
HAL Id: hal-02283535
https://hal.science/hal-02283535

Submitted on 10 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combinatorial Bandits for Sequential Learning in
Colonel Blotto Games

Dong Quan Vu, Patrick Loiseau, Alonso Silva

To cite this version:
Dong Quan Vu, Patrick Loiseau, Alonso Silva. Combinatorial Bandits for Sequential Learning in
Colonel Blotto Games. CDC 2019 - 58th IEEE Conference on Decision and Control, Dec 2019, Nice,
France. �hal-02283535�

https://hal.science/hal-02283535
https://hal.archives-ouvertes.fr

Combinatorial Bandits for Sequential Learning in Colonel Blotto Games

Dong Quan Vu
AAAIRD Department

Nokia Bell Labs, Paris Saclay,
Nozay, France

Patrick Loiseau
Univ. Grenoble Alpes, Inria,
CNRS, Grenoble INP, LIG,

France & MPI-SWS, Germany

Alonso Silva
Safran Tech, Signal and

Information Technologies,
Magny-Les-Hameaux, France

Abstract— The Colonel Blotto game is a renowned resource
allocation problem with a long-standing literature in game
theory (almost 100 years). However, its scope of application
is still restricted by the lack of studies on the incomplete-
information situations where a learning model is needed. In this
work, we propose and study a regret-minimization model where
a learner repeatedly plays the Colonel Blotto game against
several adversaries. At each stage, the learner distributes
her budget of resources on a fixed number of battlefields to
maximize the aggregate value of battlefields she wins; each
battlefield being won if there is no adversary that has higher
allocation. We focus on the bandit feedback setting. We first
show that it can be modeled as a path planning problem. It
is then possible to use the classical COMBAND algorithm to
guarantee a sub-linear regret in terms of time horizon, but
this entails two fundamental challenges: (i) the computation is
inefficient due to the huge size of the action set, and (ii) the
standard exploration distribution leads to a loose guarantee in
practice. To address the first, we construct a modified algorithm
that can be efficiently implemented by applying a dynamic
programming technique called weight pushing; for the second,
we propose methods optimizing the exploration distribution to
improve the regret bound. Finally, we implement our proposed
algorithm and perform numerical experiments that show the
regret improvement in practice.

I. INTRODUCTION
The Colonel Blotto game (henceforth, CB game) is a

classical resource allocation problem where players simul-
taneously distribute a fixed number of troops (indivisible
resources) on a certain number of battlefields to maximize
the aggregate value of battlefields they win, each battlefield
being won by the player who allocates the most resources
to it. The CB game can be used to model a vast range of
practical situations, e.g., allocating security forces in security
([1], [6]); allocating broadcasting time in advertisement
([15]); allocating shared spectrum in wireless networks ([11])
and allocating resources to persuade voters in politics ([12]).

The CB game was first introduced by [4] in 1921 and has
been extensively studied after, especially in recent years. In
particular, the Nash equilibrium of the relaxed continuous
version (where resource allocations can be fractional) was
studied by [8], [18], [20] under different assumptions. For
the discrete version (with indivisible troops), [3] proposed
polynomial (but still expensive) algorithms to compute the
exact equilibrium whereas [23] proposed a much faster
algorithm to compute an approximate equilibrium. All these
works, however, only consider the full information one-shot
game setting.1 In most of the applications, the most natural

1A few works studied dynamic settings of the game, but only limited to
two or three stages and they focus on asynchronous allocations ([9], [17]).

setting is an incomplete information repeated game. For ex-
ample, in advertising, one can consider an online marketing
campaign which once per day reviews how the marketing
campaign performs and based on this information, learns a
better strategy. Resources and strategies of the adversaries
are usually unknown or need to be estimated by the learner;
especially in the dynamic setting. The question is then how
to design a good sequential resource allocation policy.

The CB game has a specific combinatorial structure
and the most natural way to model sequential learning in
this game is to use the Combinatorial Bandit (henceforth,
CBAND) framework, defined as follows: at each stage t
within a time horizon T , the learner chooses a vector pt

in her action set S ⊂ {0, 1}E , for an E ∈ N; then a
loss vector `t ∈ [0, 1]E is generated by the adversaries; the
learner suffers a scalar loss L (pt) = (`t)>pt. The learner’s
objective is to minimize her expected regret RT , i.e., the
difference between her cumulative loss and that of her single
best-action in hindsight, formally defined as follows:

RT := E

[
T∑
t=1

L (pt)−min
p∈S

T∑
t=1

L (p)

]
. (1)

Importantly, in CBAND, the feedback that the learner re-
ceives at the end of each stage is under the bandit setting:
the learner’s only observation when stage t ends is the
scalar loss L (pt). This is the most generic information-
setting considered in the literature. This setting covers many
applications of the CB game; e.g., in advertising, the total
profit of selling a product can be easily observed while it is
much harder to keep track of the partial profit of each ad
(simultaneously promoting that product).

COMBAND algorithm, proposed by [5], is a classical algo-
rithm for solving CBANDs. It provides a regret guarantee of
the order O(

√
TE log |S|) that improves significantly than

naively using other standard Multi-armed Bandit algorithms.
In the CB game (modeled as a CBAND), E is polynomial in
the number of battlefields and troops while |S| is exponential
in terms of these parameters. However, applying directly
COMBAND, we face two important challenges.

a) Challenge 1: Computation Issue: The main problem
with the COMBAND algorithm is that in general, it cannot
be implemented efficiently (its running time is in O(|S|T)).
However, in some special cases, there are techniques that
allow us to efficiently implement variants of this algorithm.
The path planning problem (henceforth, PPP) is such an
example: each action is equivalent to a path on a graph and

the loss of a chosen path equals to the aggregation of losses
of edges on that path. In PPPs, [19] recently proposed an
efficient variant of COMBAND running in O(E2T) based on
the weight-pushing technique (introduced by [21]). However,
this algorithm has a redundancy in representation (involving
5 sub-algorithms) and is still non-trivial to be implemented.
A direct application of COMBAND to the CB model is
impractical; can we find a new representation of CB game
to obtain a path planning model allowing an efficient imple-
mentation of COMBAND? If the answer is positive, we also
desire a simpler representation of this efficient algorithm.

b) Challenge 2: Optimizing Exploration Distribution:
COMBAND mixes an exploitation procedure (updated ac-
cording to an unbiased loss estimator) with an “exploration
distribution” on the action set. The regret bound given
by COMBAND algorithm depends directly on the choice
of an exploration distribution to be used. For PPPs (and
also for CB games), the optimal exploration distribution
remains unknown (this is an open question proposed by [5]).

Our Contributions: In this paper, we provide the first anal-
ysis of sequential learning in CB games. The action set of the
CB game can be represented by a special graph; thus, we can
model it as a PPP. Focusing on this model, our contribution
is twofold: (i) Based on the weight pushing technique, we
construct a simple algorithm, called EDGE(µ), that can be
efficiently implemented and it guarantees a polynomial regret
bound in terms of the CB game’s parameters; (ii) We propose
a fast method to compute an exploration distribution that
can be used as the input of EDGE(µ) to improve the regret
bound. Numerical experiments are conducted to illustrate
this improvement, both in terms of the performance and the
computation time.

Although in this work, we focus only on the CB game, note
that our setting is more general. Our results can be extended
to PPPs with general graphs that includes many other re-
sources allocation games and multi-task online optimization.
Note finally that [7] proposed another variant of COMBAND
(mixing with ideas of the OSMD algorithm proposed by
[2]), called the COMBEXP algorithm, that improves the
complexity of COMBAND in several cases while maintaining
the regret guarantees. However, PPP is not explicitly consid-
ered in [7] and it remains an open question whether any
arbitrary instance of the PPP satisfies the condition such that
COMBEXP can be efficiently implemented (i.e., the convex
hull of the action set can be represented by a polynomial
number of linear equations and linear inequalities). There-
fore, COMBAND is still the state-of-the-art algorithm for our
considering problem. Moreover, COMBEXP also uses the
uniform exploration distribution that is sub-optimal in PPPs
(see also [5]); thus, our second contribution in finding better
exploration distributions is relevant.

Notation: Throughout the paper, we use bold symbols
(e.g., x) to denote (column) vectors with subscript indexes
(e.g., xi) to denote its elements. On the other hand, the
superscript t refers to the stage and the notation [k] denotes
the set {1, 2, . . . , k}, for any k ∈ N \ {0}. In graphs, we use
the notation e ∈ p to refer that the edge e belongs to the

path p. Finally, > denotes the transpose matrix/vector and
Mk×k′ is the set of all real matrices with dimension k× k′.

II. PRELIMINARIES
In this section, we review the standard COMBAND algo-

rithm (proposed by [5]). We also highlight its drawbacks that
need be improved. A pseudo-code of COMBAND, written in
our notation, is given as Algorithm 1.

Algorithm 1: COMBAND(µ) for CBAND.

Input: S⊂{0, 1}E , T ∈N, γ∈ [0, 1], η>0, distribution
µ on S.

1 ∀p ∈ S, w1(p) := 1.
2 for t = 1, 2, . . . , T do
3 Adversaries choose the loss vector `t (unobserved

by the learner).
4 ∀p ∈ S, νt(p) := wt(p)/

∑
q∈S [wt(q)].

5 Sample and play pt according to
dt(p)=(1−γ)νt(p)+γµ(p).

6 Suffer and observe the loss L(pt)=
(
`t
)>
pt ≤ 1.

7 Compute Ct := Ep∼dt [pp
>] ∈ME×E .

8 Compute the estimated loss
ˆ̀t := L(pt)

(
C−1t pt

)
=
(
`t(pt)>

)
C−1t pt.

9 ∀p ∈ S, wt+1(p) := wt(p)e−η(
ˆ̀t)>p.

At each stage t, COMBAND keeps a weight wt(p) for
each action p and it samples an action (line 5) from a
distribution, called dt, mixing between an “exploitation”
distribution νt (normalization of the action weights) and an
“exploration” distribution µ (unchanged over time). An un-
biased estimator ˆ̀t ∈ [0, 1]E , based on the “co-occurrence”
matrix Ct := Ep∼dt [pp

>] ∈ME×E , is used to estimate the
loss vector `t. Then, the action weights are updated by the
exponential rule using these estimated losses (line 9).

In COMBAND, the exploration distribution µ is chosen
a priori and it can be any arbitrary distribution on S such
that S is spanned by the support of µ. Importantly, the
performance guarantee of COMBAND depends directly on
the choice of µ; to highlight this, we henceforth parameterize
COMBAND with µ and use the notation COMBAND(µ).
Consider the matrix M(µ) = Ep∼µ

[
pp>

]
, we denote by

λ∗[M(µ)] the smallest nonzero eigenvalue of M(µ) and let
n := max{‖p‖1,p ∈ S}. An upper-bound of the expected
regret given by this algorithm is stated as follows.

Theorem 2.1: In any CBAND problem, the COMBAND(µ)
algorithm with appropriate parameters yields an expected
regret RT ≤ 2

√
[2n/(E · λ∗[M(µ))]+1]TE log(|S|).

This theorem is extracted from Theorem 1 in [5] and
is rewritten here under our notation. Trivially, the larger
λ∗[M(µ)] is, the better the regret bound that COMBAND(µ)
guarantees. The problem of optimizing µ and λ∗[M(µ)] in
general CBANDs (and particularly for PPPs) remains an open
question (see [5] for several positive examples). Regarding
the computation complexity of COMBAND, given a time
horizon T , it runs in O(|S| · T). Since |S| is exponential in

terms of E, it is inefficient to implement COMBAND. This
is due to the weights-updating step (line 9), the sampling
step (line 5) and the computation of the co-occurrence
matrix (line 7). We will analyze these steps in Section IV
and provide alternative procedures to improve them in the
sequential learning model of Colonel Blotto games.

III. COMBINATORIAL BANDIT MODEL OF
LEARNING IN COLONEL BLOTTO GAMES

We consider a sequential learning problem that involves a
learner, A adversaries, n battlefields and a time horizon T
(n ≥ 2 and T > 0 are known by the learner, A ≥ 1).
Each battlefield i ∈ [n] has a fixed value bi > 0 (hidden
from the learner) and we assume normalized values, that is∑n
i=1 bi = 1. At each stage t ∈ [T], the learner faces a

decision problem of distributing m troops (m ≥ 1 is fixed)
towards the battlefields while the adversaries simultaneously
allocate theirs. The learner’s allocations have to satisfy the
budget constraint, that is she chooses a strategy pt in the
action set S := {p ∈ Nn :

∑n
i=1 pi = m}.2 For any i ∈ [n],

the element pi of strategy p represents the quantity of troops
she allocates to battlefield i. At the end of time t, the
learner suffers a loss L (pt) equal to the sum of values of
battlefields that she loses, i.e., where there is at least one
adversary having strictly higher local allocation than her.
Without loss of generality, in case there are players who
have tie allocations which are the highest in battlefield i,
the value bi is shared equally among them. When t ends,
the learner observes the scalar number L(pt) but she does
not know which battlefield she lost or won nor the strategies
that the adversaries used (the bandit feedback). Note that
the incurred loss is bounded, i.e., L(pt) ≤ 1,∀pt,∀t. The
cumulative loss

∑T
t=1 L(pt) is computed and the learner’s

objective is to minimize her expected regret (defined in (1)).
Henceforth, we refer to this model as CB(m,n) problem.

It is important to note that the size of the learner’s strategy
set is |S| =

(
n+m−1
n−1

)
= O(2min{n−1,m}), that is exponential

in terms of m (or n). Our objective is to design an algorithm
guaranteeing an expected regret that is sub-linear in T and
polynomial in terms of m and n while its complexity is also
polynomial in m,n, and T .

A. Layered Graph and Learning in CB Games as PPPs

In this section, we restate the formulation of CB(m,n) as a
PPP that allows an efficient implementation of COMBAND.
To do this, for each CB(m,n) game, we design a special
directed acyclic graph, called Gm,n, such that there exists
a one-to-one mapping between the action set S and the set
of all paths of Gm,n; we call this the layered graph.3 The
illustration of an instance of such a graph is presented in
Figure 1. The proof of existence of Gm,n can be intuitively

2The constraint
∑n

i=1 pi≤m is sometimes considered in the literature.
However, since unallocated troops do not contribute to the payoff, the learner
always has incentives to use all her troops.

3This term is inspired by a graph proposed by [3] that looks similar to
Gm,n; however, it is used for a completely different purpose and it also
contains more edges and paths than Gm,n (that are not useful in this work).

seen in Figure 1 and a formal definition is as follows (note
that this definition is extracted from [24]).

Definition 3.1 (Layered Graph): The graph Gm,n is a
DAG that contains:
(i) N := 2+(m+1)(n−1) nodes that are arranged into

n+1 layers. Layer 0 has only one node s :=(0, 0),
called the source node and Layer n contains one node
d :=(n,m), called the destination node. Each Layer
i ∈ [n− 1] contains m+ 1 nodes whose labels are
ordered from left to right by (i, 0), (i, 1), . . . , (i,m).

(ii) There are directed edges from the source node s to all
nodes in Layer 1 and from all nodes in Layer n− 1 to
the destination node d. For any Layer i ∈ [n− 2], there
is a directed edge from node (i, j1) to node (i+ 1, j2)
(of Layer (i+ 1)) if 0 ≤ j1 ≤ j2 ≤ m.

Battlefield 1

Battlefield 2

Battlefield n = 3

Fig. 1. The graph G3,3 corresponding to the game with m = n = 3. Each
path from s to d represents a strategy in S; e.g., the bold-blue path represents
the strategy (0, 0, 3) while the dash-red path represents the strategy (2, 0, 1).

Let N denote the set containing all nodes of Gm,n
(including the source and destination nodes). Gm,n
has E =(m+1) [4+(n−2)(m+2)]/2 = O(nm2) (directed)
edges that are arranged into n layers. Each edge repre-
sents an allocation of a certain number of troops toward
a certain battlefield: the edge from node (i, j1) to node
(i + 1, j2) represents the allocation of player that puts
(j2−j1) troops to battlefield i+1, for any i ∈ {0, . . . , n−1};
for instance, in Figure 1, the edge from (1, 0) to (2, 3)
represents allocating 3 troops to Battlefield 2. We denotes
E the set containing all the edges. Hereinafter, referring
to the layered graph, we simplify the notations and use
the term “paths” to indicate the paths starting from s and
ending at d if there is no other explicit explanation. We
define the set P ⊂ {0, 1}E containing all such paths
and P := |P| = |S| =

(
n+m−1
n−1

)
= O(2min{n−1,m}). Given

a strategy p ∈ S ⊂ [0,m]n, we slightly abuse the notation
and re-use p = (pe)e∈E to denote the E-dimension 0-1-
vector that represents the path equivalent to this strategy.
Particularly, ∀e ∈ E , pe = 1 if and only if edge e belongs to
path p and pe = 0 otherwise.

Finally, for the sake of completeness, we write down
formally the PPP that is equivalent to the CB(m,n) model.
At each stage t, the allocations of the learner and the adver-
saries to the battlefields determine a scalar loss `te ∈ [0, 1]
(following the rule of the CB game) embedded on each edge
e ∈ E of the graph Gm,n. The learner has to choose a
path pt ∈ P ⊂ {0, 1}E in Gm,n. The learner then suffers
a loss L(pt) =

(
`t
)>

pt =
∑
e∈pt `

t
e which equals the sum

of losses from all edges belonging to the chosen path pt.
At the end of stage t, the learner only observes the scalar
loss L(pt) of her chosen path but she does not know the
loss of each edge. Henceforth, we focus our analysis on this
model and we refer to it as PATHCB(m,n) to distinguish
with CB(m,n).

IV. EFFICIENT ALGORITHM FOR PATH
PLANNING PROBLEMS

In this section, we revisit a standard dynamic programming
technique, called weight pushing. This technique is the basic
for the efficient implementation of COMBAND algorithm
in PPPs. The first idea of weight pushing technique could
be tracked back to [10] and [21] although it was only
applied to efficiently sample a path in PPPs according to
updating-rules based on the weights of edges. Recently,
[19] proposed an application of weight pushing to compute
the co-occurrence matrix Ct in polynomial time in E;
particularly for COMBAND in PPPs with the Zero-suppressed
Binary Decision Diagrams. This computation requires 5 sub-
algorithms that involves heavy notations and unneccessary
complexity for our setting. We restate the technique with the
notations and parameters of PATHCB(m,n) and propose a
more computationally efficient version of COMBAND.

A. Paths and Edges’ Weights

In PPPs, we call the action weights wt(p) involved
in COMBAND as the path weights and recall that
wt+1(p) := wt(p)e−η(

ˆ̀t)>p. At stage t, for each edge e ∈ E ,
we define the edge weight wte such that w1

e := 1,∀e (by
convention) and wt+1

e := wte · e−η(
ˆ̀t
e). It is trivial to deduce

that wt(p) =
∏
e∈p w

t
e, ∀p ∈ P, t ∈ [T], i.e., the weight

of a path is the product of weights of all edges belong to
it. The basic idea of weight pushing is to keep track of the
paths weights (there is an exponential number of them) via
the edges weights (only a polynomial number of them) by
exploiting the structure of the graph.

Now, let us denote by P(u,v) the set of all paths start-
ing from node u and ending at node v. Then, for each
pair of nodes (u, v) ∈ N × N , at stage t, we define
Ht(u, v) :=

∑
p∈P(u,v)

∏
e∈p w

t
e. Intuitively, Ht(u, v) is the

sum of weights of all paths from node u to node v. Im-
portantly, by conventionally setting Ht(u, u) := 1, ∀u ∈ N
and Ht(u, v) = 0 if P(u,v) = ∅, we can compute all
the quantities Ht(u, v) in O(E) time via the following
procedure (see also [10]): we first re-label the nodes set
by N ={s = u0, u1, . . . , d=uN} such that if there exists
an edge connecting ui to uj then i < j. Then, for any
v ∈ N , recursively for u ∈ {v − 1, v − 2, . . . , s := 0}, we
can compute Ht(u, v).

B. Sampling by Edges’ Weights

Inspired by Theorem 3 in [10], we can design an al-
gorithm, denoted WP Algorithm (WP stands for weight
pushing), that takes wt(e), e ∈ E as inputs and outputs a
path in P . More importantly, the probability that a path
p is an output of the WP Algorithm at stage t is exactly

νt(p)—the exploitation distribution defined in COMBAND.
We rewrite this algorithm under our notation as Algorithm 2.
In Algorithm 2, we denote by e[u,v] the edge connecting from
node u to node v and by C(u) := {u′ > u : e[u,u′] ∈ E} the
set of all direct children of u.

Algorithm 2: WP Algorithm: Sampling by
edges’ weights.

Input: Gm,n, t ∈ [T], wte,∀e ∈ E .
1 Initialize Q := {0}, u0 = s and k = 0.
2 for k ≤ n do
3 Sample a node uk+1 from C(uk) with probability

wte[uk,uk+1]
Ht(uk+1, d)

/
Ht(uk, d).

4 Add uk+1 to the set Q.

Output: pt ∈ P going through all nodes in P.

C. Co-occurrence Matrix Computation

We now turn our focus to the matrix Ct := Ep∼dt [pp
>]

needed to be computed at each stage t in the COMBAND(µ)
algorithm. A direct computation of this matrix involves a sum
of P terms, that leads to the inefficiency of COMBAND(µ).
We first consider the following assumption on µ:

Assumption 1: There exists a set of edges weights w̃e > 0,
e ∈ E such that for each path p∗ ∈ P , we have
µ(p∗) =

∏
e∈p∗ w̃e/

∑
p∈P (

∏
e∈p w̃e).

Intuitively, if µ satisfies Assumption 1, there exists a set
of edges weights such that each path weight (according to µ)
equals to the multiplication of the weights of the correspond-
ing edges. Note that the uniform distribution on P (used by
most of works in the literature) satisfies Assumption 1.

Now, we observe that each entry Cte1,e2 equals to the
probability that a chosen path pt ∼ dt contains both edges e1
and e2 (hence the name co-occurrence matrix). Formally, we
have Cte1,e2 =

∑
p∈P d

t(p)pe1pe2 =
∑
{p:e1,e2∈p} d

t(p).
Now, we define M(νt) := Ep∼νt(p)[pp

>] and
M(µ) = Ep∼µ(p)[pp

>]—the co-occurrence matrices
corresponding to distribution νt and µ, respectively. From
the definition of dt(p) in COMBAND(µ), we can rewrite

Ct = (1− γ)M(νt) + γM(µ). (2)

Therefore, to efficiently compute Ct, we need to efficiently
compute M(νt) and M(µ). We do this by designing an algo-
rithm, called Algorithm 3, based on the quantities Ht(u, v)
computed in the previous section. Algorithm 3 runs inO(E2)
time. M(νt) can always be computed by Algorithm 3 with
input wte, e ∈ E . On the other hand, if µ satisfies Assump-
tion 1, M(µ) can also be computed by Algorithm 3.

Note that, we keep a generic notation in this algorithm:
the input w̃e, e ∈ E refers to any configuration of edges
weights, not only those with the specific forms wte under
the exponential updating rule. The output M(µw̃) is the co-
occurrence matrix corresponding to the distribution µw̃ that
draws a path p∗ with probability

µw̃(p∗) =
∏

e∈p∗
w̃e/

∑
p∈P

(
∏

e∈p
w̃e). (3)

Algorithm 3: Co-occurrence matrix computation.
Input: Gm,n, w̃e,∀e ∈ E .

1 Compute H(u, v) :=
∑

p∈P(u,v)

∏
e∈p w̃e, ∀u, v ∈ N .

2 for e1 = e[u1,v1] ∈ E do
3 M(µw̃)e1,e1 =

H(s,u1)w̃e1
H(v1,d)

H(s,d) .
4 for e2 = e[u2,v2] ∈ E , e2 > e1 do
5 M(µw̃)e1,e2 =

H(s,u1)w̃e1H(v1,u2)w̃e2H(v2,d)

H(s,d) .

6 for e1, e2 ∈ E , e2<e1 do M(µw̃)e1,e2 =M(µw̃)e2,e1 .
Output: The matrix M(µw̃).

In Algorithm 3, we also drop the superscript t in the notation
of H(u, v); these quantities can be efficiently computed (with
inputs w̃e) similar to Ht(u, v) (with inputs wte). The main
intuition of Algorithm 3 is that if a path p contains an edge
e1 = e[u1,v1], then p also has to contain a path from node s
to node u1 and a path from node v1 to node d. Similarly,
if a path p simultaneously contains the edges e1 = e[u1,v1]

and e2 = e[u2,v2], then p also contains a path from node s
to node u1, a path from node v1 to node u2 and a path from
node v2 to node d.

D. EDGE - An Computationally Efficient Algorithm

We now combine the techniques presented in the previous
sections into a modified variant of COMBAND. This novel al-
gorithm, denoted EDGE, works on edges instead of paths. We
also parameterize EDGE(µ) with each corresponding explo-
ration distribution µ. Its pseudo code is given in Algorithm 4.
We conclude this section with the following proposition.

Algorithm 4: EDGE(µ) Algorithm for PATHCB.
Input: m,n, T ∈ N,γ ∈ [0, 1], η > 0, distribution µ.

1 ∀e ∈ E , w1
e := 1.

2 for t = 1, 2, . . . , T do
3 Adversaries play (unobserved by the learner).
4 Sample β from Bernoulli distribution B(γ).
5 if β = 0 then sample a path pt using the WP

Algorithm with {wte, e ∈ E}.
6 else Sample a path pt from distribution µ.
7 Suffer and observe the loss L(pt)=

(
`t
)>
pt ≤ 1.

8 Compute Ct := Ep∼dt [pp
>] based on (2) and

Algorithm 3.
9 Estimate loss ˆ̀t =

(
`t(pt)>

)
C−1t pt.

10 ∀e ∈ E , wt+1
e := wte · e−η

ˆ̀t
e .

Proposition 4.1: With the same choices of γ and η, the
expected regret of EDGE(µ) is equal to that of COMBAND(µ)
in PPPs; thus, EDGE has the same regret bound as indicated
in Theorem 2.1. Given a distribution µ on P that satisfies
Assumption 1, EDGE(µ) runs in O(n2m4T); this is in
contrast with COMBAND(µ) that runs in O(exp(n)T).

V. OPTIMIZING THE EXPLORATION
DISTRIBUTION AND NUMERICAL EVALUATION

In this section, we investigate the exploration distribution
µ that is used in both COMBAND(µ) and EDGE(µ). Recall
the notation λ∗[M] for the smallest non-zero eigenvalue of
a matrix M . In Theorem 2.1, the regret bound is of order
O(λ∗[M(µ)]−1/2); therefore, to minimize this bound, we
need to search for µ that maximizes λ∗[M(µ)]. In several
CBAND problems (see [5]), the uniform distribution on the
action set, denoted µuni, was proven to yield an optimal
choice to use in COMBAND. However, it is not the case
for general PPPs and particularly for PATHCB(m,n): the
eigenvalue λ∗[M(µuni)] may be of order Ω(P−1) which
yields a regret upper-bound that is exponentially large in
terms of the number of edges (an example can be found
in [5]). Nevertheless, in all previous works that apply
the COMBAND algorithm to PPPs, e.g. [10] and [19],
µuni is used. Moreover, since it requires that γ ≤ 1,
the bound given in Theorem 2.1 can only be obtained if
T ≥ [n log(P)] /

[
(λ∗[M(µ)])

2
(
E
n + 2

λ∗[M(µ)]

)]
(parameters

tuned by [5]). If λ∗[M(µ)] is too small, COMBAND(µ) and
EDGE(µ) can only work with extremely large time horizon
T , which is impractical. For these reasons, the choice of
exploration distribution to use in these algorithms is crucial.

Formally, let us label the paths in P by p1,p2, . . . ,pP ,
we consider an eigenvalue-optimization problem as follows
(its search space is P -dimensional):

maximize λ∗
[∑P

i=1
xi ·

[
pip
>
i

]]
(4)

subject to x ∈ [0, 1]P ,
∑P

i=1
xi = 1. (5)

It is suggested in [5] that the problem (4)-(5) can be solved
by casting it into a semi-definite programming problem
(SDP). An explicit formulation of this SDP can be found
in Appendix VII-A. In principle, this SDP can be solved
exactly to find a distribution µ that maximizes λ∗[M(µ)].
However, in practice, this SDP formulation still cannot be
solved efficiently due to the fact that the feasible set still
has dimension P and that it contains a constraint relating
to a summation of P terms. In our simulation, standard
SDP solvers4 take a long running time to solve this SDP
problem even with small instances and they easily run into
computationally memory issues with moderate instances.

A. Derivative-free Optimization and Change of Search Space

The challenge is to find a fast method that provides
an exploration distribution µ to be used in EDGE(µ) that
guarantees a sufficiently good regret-bound. Moreover, it is
desired to be able to efficiently sample a path from µ (line 6
in Algorithm 4) and to efficiently compute the matrix M(µ)
in order to compute Ct (line 8 in Algorithm 4). To do this, we
reformulate the problem (4)-(5) to reduce the dimension of

4CVXOPT solver, available at https://cvxopt.org/ and Mosek solver
https://www.mosek.com/, both use primal-dual interior points methods.

the search space. We consider the following problem whose
search space is E-dimensional:

max
w∈[0,∞)E

λ∗(M(µw̃)). (6)

Here, we recall the notation µw̃—the distribution on the
paths set (defined in (3) for each w̃ ∈ [0,∞)E) such that
each path weight is the multiplication of the corresponding
edges weights. Therefore, for each feasible solution of (6),
say w∗, we can construct a corresponding feasible solution
µw∗ of (4)-(5); moreover, the objective function of (6) at w∗

equals to that of (4)-(5) at µw∗ . The construction of µw∗ is
in O(P) time, but we do not need to explicitly do so in
order to run EDGE algorithm with µw∗ . Instead, since µw∗

is guaranteed to satisfy Assumption 1, we can use the WP
Algorithm to sample efficiently a path from µw∗ and use
Algorithm 3 to compute efficiently M(µw∗). Therefore, we
can solve (6) to (implicitly) find an exploration distribution
and use it efficiently in EDGE.

Fig. 2. Diagram illustrating the derivative-free optimization.

Although (6) reduces significantly the dimension of the
search space comparing to (4)-(5), this formulation loses the
structure that allows us to apply standard convex optimiza-
tion algorithms.5 Therefore, in this work, we use derivative-
free algorithms to heuristically solve (6). Despite the fact
that the solution found by this method may not be optimal,
we can still guarantee that this solution is at least as good
as the uniform distribution that is often used in the state-
of-the-art algorithms (we initialize our algorithm with µuni).
Moreover, although the search space in (6) may not cover
the whole search space in (4)-(5), the solution found in (6)
(might be corresponding to a sub-optimal for (4)-(5)) is
guaranteed to be efficiently embedded with EDGE; on the
other hand, even if we found an optimal solution of (4)-
(5), it does not guarantee to be efficiently used in EDGE. A
diagram explaining the intuition of our method to solve (6)
can be found in Figure 2. We can use any derivative-
free optimization solver that goes with specific strategies of
sampling new points and justifying the current-best solution.

We denote µfree the distribution corresponding to the
solution of (6) found by our derivative-free method6 and note
that λ∗(M(µfree)) ≥ λ∗(M(µuni)). Finally, as a corollary of
Theorem 2.1 and Proposition 4.1, we have:

Proposition 5.1: In PATHCB(m,n), with appropriate
parameters γ and η, EDGE(µfree) guarantees
RT ≤O

(
n
√

2T
λ∗[M(µfree)]

)
and runs in O(n2m4T) time.

5The function giving the smallest non-zero eigenvalue of a matrix
M(µw) from an input w is not known to be convex or concave.

6Take we=1, ∀e ∈ E (corresponding to µuni) as the initialization point.

B. Numerical Evaluation

We conduct several experiments to evaluate the per-
formance of EDGE and measure the effect of optimizing
the exploration distribution.7 In these experiments, without
loss of generality, a learner, having m troops, plays a
repeated CB game on n battlefields with a single adver-
sary who has mA troops. We define a special adversary,
called the extreme-strong adversary: an adversary having
mA=(n−1)(m+1)+(m−1) troops, she “blocks” n − 1
battlefields (each has a value equal to ε/(n−1)) by allocating
m+1 troops to them and allocating m−1 troops to a certain
battlefield i with value bi=1−ε (unknown to the learner).
In this case, the losses on all paths are always 1 except for
the single path representing that the learner allocates all m
troops to battlefield i; this path yields the loss ε. We choose
this adversary to follow an example in [5] illustrating why
µuni fails to guarantee a good regret bound in PPPs. The
algorithms need to “explore” the low-loss path as soon as
possible to reduce the regret.

We use the ZOOPT solver8 (see [14]) embedded with
sRACOS algorithm ([13]) as the derivative-free optimization
solver to heuristically solve (6) (its output is µfree). Our
experiments run on an Intel Core i5-7300U CPU@ 2.60GHz
and 8.00GB RAM. Each instance is run 5 times and the
average results are reported.

In the first experiment, we compare the running time
between COMBAND and EDGE and the results confirm
that COMBAND takes exponential time while EDGE runs
in polynomial time in terms of m and n; these results
are reported in Figure 3 (the numbers of edges and paths
in the corresponding Gm,n are also reported for the sake
of comparison).

m

E
la

ps
ed

tim
e

(s
ec

on
ds

)

N
um

be
r

of
ed

ge
s

&
pa

th
s

Fig. 3. COMBAND(µfree) vs EDGE(µfree); n = 2m, T = 40000 fixed.

Next, we compare the performances of EDGE when it uses
µuni and µfree as the exploration distribution. Figure 4(a) (y-
axes is drawn with log-scale) illustrates the trade-off between
the time spending to find µfree and the improvement in
the eigenvalues and the upper-bounds predicted by Theo-
rem 2.1. Note that the smaller the ratios boundfree/bounduni
and λuni/λfree are, the more improvement that EDGE(µfree)
provides comparing to EDGE(µuni). Finally, we compare the

7Our code is given at https://github.com/dongquan11/BanditColonelBlotto.
8Available at https://zoopt.readthedocs.io/en/latest/. We run it in 100E

iterations; this stopping criterion is recommended by [13]; moreover, this
criterion is enough to solve (6) optimally in our experiments with small
instances (m,n ≤ 3).

m

R
at

io
s

λ
fr

ee
Se

ar
ch

Ti
m

e

(a) n=2m, T =40000 fixed.

T

R
eg

re
t

(b) The actual regrets.

Fig. 4. Performances evaluation of EDGE(µuni) and EDGE(µfree).

performance of EDGE(µuni) and EDGE(µfree) by their actual
regrets (see Figure 4(b)). Note that to efficiently compute the
best hindsight loss (it is non-trivial), we apply a dynamic
programming algorithm extracted from [23] that finds the
best response against a set of allocations of the adversary. We
observe that the actual regret of EDGE(µfree) is better than
EDGE(µuni); as m increases, the difference between these re-
grets also increases. For example, for instance m = 3, n = 6
and T = 105, the ratio (Regretuni − Regretfree)/Regretuni
equals 28% while this ratio of instance m = 5, n = 10,
T = 105 is 38%. Note that EDGE(µfree) can run with
larger instances (in m,n) but we choose not to report here
since EDGE(µuni) is unavailable in these instances (it requires
extremely large T). Besides the extreme-strong adversary, for
this experiment, we also consider several other adversary’s
strategies (see Appendix VII-B for more details) and we
notice that the results from these cases are similar to that
of the extreme-strong adversary case.

VI. CONCLUSION

In this work, we present the EDGE algorithm for learning
in the Colonel Blotto game that is modeled as a path planning
problem. EDGE improves the regret guarantees compared
to benchmark algorithm thanks to our proposed method
finding an improved exploration distribution. Moreover, our
algorithm is always efficiently implementable. This work not
only extends the scope of application of the Colonel Blotto
game in practice (even for large instances) but also can be
applied to more general path planning problems.

REFERENCES

[1] D. G. ARCE, D. KOVENOCK, AND B. ROBERSON, Weakest-link
attacker-defender games with multiple attack technologies, Naval
Research Logistics (NRL), 59 (2012), pp. 457–469.

[2] J.-Y. AUDIBERT, S. BUBECK, AND G. LUGOSI, Regret in online
combinatorial optimization, Mathematics of Operations Research, 39
(2014), pp. 31–45.

[3] S. BEHNEZHAD, S. DEHGHANI, M. DERAKHSHAN, M. HAJI-
AGHAYI, AND S. SEDDIGHIN, Faster and simpler algorithm for
optimal strategies of Blotto game., in AAAI, 2017, pp. 369–375.

[4] E. BOREL, La théorie du jeu et les équations intégrales à noyau
symétrique, Comptes rendus de l’Académie des Sciences, 173 (1921),
p. 58.

[5] N. CESA-BIANCHI AND G. LUGOSI, Combinatorial bandits, Journal
of Computer and System Sciences, 78 (2012), pp. 1404–1422.

[6] P. H. CHIA AND J. CHUANG, Colonel blotto in the phishing war, in
International Conference on Decision and Game Theory for Security,
Springer, 2011, pp. 201–218.

[7] R. COMBES, M. S. T. M. SHAHI, A. PROUTIERE, ET AL., Combina-
torial bandits revisited, in Advances in Neural Information Processing
Systems, 2015, pp. 2116–2124.

[8] O. GROSS AND R. WAGNER, A continuous Colonel Blotto game.
U.S.Air Force Project RAND Research Memorandum, 1950.

[9] A. GUPTA, G. SCHWARTZ, C. LANGBORT, S. S. SASTRY, AND
T. BAŘAR, A three-stage colonel blotto game with applications to
cyberphysical security, in American Control Conference (ACC), 2014,
IEEE, 2014, pp. 3820–3825.

[10] A. GYÖRGY, T. LINDER, G. LUGOSI, AND G. OTTUCSÁK, The
on-line shortest path problem under partial monitoring, Journal of
Machine Learning Research, 8 (2007), pp. 2369–2403.

[11] M. HAJIMIRSAADEGHI AND N. B. MANDAYAM, A dynamic colonel
blotto game model for spectrum sharing in wireless networks, in 2017
55th Annual Allerton Conference on Communication, Control, and
Computing (Allerton), IEEE, 2017, pp. 287–294.

[12] R. HORTALA-VALLVE AND A. LLORENTE-SAGUER, Pure strategy
nash equilibria in non-zero sum Colonel Blotto games, International
Journal of Game Theory, 41 (2012), pp. 331–343.

[13] Y.-Q. HU, H. QIAN, AND Y. YU, Sequential classification-based
optimization for direct policy search., in AAAI, 2017, pp. 2029–2035.

[14] Y.-R. LIU, Y.-Q. HU, H. QIAN, Y. YU, AND C. QIAN,
Zoopt/zoojl: Toolbox for derivative-free optimization, arXiv preprint
arXiv:1801.00329, (2017).

[15] A. M. MASUCCI AND A. SILVA, Strategic resource allocation for
competitive influence in social networks, in Allerton, 2014, pp. 951–
958.

[16] Y. NESTEROV AND A. NEMIROVSKY, Interior-pointpolynomial meth-
ods in convexprogramming, tech. rep., Philadelphia, PA,, 1994.

[17] R. POWELL, Sequential, nonzero-sum “blotto”: Allocating defensive
resources prior to attack, Games and Economic Behavior, 67 (2009),
pp. 611–615.

[18] B. ROBERSON, The Colonel Blotto game, Economic Theory, 29
(2006), pp. 2–24.

[19] S. SAKAUE, M. ISHIHATA, AND S.-I. MINATO, Efficient bandit com-
binatorial optimization algorithm with zero-suppressed binary decision
diagrams, in International Conference on Artificial Intelligence and
Statistics, 2018, pp. 585–594.

[20] G. SCHWARTZ, P. LOISEAU, AND S. S. SASTRY, The heterogeneous
Colonel Blotto game, in NetGCoop, 2014, pp. 232–238.

[21] E. TAKIMOTO AND M. K. WARMUTH, Path kernels and multiplicative
updates, Journal of Machine Learning Research, 4 (2003), pp. 773–
818.

[22] L. VANDENBERGHE AND S. BOYD, Semidefinite programming, SIAM
review, 38 (1996), pp. 49–95.

[23] D. Q. VU, P. LOISEAU, AND A. SILVA, Efficient computation of
approximate equilibria in discrete Colonel Blotto games, in IJCAI-
ECAI, July 2018.

[24] D. Q. VU, P. LOISEAU, A. SILVA, AND L. TRAN-THANH, Colonel
blotto and hide-and-seek games as path planning problems with side
observations, arXiv preprint arXiv:1905.11151, (2019).

VII. APPENDIX

A. SDP Formulation of the Exploration-Distribution Opti-
mization Problem

To formulate the problem (4)-(5) into a SDP, we first
observe that for any distribution µ such that the paths set
P is spanned by the support of µ, the matrix M(µ) always
has a fixed number of zero eigenvalues (denoted K) and this
number can be easily computed.9 Therefore, the problem
of maximizing λ∗[M(µ)] is equivalent to maximizing the
sum of K + 1 smallest eigenvalues of M(µ) which is
formulated as:

minimize (K + 1)s+ Tr(Z) (7)
subject to Z � 0 (8)

Z +
∑P

i=1
xi · pip>i + sIE � 0. (9)

Here, x ∈ [0, 1]P and r, s ∈ R, Z ∈ME×E are the variables.
IE is the identity matrix and the notation X � 0 indicates
that the matrix X is positive semi-definite. This is trivially
deduced from the Linear Matrix Inequalities representation
of the sum of K + 1 largest eigenvalues of the matrix (see
e.g., [16], [22]).

B. Additional Numerical Experiments

Besides the extreme-strong adversary, we also consider
two other adversary’s strategies: the uniform-adversary (resp.
the battlefields-wise adversary) who at each time t repeatedly
draws a battlefield by uniform distribution (resp. draws
battlefield i with probability bi/

∑
j∈[n] bj) then allocates

one troop to that battlefield until he runs out of troops
(mA = m). For this experiment, the battlefields’ values bi
are generated uniformly from [0, 8]. For each instance with
different parameters m,n and adversary’s strategies, we run
each algorithm EDGECB(µuni) and EDGECB(µbox) 5 times
and the average results of their actual regret are reported in
Figure 5.

T

R
eg

re
t

(a) Against uniform-adversary

T

R
eg

re
t

(b) Against battlefield-wise adversary

Fig. 5. The actual regrets of EDGE(µuni) and EDGE(µfree).

9Rank(M(µ)) < E is the size of the largest linear independent subset
of P , which is fixed and only depends on the structure of the layered
graph Gm,n. Rank-nullity theorem implies that K is also fixed. We can
compute K by computing rank of any particular matrix, say M(µuni).

