M. C. Ahmed, E. Papaleo, and K. Lindorff-larsen, How well do force fields capture the strength of salt bridges in proteins?, PeerJ, vol.6, p.4967, 2018.

A. Albaugh and T. Head-gordon, A new method for treating drude polarization in classical molecular simulation, J. Chem. Theory Comput, vol.13, pp.5207-5216, 2017.

H. Antila, P. Buslaev, F. Favela-rosales, T. M. Ferreira, I. Gushchin et al., Headgroup Structure and Cation Binding in Phosphatidylserine Lipid Bilayers, J. Phys. Chem. B, vol.123, pp.9066-9079, 2019.

F. Aviat, L. Lagardère, and J. Piquemal, The truncated conjugate gradient (TCG), a non-iterative/fixed-cost strategy for computing polarization in molecular dynamics: Fast evaluation of analytical forces, J. Chem. Phys, vol.147, p.161724, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571663

F. Aviat, A. Levitt, B. Stamm, Y. Maday, P. Ren et al., Truncated conjugate gradient: an optimal strategy for the analytical evaluation of the many-body polarization energy and forces in molecular simulations, J. Chem. Theory Comput, vol.13, pp.180-190, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01395833

V. Babin, J. Baucom, T. A. Darden, and C. Sagui, Molecular dynamics simulations of DNA with polarizable force fields: convergence of an ideal B-DNA structure to the crystallographic structure, J. Phys. Chem. B, vol.110, pp.11571-11581, 2006.

C. M. Baker, Polarizable force fields for molecular dynamics simulations of biomolecules, Wiley Interdiscipl. Rev, vol.5, pp.241-254, 2015.

D. Bedrov, J. Piquemal, O. Borodin, A. D. Mackerell, B. Roux et al., Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields, Chem. Rev, vol.199, pp.7940-7995, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02144165

M. L. Berkowitz, R. Vácha, and R. Vacha, Aqueous solutions at the interface with phospholipid bilayers, Acc. Chem. Res, vol.45, pp.74-82, 2012.

R. A. Böckmann and H. Grubmüller, Multistep binding of divalent cations to phospholipid bilayers: a molecular dynamics study, Angew. Chem. Int. Ed, vol.43, pp.1021-1024, 2004.

A. Catte, M. Girych, M. Javanainen, C. Loison, J. Melcr et al., Molecular electrometer and binding of cations to phospholipid bilayers, Phys. Chem. Chem. Phys, vol.18, pp.32560-32569, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02303912

F. Célerse, L. Lagardère, É. Derat, and J. Piquemal, massively parallel implementation of steered molecular dynamics in tinker-hp: comparisons of polarizable and non-polarizable simulations of realistic systems, J. Chem. Theory Comput, vol.15, pp.3694-3709, 2019.

J. Chowdhary, E. Harder, P. E. Lopes, L. Huang, A. D. Mackerell et al., A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids, J. Phys. Chem. B, vol.117, pp.9142-9160, 2013.

J. Chowdhary, H. Li, E. Harder, P. Lopes, A. Mackerell et al., Drude model based polarizable force field for lipids, Biophys. J, vol.104, p.31, 2013.

P. Cieplak, F. Dupradeau, Y. Duan, W. , and J. , Polarization effects in molecular mechanical force fields, J. Phys. Condens. Matter, vol.21, p.333102, 2009.

L. X. Dang, Importance of polarization effects in modeling the hydrogen bond in water using classical molecular dynamics techniques, J. Phys. Chem. B, vol.102, pp.620-624, 1998.

A. K. Das, L. Urban, I. Leven, M. Loipersberger, A. Aldossary et al., Development of an advanced force field for water using variational energy decomposition analysis, J. Chem. Theory Comput, vol.15, pp.5001-5013, 2019.

K. T. Debiec, A. M. Gronenborn, C. , and L. T. , Evaluating the strength of salt bridges: a comparison of current biomolecular force fields, J. Phys. Chem. B, vol.118, pp.6561-6569, 2014.

K. A. Dill, S. Bromberg, K. Yue, K. M. Fiebig, D. P. Yee et al., Principles of protein folding-a perspective from simple exact models, Protein Sci, vol.4, pp.561-602, 1995.

E. Duboué-dijon, P. Delcroix, H. Martinez-seara, J. Hladílková, P. Coufal et al., Binding of divalent cations to insulin: capillary electrophoresis and molecular simulations, J. Phys. Chem. B, vol.122, pp.5640-5648, 2018.

E. Duboué-dijon, P. E. Mason, H. E. Fischer, J. , and P. , Hydration and ion pairing in aqueous Mg2 and Zn2 solutions: forcefield description aided by neutron scattering experiments and ab initio molecular dynamics simulations, J. Phys. Chem. B, vol.122, pp.3296-3306, 2018.

R. E. Duke, O. N. Starovoytov, J. Piquemal, and G. A. Cisneros, GEM * : a molecular electronic density-based force field for molecular dynamics simulations, J. Chem. Theory Comput, vol.10, pp.1361-1365, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01287209

E. Egberts, S. J. Marrink, and H. J. Berendsen, Molecular dynamics simulation of a phospholipid membrane, Eur. Biophys. J, vol.22, pp.423-436, 1994.

M. Eisenberg, T. Gresalfi, T. Riccio, and S. Mclaughlin, Adsorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry, vol.18, pp.5213-5223, 1979.

G. W. Feigenson, On the nature of calcium ion binding between phosphatidylserine lamellae, Biochemistry, vol.25, pp.5819-5825, 1986.

C. A. Fitch, D. A. Karp, K. K. Lee, W. E. Stites, E. E. Lattman et al., Experimental pKa values of buried residues: analysis with continuum methods and role of water penetration, Biophys. J, vol.82, pp.3289-3304, 2002.

P. L. Freddolino, C. B. Harrison, Y. Liu, and K. Schulten, Challenges in protein folding simulations: timescale, representation, and analysis, Nat. Phys, vol.6, pp.751-758, 2010.

P. L. Freddolino, S. Park, B. Roux, and K. Schulten, Force field bias in protein folding simulations, Biophys. J, vol.96, pp.3772-3780, 2009.

R. A. Friesner, Modeling polarization in proteins and protein-ligand complexes: methods and preliminary results, Advances in Protein Chemistry, pp.79-104, 2005.

B. García-moreno, J. J. Dwyer, A. G. Gittis, E. E. Lattman, D. S. Spencer et al., Experimental measurement of the effective dielectric in the hydrophobic core of a protein, Biophys. Chem, vol.64, pp.211-224, 1997.

N. Gresh, G. A. Cisneros, T. A. Darden, and J. Piquemal, , 2007.

. Anisotropic, polarizable molecular mechanics studies of inter-and intramolecular interactions and ligand-macromolecule complexes. A Bottom-Up Strategy, J. Chem. Theory Comput, vol.3, 1960.

N. Gresh, D. Perahia, B. De-courcy, J. Foret, C. Roux et al., Complexes of a Zn-metalloenzyme binding site with hydroxamatecontaining ligands. A case for detailed benchmarkings of polarizable molecular mechanics/dynamics potentials when the experimental binding structure is unknown, J. Comput. Chem, vol.37, pp.2770-2782, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02126855

N. Gresh, J. Piquemal, and M. Krauss, Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations, J. Comput. Chem, vol.26, pp.1113-1130, 2005.
URL : https://hal.archives-ouvertes.fr/hal-02127150

T. Harayama and H. Riezman, Understanding the diversity of membrane lipid composition, Nat. Rev. Mol. Cell Biol, vol.19, pp.281-296, 2018.

E. Harder, A. D. Mackerell, and B. Roux, Many-body polarization effects and the membrane dipole potential, J. Am. Chem. Soc, vol.131, pp.2760-2761, 2009.

M. Harger, D. Li, Z. Wang, K. Dalby, L. Lagardère et al., Tinker-OpenMM: absolute and relative alchemical free energies using AMOEBA on GPUs, J. Comput. Chem, vol.38, pp.2047-2055, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571313

H. Hauser, C. C. Hinckley, J. Krebs, B. A. Levine, M. C. Phillips et al., The interaction of ions with phosphatidylcholine, Biochim. Biophys. Acta, vol.468, pp.364-377, 1977.

J. Huang, J. A. Lemkul, P. K. Eastman, and A. D. Mackerell, Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks, J. Comput. Chem, vol.39, pp.1682-1689, 2018.

J. Huang and A. D. Mackerell, CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data, J. Comput. Chem, vol.34, pp.2135-2145, 2013.

J. Huang and A. D. Mackerell, Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide, Biophys. J, vol.107, pp.991-997, 2014.

J. Huang, A. C. Simmonett, F. C. Pickard, . Iv, A. D. Mackerell et al., Mapping the drude polarizable force field onto a multipole and induced dipole model, J. Chem. Phys, vol.147, p.161702, 2017.

M. Javanainen, A. A. Melcrová, A. Magarkar, P. Jurkiewicz, M. Hof et al., Two cations, two mechanisms: interactions of sodium and calcium with zwitterionic lipid membranes, Chem. Commun, vol.53, pp.5380-5383, 2017.

W. Jiang, D. J. Hardy, J. C. Phillips, A. D. Mackerell, K. Schulten et al., High-performance scalable molecular dynamics simulations of a polarizable force field based on classical Drude oscillators in NAMD, J. Phys. Chem. Lett, vol.2, pp.87-92, 2011.

D. Jiao, P. A. Golubkov, T. A. Darden, and P. Ren, Calculation of protein-ligand binding free energy by using a polarizable potential, Proc. Natl. Acad. Sci. U.S.A, vol.105, pp.6290-6295, 2008.

Z. Jing, C. Liu, S. Y. Cheng, R. Qi, B. D. Walker et al., Polarizable force fields for biomolecular simulations: recent advances and applications, Annu. Rev. Biophys, vol.48, pp.371-394, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01821899

Z. Jing, C. Liu, R. Qi, and P. Ren, Many-body effect determines the selectivity for Ca and Mg in proteins, Proc. Natl. Acad. Sci. U.S.A, vol.115, pp.7495-7501, 2018.

L. H. Jolly, A. Duran, L. Lagardère, J. W. Ponder, P. Y. Ren et al., Raising the performance of the Tinker-HP molecular modeling package, LiveCoMS, vol.1, p.10409, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02147771

W. L. Jorgensen, Special issue on polarization, J. Chem. Theory Comput, vol.3, p.1877, 2007.

A. Kleshchonok and A. Tkatchenko, Tailoring van der Waals dispersion interactions with external electric charges, Nat. Commun, vol.9, p.3017, 2018.

M. Kohagen, P. E. Mason, J. , and P. , Accurate description of calcium solvation in concentrated aqueous solutions, J. Phys. Chem. B, vol.118, pp.1-27, 2014.

M. Kohagen, E. Pluharová, P. E. Mason, J. , and P. , Exploring ion-ion interactions in aqueous solutions by a combination of molecular dynamics and neutron scattering, J. Phys. Chem. Lett, vol.6, pp.1563-1567, 2015.

R. Kurland, C. Newton, S. Nir, P. , and D. , Specificity of Na+ binding to phosphatidylserine vesicles from a 23Na NMR relaxation rate study, Biochim. Biophys. Acta, vol.551, pp.137-147, 1979.

L. Lagardère, F. Aviat, and J. Piquemal, Pushing the limits of multipletime-step strategies for polarizable point dipole molecular dynamics, J. Phys. Chem. Lett, vol.10, pp.2593-2599, 2019.

L. Lagardère, L. Jolly, F. Lipparini, F. Aviat, B. Stamm et al., Tinker-HP: a massively parallel molecular dynamics package for multiscale simulations of large complex systems with advanced point dipole polarizable force fields, Chem. Sci, vol.9, pp.956-972, 2018.

L. Lagardère, F. Lipparini, É. Polack, B. Stamm, É. Cancès et al., Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald, J. Chem. Theory Comput, vol.11, pp.2589-2599, 2015.

G. Lamoureux, A. D. Mackerell, and B. Roux, A simple polarizable model of water based on classical Drude oscillators, J. Chem. Phys, vol.119, pp.5185-5197, 2003.

A. G. Lee, How lipids affect the activities of integral membrane proteins, Biochim. Biophys. Acta, vol.1666, pp.62-87, 2004.

S. Lee and S. S. Park, Dielectric properties of organic solvents from non-polarizable molecular dynamics simulation with electronic continuum model and density functional theory, J. Phys. Chem. B, vol.115, pp.12571-12576, 2011.

J. A. Lemkul, J. Huang, B. Roux, and A. D. Mackerell, An empirical polarizable force field based on the classical drude oscillator model: development history and recent applications, Chem. Rev, vol.116, pp.4983-5013, 2016.

I. Leontyev and A. Stuchebrukhov, Accounting for electronic polarization in non-polarizable force fields, Phys. Chem. Chem. Phys, vol.13, p.2613, 2011.

I. V. Leontyev and A. A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations, J. Chem. Phys, vol.130, p.85102, 2009.

I. V. Leontyev and A. A. Stuchebrukhov, Electronic continuum model for molecular dynamics simulations of biological molecules, J. Chem. Theory Comput, vol.6, pp.1498-1508, 2010.

I. V. Leontyev and A. A. Stuchebrukhov, Electronic polarizability and the effective pair potentials of water, J. Chem. Theory Comput, vol.6, pp.3153-3161, 2010.

I. V. Leontyev and A. A. Stuchebrukhov, Polarizable mean-field model of water for biological simulations with amber and charmm force fields, J. Chem. Theory Comput, vol.8, pp.3207-3216, 2012.

F. Lipparini, L. Lagardère, B. Stamm, E. Cancès, M. Schnieders et al., Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: I. Toward Massively Parallel Direct Space Computations, J. Chem. Theory Comput, vol.10, pp.1638-1651, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01090942

C. Liu, J. Piquemal, and P. Ren, AMOEBA+ classical potential for modeling molecular interactions, J. Chem. Theory Comput, vol.15, pp.4122-4139, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02142886

D. Loco, L. Lagardère, S. Caprasecca, F. Lipparini, B. Mennucci et al., Hybrid QM/MM molecular dynamics with AMOEBA polarizable embedding, J. Chem. Theory Comput, vol.13, pp.4025-4033, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01571619

D. Loco, L. Lagardère, G. A. Cisneros, G. Scalmani, M. Frisch et al., Towards large scale hybrid QM/MM dynamics of complex systems with advanced point dipole polarizable embeddings, Chem. Sci, vol.10, pp.7200-7211, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02152908

D. Loco, É. Polack, S. Caprasecca, L. Lagardère, F. Lipparini et al., A QM/MM approach using the AMOEBA polarizable embedding: from ground state energies to electronic excitations, J. Chem. Theory Comput, vol.12, pp.3654-3661, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02126716

P. E. Lopes, O. Guvench, and A. D. Mackerell, Current status of protein force fields for molecular dynamics simulations, Methods Mol. Biol, vol.1215, pp.47-71, 2015.

P. E. Lopes, J. Huang, J. Shim, Y. Luo, H. Li et al., Polarizable force field for peptides and proteins based on the classical drude oscillator, J. Chem. Theory Comput, vol.9, pp.5430-5449, 2013.

P. E. Lopes, B. Roux, A. D. Mackerell, B. A. Bauer, P. et al., Charge equilibration force fields for molecular dynamics simulations of lipids, bilayers, and integral membrane protein systems, Theor. Chem. Acc, vol.124, pp.318-329, 2009.

M. Lund, R. Vacha, J. , and P. , Specific ion binding to macromolecules: effects of hydrophobicity and ion pairing, Langmuir, vol.24, pp.3387-3391, 2008.

A. Magarkar, P. Jurkiewicz, C. Allolio, M. Hof, J. et al., Increased binding of calcium ions at positively curved phospholipid membranes, J. Phys. Chem. Lett, vol.8, pp.518-523, 2017.

J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser et al., ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB, J. Chem. Theory Comput, vol.11, pp.3696-3713, 2015.

T. Martinek, E. Duboué-dijon, ?. Timr, P. E. Mason, K. Baxová et al., Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering, J. Chem. Phys, vol.148, p.222813, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02104559

P. E. Mason, P. Jungwirth, and E. Duboué-dijon, Quantifying the strength of a salt bridge by neutron scattering and molecular dynamics, J. Phys. Chem. Lett, vol.10, pp.3254-3259, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02151287

P. E. Mason, E. Wernersson, J. , and P. , Accurate description of aqueous carbonate ions: an effective polarization model verified by neutron scattering, J. Phys. Chem. B, vol.116, pp.8145-8153, 2012.

J. Mattai, H. Hauser, R. A. Demel, and G. G. Shipley, Interactions of metal ions with phosphatidylserine bilayer membranes: effect of hydrocarbon chain unsaturation, Biochemistry, vol.28, pp.2322-2330, 1989.

J. Melcr, T. Ferreira, P. Jungwirth, and O. H. Ollila, Improved Cation Binding to Lipid Bilayer With Negatively Charged POPS by Effective Inclusion of Electronic Polarization, 2019.

J. Melcr, H. Martinez-seara, R. Nencini, J. Kolafa, P. Jungwirth et al., Accurate binding of sodium and calcium to a POPC bilayer by effective inclusion of electronic polarization, J. Phys. Chem. B, vol.122, pp.4546-4557, 2018.

A. Melcrová, S. Pokorná, S. Pullanchery, M. Kohagen, P. Jurkiewicz et al., The complex nature of calcium cation interactions with phospholipid bilayers, Sci. Rep, vol.6, p.38035, 2016.

A. V. Morozov, K. Tsemekhman, and D. Baker, Electron density redistribution accounts for half the cooperativity of alpha helix formation, J. Phys. Chem. B, vol.110, pp.4503-4505, 2006.

X. Mu, Q. Wang, L. Wang, S. D. Fried, J. Piquemal et al., Modeling organochlorine compounds and the ?-hole effect using a polarizable multipole force field, J. Phys. Chem. B, vol.118, pp.6456-6465, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02126799

C. Narth, L. Lagardère, É. Polack, N. Gresh, Q. Wang et al., Scalable improvement of SPME multipolar electrostatics in anisotropic polarizable molecular mechanics using a general short-range penetration correction up to quadrupoles, J. Comput. Chem, vol.37, pp.494-506, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01223008

S. Patel, J. E. Davis, and B. A. Bauer, Exploring ion permeation energetics in gramicidin A using polarizable charge equilibration force fields, J. Am. Chem. Soc, vol.131, pp.13890-13891, 2009.

L. Pegado, O. Marsalek, P. Jungwirth, and E. Wernersson, Solvation and ion-pairing properties of the aqueous sulfate anion: explicit versus effective electronic polarization, Phys. Chem. Chem. Phys, vol.14, pp.10248-10257, 2012.

J. C. Phillips, G. Zheng, S. Kumar, and L. V. Kale, NAMD: biomolecular simulation on thousands of processors, ACM/IEEE SC 2002 Conference (SC'02, 2002.

S. Piana, J. L. Klepeis, and D. E. Shaw, Assessing the accuracy of physical models used in protein-folding simulations: quantitative evidence from long molecular dynamics simulations, Curr. Opin. Struct. Biol, vol.24, pp.98-105, 2014.

S. Piana, K. Lindorff-larsen, and D. E. Shaw, How robust are protein folding simulations with respect to force field parameterization?, Biophys. J, vol.100, pp.47-49, 2011.

J. Piquemal, H. Chevreau, and N. Gresh, Toward a separate reproduction of the contributions to the hartree-fock and DFT intermolecular interaction energies by polarizable molecular mechanics with the SIBFA potential, J. Chem. Theory Comput, vol.3, pp.824-837, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02126810

J. Piquemal and G. Cisneros, Status of the gaussian electrostatic model, a density-based polarizable force field, Many-Body Effects and Electrostatics in Biomolecules, pp.269-299, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01114075

J. Piquemal, G. A. Cisneros, P. Reinhardt, N. Gresh, and T. A. Darden, Towards a force field based on density fitting, J. Chem. Phys, vol.124, p.104101, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00494627

J. Piquemal, N. Gresh, and C. Giessner-prettre, Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution, J. Phys. Chem. A, vol.107, pp.10353-10359, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02126882

J. Piquemal, J. , and K. D. , Preface: special topic: from quantum mechanics to force fields, J. Chem. Phys, vol.147, p.161401, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02127251

J. Piquemal, L. Perera, G. A. Cisneros, P. Ren, L. G. Pedersen et al., Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: From energetics to structure, J. Chem. Phys, vol.125, p.54511, 2006.
URL : https://hal.archives-ouvertes.fr/hal-02126806

K. Pluhackova, S. A. Kirsch, J. Han, L. Sun, Z. Jiang et al., A critical comparison of biomembrane force fields: structure and dynamics of model DMPC, POPC, and POPE bilayers, J. Phys. Chem. B, vol.120, pp.3888-3903, 2016.

E. Pluha?ová, P. E. Mason, J. , and P. , Ion pairing in aqueous lithium salt solutions with monovalent and divalent counter-anions, J. Phys. Chem. A, vol.117, pp.11766-11773, 2013.

J. W. Ponder and D. A. Case, Force fields for protein simulations, Adv. Protein Chem, vol.66, pp.27-85, 2003.

R. Qi, Z. Jing, C. Liu, J. Piquemal, K. N. Dalby et al., Elucidating the phosphate binding mode of phosphate-binding protein: the critical effect of buffer solution, J. Phys. Chem. B, vol.122, pp.6371-6376, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126853

J. A. Rackers and J. W. Ponder, Classical Pauli repulsion: An anisotropic, atomic multipole model, J. Chem. Phys, vol.150, p.84104, 2019.

J. A. Rackers, Z. Wang, C. Lu, M. L. Laury, L. Lagardère et al., Tinker 8: software tools for molecular design, J. Chem. Theory Comput, vol.14, pp.5273-5289, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01820747

P. Ren and J. W. Ponder, Polarizable atomic multipole water model for molecular mechanics simulation, J. Phys. Chem. B, vol.107, pp.5933-5947, 2003.

S. W. Rick and S. J. Stuart, Potentials and algorithms for incorporating polarizability in computer simulations, Reviews in Computational Chemistry, pp.89-146, 2003.

M. Riera, E. Lambros, T. T. Nguyen, A. W. Götz, and F. Paesani, Loworder many-body interactions determine the local structure of liquid water, Chem. Sci, vol.116, p.7463, 2019.

M. J. Robertson, J. Tirado-rives, and W. L. Jorgensen, Improved peptide and protein torsional energetics with the OPLSAA force field, J. Chem. Theory Comput, vol.11, pp.3499-3509, 2015.

M. Roux and M. Bloom, Calcium, magnesium, lithium, sodium, and potassium distributions in the headgroup region of binary membranes of phosphatidylcholine and phosphatidylserine as seen by deuterium NMR, Biochemistry, vol.29, pp.7077-7089, 1990.

M. Roux and M. Bloom, Calcium binding by phosphatidylserine headgroups. Deuterium NMR study, Biophys. J, vol.60, pp.38-44, 1991.

C. Schröder, Comparing reduced partial charge models with polarizable simulations of ionic liquids, Phys. Chem. Chem. Phys, vol.14, pp.3089-3102, 2012.

Y. Shi, D. Jiao, M. J. Schnieders, and P. Ren, Trypsin-ligand binding free energy calculation with AMOEBA, Conf. Proc. IEEE Eng. Med. Biol. Soc, pp.2328-2331, 2009.

Y. Shi, P. Ren, M. Schnieders, and J. Piquemal, Polarizable force fields for biomolecular modeling: parrill/reviews in computational chemistry volume, Reviews in Computational Chemistry, vol.28, pp.51-86, 2015.

Y. Shi, Z. Xia, J. Zhang, R. Best, C. Wu et al., The Polarizable atomic multipole-based AMOEBA force field for proteins, J. Chem. Theory Comput, vol.9, pp.4046-4063, 2013.

A. Stone, The Theory of Intermolecular Forces, 2013.

R. Vacha, S. W. Siu, M. Petrov, R. A. Böckmann, J. J. Barucha-kraszewska et al., Effects of alkali cations and halide anions on the DOPC lipid membrane, J. Phys. Chem. A, vol.113, pp.7235-7243, 2009.

D. Van-der-spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark et al., GROMACS: fast, flexible, and free, J. Comput. Chem, vol.26, pp.1701-1718, 2005.

M. Vazdar, P. Jungwirth, and P. E. Mason, Aqueous guanidiniumcarbonate interactions by molecular dynamics and neutron scattering: relevance to ion-protein interactions, J. Phys. Chem. B, vol.117, pp.1844-1848, 2013.

R. M. Venable, A. Krämer, and R. W. Pastor, Molecular dynamics simulations of membrane permeability, Chem. Rev, vol.119, pp.5954-5997, 2019.

Q. Wang, J. A. Rackers, C. He, R. Qi, C. Narth et al., General model for treating short-range electrostatic penetration in a molecular mechanics force field, J. Chem. Theory Comput, vol.11, pp.2609-2618, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01287207

W. Wang and R. D. Skeel, Fast evaluation of polarizable forces, J. Chem. Phys, vol.123, p.164107, 2005.

J. C. Wu, J. Piquemal, R. Chaudret, P. Reinhardt, and P. Ren, Polarizable molecular dynamics simulation of Zn(II) in water using the AMOEBA force field, J. Chem. Theory Comput, vol.6, pp.2059-2070, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02126833

C. Zhang, C. Lu, Z. Jing, C. Wu, J. Piquemal et al., AMOEBA polarizable atomic multipole force field for nucleic acids, J. Chem. Theory Comput, vol.14, pp.2084-2108, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02126772

J. Zhang, W. Yang, J. Piquemal, and P. Ren, Modeling structural coordination and ligand binding in zinc proteins with a polarizable potential, J. Chem. Theory Comput, vol.8, pp.1314-1324, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02126837