exp-parallelization of γ

by w.

Fig. 5 Samples from a piecewise geodesic (top) and

a parallel deformation (bottom). The blue momenta is

first defined at the rupture time tR,1. It is then trans-

ported along the piecewise geodesic and defines the de-

formation frame towards a subject.

analysis of heterogeneous populations. More precisely,

we suppose there existsN different representative curves

in a given population, each of the subjects i being in

the cluster cl(i) defined by the particular representa-

tive curve γcl(i). This representative curve comes with

its own set of rupture times (t
cl(i)
R,1 < ... < t

cl(i)
R,K−1),

initial shape x1,cl(i), control points c1,cl(i), momenta

(m0,cl(i), ...,mK−1,cl(i)) and modulation matrix Acl(i).

This mixture framework enables to compare and

test hypothesis on the clusters. For instance, some of the

time segments can be shared by several clusters. This

imposes the representative curves of these clusters on

these time segments to be the same. In particular, if we

want some of the clusters to be equal on the first time

segment, we impose tkR,1, x1,k, c1,k and m0,k to be the

same for these clusters. This allows us to handle pop-

ulations forking or merging at the rupture times. The

rupture times are then not only times when a change of

dynamic occurs but also times when populations fork

or merge.

Hence, we have presented a complex geometrical

model allowing us to compute global trajectories and
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the deformations towards subjects. Those global tra-

jectories can take a wide variety of forms. But, in all

cases, our model is parameterized by a finite number of

parameters. Hence, the next step is to construct a sta-

tistical model to estimate the unknown variables. We

will need to estimate the parameters defining the tem-

plate as well as the clusters and the parameters defining

the deformations towards the subjects. This is the goal

of the next section: in section 3.1, we will present the

statistical model considered while in section 3.2 we will

explain how to estimate the parameters defining it.

3 Statistical Model and estimation

3.1 Statistical Model

We define a mixed effects statistical model allowing us

to estimate those different parameters. We note:

zrpop =
(
m0,r, (mk,r, trR,k)1≤k≤K−1, x

1,r, c1,r, Ar
)

the population parameters of the cluster r and

zi = ((ξi,k)0≤k≤K−1, tR,i,0, si)

the deformation parameters of the subject i with ξi the

acceleration parameters, si the sources and tR,i,0 the

first individual rupture time. As all the time shifts but

the first one are fixed by continuity conditions (cf Eq.

(8)), all subsequent individual rupture times are also

fixed by an expression depending only of the first in-

dividual rupture time, the acceleration parameters and

the global rupture times of the cluster.

We suppose that the subject i is obtained as a noisy

deformation of the representative curve γcl(i): ∀i ∈ [|1, n|],
∀j ∈ [|1, ki|],

yi,j |cl(i), zcl(i)pop , zi ∼ N (γi(ti,j), σ
2Id) .

Such a notation implies that we are able to compute

the distance between two different shapes. Depending

on the application, the points constituting the shape

will be labeled or not. In the first case we will be able

to use a landmark distance. In the other, we will use

the current (Vaillant and Glaunès, 2005) or varifold

(Charon and Trouvé, 2013) distances.

We also suppose that the deformation parameters

zi verify:

zi|cl(i) ∼ N (µcl(i), Σcl(i))

where for all cluster r, Σr is a positive-definite matrix

and µr = (0, ..., 0, trR,0). Unlike in (Debavelaere et al.,

2019), we suppose that the first rupture time of each

piecewise-geodesic trR,0 is not a random variable but a

parameter of our model, defined as the mean of the law

of the individual rupture times. Thus, those individual

rupture times are here considered as random variables.

It allows to accelerate the computation time of each it-

eration while improving the stability of our algorithm.

The cluster r is drawn with a probability pr i.e.

cl(i) ∼
N∑
r=1

prδr

and finally, we suppose zrpop ∼ N (z̄rpop, vpop) where vpop
are small fixed variances so that our model belongs to

the curved exponential family. Finally, our model is de-

fined with parameters θ =
(
(trR,0, Σ

r, pr, z̄rpop)1≤r≤N , σ
)
.

For effectiveness in the high dimension low sample

size setting, we work in the Bayesian framework and set

the usual conjugate priors:

trR,0 ∼ N (trR,0, vtR)

Σr ∼ W−1(V,mΣ)

σ ∼ W−1(v,mσ)

p ∼ D(α)

z̄rpop ∼ N (¯̄zrpop, v̄pop)

(9)

where W is the inverse Wishart distribution, D is the

Dirichlet distribution and trR,0, vtR , V , mΣ , v, mσ, α,
¯̄zrpop and v̄pop are hyperparameters of the model.

It is important to note that our model belongs to

the curved exponential family and so allows us to define
sufficient statistics. It will then be possible, in the next

section, to estimate the parameters of our algorithm

using only those sufficient statistics.

3.2 Estimation

To estimate the parameters θ, we want to compute a

maximum a posteriori estimator by using a stochas-

tic version of the Expectation Maximization algorithm

known as MCMC-SAEM (Allassonnière and Kuhn, 2010).

It consists in the following steps: (i) simulation of (z, zpop,

cl), (ii) stochastic approximation of the sufficient statis-

tics of the curved exponential model and (iii) maximiza-

tion using the updated stochastic approximation. We

can remark that the joint distribution is in the curved

exponential family which guaranties the convergence

of the MCMC-SAEM algorithm, as proven in (Allas-

sonnière et al., 2010).
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Concerning the sampling, we simulate (z, zpop, cl)

as an iterate of an ergodic Monte Carlo Markov Chain

with stationary distribution q(zpop, z, cl|y, θ). More pre-

cisely, we use a symmetric random walk Monte-Carlo

Markov Chain within Gibbs sampler with adapted vari-

ance. Once those variables are sampled, it is then pos-

sible to compute the sufficient statistics and to obtain

the parameters maximizing the posterior distribution

in a closed form.

However, using the algorithm as presented above

yields to bad results in exploring the support of the

conditional probability distribution. This issue is known

as trapping states: once a label is given to an observa-

tion, the probability of changing to another is almost

zero. This leads to no change of cluster after a few itera-

tions. This problem has already been encountered in the

clustering case, for instance in Allassonnière and Kuhn

(2010) and Srivastava et al. (2005). In the first case, the

authors chose to compute deformations from each tem-

plate towards each subject leading to very high com-

putational cost. In the second paper, the authors used

tempered distributions but only determine the clusters

without the associated representative curve and inter-

subjects variability.

Here, to solve this problem, we use a tempered version

of the MCMC-SAEM. Instead of targetting q(c|y, θ) in

the MCMC step, we rather sample from an ergodic

Markov Chain with density 1
C(Tk)q(c|y, θk)

1
Tk where k is

the current iteration of the algorithm, Tk is a sequence

of temperature converging towards 1 and C(Tk) is the
normalizing constant. The higher the temperature, the

flatter the distribution and the more the clusters are

likely to explore the entire set.

Finding a good distribution of temperatures such

that meaningful representative curves are found with-

out immediately fixing the clusters nor forcing them to

move throughout the whole algorithm is quite difficult.

Several choices have been proposed in (Allassonnière

and Chevallier, 2019) but we choose here a distribution

that takes into account the current state of the algo-

rithm. For each subject i and each cluster k, we set

τki = log
(
q(cl(i)=j)

q(cl(i)=k)

)
where cl(i) is the cluster of the

subject i, j the index of that cluster during the previ-

ous iteration and q is the complete log likelihood. τki
is in fact the logarithm of the acceptance rate of the

MCMC-SAEM algorithm for the subject i to go from

the cluster j to the cluster k. We then take:

T =


Median(τ)

diter/10e
5− iter%10

5
+ 1− 5− iter%10

5

if iter%10 < 5

1 otherwise

(10)

where % is the modulo operator and iter is the current

iteration.

Such a distribution of temperature allows the rep-

resentative curves to fix themselves when iter%10 ≥ 5

while forcing the clusters to explore the whole space

when iter%10 < 5. Indeed, such a temperature distri-

bution allows us to directly influences the acceptance

rate of the clusters.

If this temperature scheme allows us to observe mean-

ingful clusters, as showed later in section 4, it must be

remarked that it depends of the acceptance rate τ and

so of the previous state of the algorithm. The conver-

gence of tempered SAEM algorithms has already been

proven in (Allassonnière and Chevallier, 2019) and can

easily be generalized in the case where the temperature

depends of the previous state of the algorithm. How-

ever, for the MCMC-SAEM case used here, the geomet-

ric ergodicity of the Markov Chain should be proven in

order to conclude that the algorithm converges.

The process is summarized on algorithm 1.

3.3 Initialization and influence of the hyperparameters

Now that we have presented the algorithm estimating

θ, we interest ourselves in its initialization and in the

influence of the choice of the hyperparameters.

Concerning the initialization, all the representative

trajectories of the different clusters are chosen equally

by building a constant trajectory equal to the first ob-

servation of the first subject at all times. Similarly, we

initialize the individual parameters such that there is

no initial deformation towards the subjects. Hence, at

first, all individual trajectories are equals.

The different hyperparameters defining the priors

influence the update of θ at each iteration. Indeed, all

those updates can in fact be seen as barycenters be-

tween a quantity defined by the sufficient statistics and

another depending on the prior. For instance, z̄rpop is



Learning the clustering of longitudinal shape data sets into a mixture of independent or branching trajectories 9

Algorithm 1: MCMC-SAEM algorithm

Data: (yi,j), (ti,j), total number of iterations K,
s0 = 0 and (∆k)k∈N a decreasing positive step
size sequence

for 1 ≤ k ≤ K do

Sample (zpop, z) using a single step of a
Symmetric Random-Walk Metropolis Hastings
within Gibbs sampler targeting the posterior
distribution q(zpop, z|y, θk).

Compute Tk using Eq. 10 and sample c using a
single step of a Symmetric Random-Walk
Metropolis Hastings within Gibbs sampler
targeting the posterior distribution 1

Tk
q(c|y, θk).

Compute the stochastic approximation
sk = sk−1 +∆k−1(S(z, zpop, y)− sk−1) where S
are the sufficient statistics.

Update the parameters θk to maximize the
posterior likelihood q(θ|y): θk = θ̂(sk).

the barycenter between a sufficient statistic and ¯̄zrpop
with respective weight

v̄pop
v̄pop+vpop

and
vpop

v̄pop+vpop
. Hence,

we can choose the prior to influence the final value of

z̄rpop and also choose the weight given to this a priori.

Similar remarks can be done with all parameters.

Finally, we must also choose the kernel used to com-

pute the deformations. Here, we take a Gaussian ker-

nel: Kg(x, y) = exp
(
‖x−y‖22
σ2
g

)
. We choose the kernel

width σg in the range of the distance between the con-

trol points such that the whole shape can be deformed

smoothly.

4 Results

4.1 2D simulated data

4.1.1 Creation of the dataset

We first test our algorithm on simulated data mimick-

ing the shape of a dancing man. We create 100 subjects

by deforming a branching piecewise-geodesic represen-

tative curve with two components. More precisely, we

begin by creating the two branching representative tra-

jectories by drawing three sets of random momenta that

we apply on 16 control points equally spaced. We first

apply one set of momenta on a fixed shape to obtain

the first common component and then we apply the two

other sets of momenta on the same fixed shape to ob-

tain the two distinct components forking at the rupture

time, set as 70. We then create our 100 individuals by

sampling random accelerations, time shifts and space

shifts from a gaussian distribution as well as random

number of observation times before and after the rup-

ture time. Those observation times are sampled using

an exponential distribution. Finally, we add a gaussian

noise of variance 0.02 to each subject, use the varifold

distance and choose a kernel width equals to the dis-

tance between two adjacents control points.

4.1.2 Estimation of the parameters

We apply our algorithm to find the representative curves

and the spatiotemporal deformations towards the data

sequence of each subject, asking for two branching clus-

ters. Results in Fig. 6 show that there is only little dif-

ferences between the true and estimated representative

trajectories (left), and no noticeable differences between

the true and reconstructed observations. To quantify

the reconstruction error, we compute the varifold norm

of the errors for all subjects along the iterations on Fig.

7 (left).

97% of the subjects are classified in their right clus-

ter. As for the others subjects, in most cases, no mea-

surement is done after the rupture time or the second

acceleration coefficient is so small that the shape prac-

tically does not vary after the rupture time, which ex-

plains why the algorithm cannot find the right cluster.

We also show the necessity of using tempered distri-

butions by plotting the error of classification with and

without temperature on Fig. 7 (right). The oscillations

we see on those figures are due to the oscillating evolu-

tion of the temperature. We can see that the classifica-

tion and hence the final reconstructions are better with

tempered distributions.

Finally, we launch the algorithm on the same data

set 10 times to compute the errors on the estimation of

the different parameters. On the table 1, we display the

relative errors of the individual parameters. All those

errors are below 10%, with particular good estimation

for the individual rupture times. The high standard de-

viation observed is in fact due to the badly classified

subjects. Indeed, for those subjects, the individual pa-

rameters often take absurd values: practically null ac-

celerations, large rupture times, etc..

On the table 2, we present the errors of reconstruction

for the varifold norm. We can remark that both the sub-

jects and the templates are very well reconstructed. The

error on the template is a bit higher due to the repercus-

sion of the small errors in the temporal reparametriza-

tion. Indeed, the small errors in accelerations can cause
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the time lines between the real template and the esti-

mated one to differ causing small errors when compar-

ing them at the same time point.

We also present the errors on our parameters ta-

ble 3. Here, we can remark the very poor estimation

of Σ. Once again, this is due to the presence of badly

classified subjects having absurd individual parameters.

Those outliers then induce a very high variance in the

estimated individual parameters. However, if we try to

compute the estimated Σ taking into account only the

subjects in the correct cluster, we then find more cor-

rect results: an error of 8.12% with a standard deviation

of 3.97. Hence, it seems impossible to have a correct es-

timation of Σ here.

ξi,0 ξi,1 tR,i,0

5.89%±7.01 8.60%±10.7 0.76%±1.61

Table 1 Mean and standard deviation of the relative

errors for the temporal parameters.

Subjects Templates
1.23%±1.96 5.56%±2.60

Table 2 Mean and standard deviation of the errors of

reconstruction for the subjects and templates.

tR,0 Σ σ p
0.25%±0.17 160%±223 7.19%±4.01 2%

Table 3 Mean and standard deviation of the errors on

the parameters θ.

4.1.3 Prediction of new data

Here, we test the ability of our model to predict new

data by using cross validation. We create 100 new sub-

jects deformed from the same representative curve as

before. We then ask our algorithm to classify and re-

construct the trajectories while fixing the parameters

θ and the representative curve by those learned previ-

ously. This time, 91% of the subjects are well classified

and the error of reconstruction is only 0.84% with a

standard deviation of 1.93. Hence, our model can pro-

cess new data without a problem, proving that we have

no problem of overfitting or selection bias.

4.1.4 Comparison of the clustering with a baseline

We now want to test the performance of the clustering

of our model against a baseline. To do so, for each of the

subjects, we compute the trajectory minimizing the dis-

tance with the observations using a geodesic regression.

We obtain, for each subject, a set of momenta defining

its trajectory. We then use the kmeans algorithm on

the set of all momenta to classify the subjects. This al-

gorithm will not create representative trajectories nor

compute the variability of the population but will only

classify the subjects without any time reparametriza-

tion.

In this easy example where only the global move-

ment of the shapes is important in the clustering, the

baseline gives us a perfect classification of the subjects.

However, it is easy to create cases where our algorithm

will outperform the baseline. Indeed the baseline only

takes into account space deformations. Hence, it is un-

able to distinguish two different objects deformed the

same way. For instance, a geodesic regression will give

us the same set of momenta for squares and spheres

following the same movement. Hence, the baseline will

not be able to distinguish two different clusters. In con-

trast, our algorithm also takes into account the mean

shape of each cluster and so is able to separate two such

clusters.

Moreover, no time reparametrization is taken into ac-

count by the baseline. To highlight this fact, we create

a new dataset of ”dancing men” with two clusters, each

containing 100 subjects. We obtain those subjects from

the same representative curve but, for one cluster, the

mean acceleration of the subjects eξ is 1.3 while the

other has a mean acceleration of 0.7. This time, the

baseline is unable to distinguish the two clusters as the

momenta obtained by geodesic regression for the differ-

ent trajectories are all collinear. All the subjects but 6

are placed in the same cluster and so only 51% of the

subjects well classed. On the other hand, our algorithm

is more successful in this clustering task: subjects are

indeed classified according to their speed of progres-

sion: 84% of the subjects are classified as expected. As

for those badly classified, their acceleration is close to 1.

Finally, when the only distinction between clusters

is based on their space deformation, the baseline seems

as precise as our algorithm. However, it is not able to

distinguish differences in time and is more limited than
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Fig. 6 In red, the exact simulated data, in black, the results given by our algorithm. On the left, the representative

curves that split up at a certain rupture time. On the right side, two subjects given with their reconstructions.

Fig. 7 Left: evolution of the varifold distances between the subjects and their reconstructions. Right: percentage

of error in the classification along the first 100 iterations. With tempered distribution, the oscillating temperature

coerces a lot of subjects to change classes. After 500 iterations, the error is 31.3% smaller.

our model. Those observations will be confirmed in the

next examples.

4.1.5 Test of an hypothesis on the model

We want now to test hypothesis about the heterogeneity

of the population. We run our algorithm on the dataset

created section 4.1.1, supposing first that the two repre-

sentative trajectories are different. We then run it again

supposing that their first component is the same and

that they fork at the rupture time. To select the model,

we first compute the log-likelihood ratio test. However,

in this case, this test is not enough to determine which

model to choose. Indeed, with two independent rep-

resentative curves, the algorithm can reconstruct the

subjects as precisely as with branching representative

curves. Hence, the difference between the likelihoods of

the two models is too small to conclude and the test

unstable between runs. To overcome this problem, we

choose to compute the Bayesian Information Criterion

(BIC):

BIC = ln(n)m− 2ln(q(y, z, θ))

where m is the total number of parameters involved in

the model and n the number of subjects.

This criterion takes into account the complexity of the

model by adding a penalty proportional to the num-

ber of parameters involved. Hence, we will penalize the

model with two independent trajectories (as it involves

more parameters) even if the reconstruction is similar.

This time, there is a difference of 2.98% between the

two BIC criterions, leading us to choose, as expected,

the model with branching representative curves.

4.2 1D RECIST scores

We test here the algorithm on a real 1D dataset. We

consider a database of patients suffering from the meta-

static kidney cancer and taking antiangiogenic drugs.

They come on a regular basis at the hospital to check

the tumor evolution. Two behaviours are expected in

the population: for all patients, the tumor first regresses.

But then, for some, it stabilizes while for others the

tumor size increases again forcing to change the treat-
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ment. The RECIST score is a feature that measures the

tumor size and is used in the majority of clinical trials

evaluating cancer treatments for objective response in

solid tumors. Our dataset consists in the evaluation of

the RECIST score for 176 patients with an average of

7 visits per subject and an average duration of 90 days

between consecutive visits.

In this 1D case, shapes are just curves on R and

we work with a logistic metric. The parallel transport

is just a translation of the geodesic. That is why we

rather considerate another space reparametrization, as

done in (Allassonniere et al., 2017): for all classes i and

all components l, we set:

φi,l(x) = γcl(i)(t
cl(i)
R ) + eρ

l
i

(
x− γcl(i)(tcl(i)R )

)
+ δli .

ρli is a dilatation factor and δli is a translation factor. As

with the time reparametrization, all the translation fac-

tors but the first one are fixed by continuity conditions

and we note δ0
i = δi. Finally, our individual curve is

defined by deforming spatially each component of γcl(i)

by φi,l and temporally by the same ψi,l as previously.

With only two components, the piecewise geodesics

for the logistic metric can be parameterized, for any

class r, by:
γr1(t) =

γrinit + γrescape
art+br

1 + eart+br

γr2(t) =
γrfin + γrescape

−(crt+dr)

1 + e−(crt+dr)

γr(t) = γr1(t)1]−∞,trR] + γr2(t)1]trR,+∞[ ,

(11)

with γrinit, γ
r
escap, γ

r
fin ∈ R. We fix ar, br, cr and dr by

asking the geodesics γ1
0,r and γ2

0,r to be ν-near their

geodesics at an initial time tr0, at the rupture time trR
and at a final time tr1 (see Allassonniere et al. (2017) for

more details). Hence, rather than sampling momenta

and control points, we will sample zrpop = (γrinit, γ
r
escap,

γrfin, t
r
0, t

r
1). This whole process is summarized Fig. 8.

First, we launch our algorithm looking for two dif-

ferent representative curves. The result is displayed on

the first line of figure 9. Our algorithm is indeed able

to explain the variability of the population. However,

it seems that our algorithm favours size over response

dynamic as a clustering feature: small initial tumors

(blue curve, 28% of the patients) are separated from

big initial tumors (orange curve, 72% of the patients).

For example, the orange reconstructed trajectory (top

right plot) is classified with the blue template (top left

plot) even if the treatment stays effective.

Fig. 8 Model description. In blue, the template with

the different parameters defining it and in orange one

subject obtained by deforming it. Here, t0 = 0, the

rupture points are represented by diamonds and the

final times t1 by stars.

To overcome this trivial differentiation based on the

tumor initial size, we ask the two templates to be the

same until the rupture time using a branching process.

This time, on the second line of figure 9, we really see

two different behaviours: for one of the template, the

RECIST score increases a lot more (blue curve, 37% of

the patients) than for the other (orange curve, 63% of

the patients). As for the clustering, we see indeed that

the subjects whose RECIST score do not increase after

the rupture time are pooled together (green, red, orange

and blue curves). Hence, we are able to separate the pa-

tients whose tumor becomes resistant to the treatment

from the others. It can also be remarked that we have

fewer time points for patients whose tumor becomes

resistant because the clinicians change the treatment

when this resistance is remarked and so the record of

score for this patient stops.

4.3 3D faces

We now obtain shapes of subjects expressing different

facial expressions from the Birmingham University 3D

dynamic facial expression database (Yin et al.). This

real database contains short videos from 101 subjects

expressing happiness or surprise. We uniformly extract

8 frames, from the first to the 36-th one, which corre-

spond to a subsampling of the first 1.4 seconds of each

video. We do not work directly with the texture video,

but with a set of 75 semi-automatically extracted land-

marks, which were readily available along with this data

set. Every set of 3D landmarks is registered to a refer-

ence one by Procrustes alignment.
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Fig. 9 At the top, the results given with two different templates, at the bottom, with two templates whose first

component is the same. To the left, our templates. To the right, 6 subjects and their reconstructed trajectories.

In dotted lines, subjects in the cluster of the orange template. In plain lines subjects in the cluster of the blue

template.

We apply our algorithm, once again with the vari-

fold distance, to find two clusters, with only one compo-

nent geodesic for each template. As we can see Fig. 10

and 11, the faces are well reconstructed and we can rec-
ognize the two expressions of surprise and happiness on

the two templates. In particular, for the surprise clus-

ter, the mouth is more widely open, while the eyes are

wide open and the eyebrows higher.

Hence, we can ask ourselves if the algorithm has re-

ally detected those two expressions or if another charac-

teristic has been detected to distinguish two sub pop-

ulations. In fact, 68.5% of the subjects are classified

as expected (i.e. surprised subjects in the cluster with

the template looking surprised and happy subjects in

the one looking happy). There are different explications

about the subjects classified differently. First, we can re-

mark that some of them have a non neutral expression

at the first image, for example smiling at the beginning

while they should express surprise. For others, it is just

really difficult (even for a human) to determine if they

express happiness or surprise (see Fig. 12). Finally, we

can also remark figure 10 that the left eyebrow is quite

Fig. 10 Results of the algorithm when applied to a

dataset of surprised or happy visages. At the top, the

evolution of the template of the happiness cluster, at

the bottom, the evolution of the template of the sur-

prised cluster, one component for each template.

different from one template to another. And indeed, we

find that same difference in several subjects misclassi-

fied. However, even if the clustering can be surprising,

the algorithm fulfilled his role: we have been able to

highlight two different dynamics in the population that

can be explained by differences in the subjects consid-

ered.
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Fig. 11 Reconstitution of a subject expressing surprise.

In red, the exact data, in black the reconstitution.

Fig. 12 Evolution of subject that has been asked to

express happiness but seems to express surprise. It is

indeed classed in the template looking surprised by our

algorithm.

Concerning the baseline, we have a better classifi-

cation in this case: 88% of the subjects are classified

as expected. This better classification can be explained

by the fact that the movement of the lips and eyebrows

is the principal feature separating the two clusters. By

not taking into account the initial shape of the sub-

jects but only the deformation, the baseline is able to

obtain a better classification result. In this case, if we

are interested in separating the happy subjects from

the surprised ones, it would thus be preferable to first

compute the clusters using the baseline and only after

to run our algorithm in a supervised way with the fixed

clusters obtained previously to obtain the representa-

tive trajectories and the variability in each cluster.

4.4 Hippocampi dataset

We finally test the algorithm on 100 subjects obtained

from the Alzheimer’s Disease Neuroimaging Initiative

database (adni.loni.usc.edu). 50 of those subjects are

control patients (CN) and 50 are Mild Cognitive Im-

pairment subjects eventually diagnosed with Alzheimer’s

disease (MCIc). Meshes of the right hippocampus is seg-

mented from the rigidly registered MRI.

We first run our algorithm with a forking model: we

look for two clusters that fork at a certain rupture time.

As there is no reason for the control subjects to have

two different dynamics, we also ask one of the cluster

(i.e. one of the evolution scenario) to follow the same

geodesic before and after the rupture time. Finally, we

choose to use the varifold distance. Our algorithm splits

the patients in two clusters, one of them presenting a

quicker and different pattern of atrophy (Fig. 15 and

left side of Fig. 13 where the hippocampi volume is

plotted along time). Moreover, 72% of the subjects are

classified as expected: the CN in the cluster with a sin-

gle dynamic showing a slower atrophy and the MCIc in

the cluster with a faster atrophy after the rupture time.

We have also studied the relation between our rup-

ture time and the age of diagnosis. The individual rup-

ture times are strongly correlated to the diagnostic age,

indicating that we have been able to detect a change of

behaviour correlated with the date of diagnosis (Fig.

14).

We run again the algorithm, this time looking for

two clusters with separate trajectories, one of them with

only one dynamic. The results are presented Fig. 16 and

on the right side of Fig. 13 for the hippocampi volumes

evolution. It is interesting to remark that the cluster

with only one dynamic also presents a slower atrophy,

as expected with a normal ageing. We can also detect

different patterns of atrophy before and after the rup-

ture time for the cluster with two dynamics. This time,

70% of the subjects are classified as expected: CN in

the cluster with one dynamic and MCIc in the cluster

with two dynamics and a quicker rate of atrophy.

As we are given two possible evolution scenarii, it is

natural to try to quantify the goodness of fit of each of

them, allowing for a choice of a better explanation of

the disease. As for synthetic data, we use the Bayesian

Information Criterion. We find a difference of 2.92% be-

tween the two BIC values leading to choose the branch-

ing model. Hence, this suggests that the MCI subjects

first follow a normal aging scenario but deviate from it

at the rupture time. It must however be remarked that

our model is quite complex with a lot of high dimen-

sional variables, making model selection quite difficult.

Once again, we compare those results with the base-

line. However, in this case, the difference between the

two clusters is largely coded by the speed of atrophy

and not the global dynamic. Hence, it is not surprising

to note that practically all the subjects are grouped in

the same cluster by the baseline and so, only 52% of

the subjects are well classified. Thus, in this example,

our algorithm has to be used to cluster the subjects.
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Fig. 13 Left: volume evolution for two branching clusters. Right: volume evolution for two clusters with separate

trajectories.

Fig. 14 Comparison of the age at diagnosis with the

individual rupture time for the MCIc patients in the

case of the branching model, R2 = 0.91

5 Conclusion

We proposed a mixture model for longitudinal shape

data sets where representative trajectories take the form

of piecewise geodesic curves. Our model can be applied

in a wide variety of situations to test whether sub-

populations are independant from each other or fork or

merge at different time-points. We showed on simulated

examples that our tempered optimization scheme is key

to achieve convergence of such a mixed effect model

combining discrete variables with continuous variables

of high dimension. It has also been noticed that taking

only into account the individual trajectories is not al-

ways enough to obtain a meaningful clustering of the

population. We have shown the versatility of our model

by applying it to a lot of different cases: trajectories

with one or several dynamics, branching or not after

a rupture time, with one part of the population still

following the same dynamic or not after the rupture

time. Its application on 1D data allowed us to present

results of the same model in another setting while the

application with 3D faces showed that we can highlight

different meaningful dynamics in a same population.

Finally, the hippocampi data set allowed us to investi-

gate the relationship between normal and pathological

ageing.

Different questions still have to be answered. In par-

ticular, our scheme of temperature depends of the cur-

rent state of the algorithm and a proof of convergence

should be provided in this situation. Moreover, specific

model selection criterion should be devised in this com-

plex longitudinal setting. Those criterion should in par-

ticular help us to detect the optimal number of clusters

and rupture times.
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Le Goff, Ronald G Thomas, Rema Raman, An-

thony C Gamst, Laurel A Beckett, Clifford R Jack Jr,

Michael W Weiner, Jean-François Dartigues, et al.

Estimating long-term multivariate progression from

short-term data. Alzheimer’s & Dementia, 10(5):

S400–S410, 2014.
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