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Abstract

In this paper, the so-called “β rule” is used to simulate the anisotropic behaviour of directionally

solidified superalloys. First, the “mean-field” model is extended to the general case of

heterogeneous local elasticity. Two other models also designed using the “self-consistent”

framework are applied to make comparisons, either with the assumption of a purely elastic

accommodation of grains (Kröner-Weng model) or the translated field theory. As a reference,

full-field simulations using a representative volume element (RVE) and a crystal plasticity finite

element model (CPFEM) are carried out. Results show that the β rule is able to predict the

overall response of the material for various cases such as one-dimensional or two-dimensional

cyclic loading with or without a mean stress. Otherwise, local estimations are studied for both

mean-field and full-field models. The local responses of the β rule are consistent when they

are compared to those of CPFE simulations.

Keywords: Anisotropic material, constitutive behaviour, crystal plasticity, polycrystalline

material

1. Introduction

Directionally solidified (DS) nickel base superalloys receive a renewed interest for the design

of turbine blades [1, 2, 3]. Indeed, the temperatures within the gas chamber still increase

in order to create more efficient gas turbines and thereby lead to severe thermomechanical

conditions for downstream components. The interest of DS alloys comes from the columnar
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shape of grains along a macroscopic axis (chosen as X3 in the sequel). This axis is commonly

chosen as colinear to the main centrifugal loading applied to turbine blades. By eliminating

perpendicular grain boundaries, the fatigue and creep resistance of DS alloys are significantly

improved against untextured materials [4]. Moreover, keeping a thermal gradient in control

during casting allows to conserve a viscous molten metal, so that more and more thin turbine

blades can be produced. For these reasons, DS materials still remain good candidates for low

pressure turbine blades of modern aero-engines. In addition, the axis of cylindrical grains is

colinear to a 〈001〉 crystallographic direction of the face centered cubic (FCC) lattice structure

(see the Fig. 1), generating a strong elastic and plastic anisotropy.
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Figure 1: Plate made in DS200+Hf and Electron backscatter diffraction (EBSD) analysis in a cross section

showing the material texture [5].

Accordingly, the mechanical behaviour of these alloys takes place at the border line between

a single crystal and a polycrystalline aggregate. “Level 1” purely macroscopical models are

widely used to predict the behaviour of DS alloys [6, 7, 8], considering a transverse isotropic

symmetry. Generally, the calibration is made using one-dimensional experimental tests. Doing

so, the predictive response of the model may not be reliable for multi-axial loadings as it is

imposed to 3D components. In this paper, another strategy for DS alloys based on “mean

field” modeling [9, 10] is discussed, which introduces rigorously both the anisotropy due to

the behaviour of grains seen as single crystals and the anisotropy induced by the morphology
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and the crystallographic texture of this kind of material.

The pioneering work of Taylor [11] in the homogenization of metals demonstrates the interest

of introducing local behaviour of grains to predict plastic flow of polycrystalline aggregates.

Classically, a scale transition rule allows to pass from the global strain or stress to local

quantities within each phase1. This is the “localization” step. The corresponding analytical

expression can be highly nonlinear in time or/and in space if complex interactions between

grains are considered (viscous interactions, memory effect, ...) or if field fluctuations within

each phases are searched. After this stage, each phase is independently applied a single crystal

model. The second step called “homogenization” defines global quantities related to ones

computed for each phase, like the overall plastic strain, ... Considering the size, shape and

orientation of grains, the definition of a homogeneous equivalent medium (HEM) searched as

a weighted average of each phase contribution is assumed, well known as the self-consistent

approach [12, 13]. Frequently, these “Level 2” methods are seen as computational intensive

approach, so that “Level 1” models were promoted [6] for industrial applications, specifically

with the number of phases which have to be considered for metals. Such a situation can be

relieved by using optimal localization rules where non linear phenomena are simplified and

the numerical convergence of the model integration is fast. In this way, a pragmatic solution

consists in describing the non linear plastic accommodation of the phases by means of a second

level of hardening at the aggregate scale, using a phenomenological form, as proposed by the

“β models” [14, 15]. This method gives the opportunity to formulate an explicit estimate of

the local stress as a function of the macroscopic stress and strain, and of the local strain.

The model was previously used to simulate cyclic responses of untextured polycrystalline

aggregates [16]. The transition rule, first developed with the assumption of isotropic inclusions,

was extended to anisotropic materials in Säı et al [10]. As seen recently in Martin et al [17],

the β model was not able to represent the elastic/plastic transition, compared to other models.

This paper presents a new extension of the “β model” also adapted to directionally solidified

aggregates but introducing both elastic and plastic heterogeneous responses of grains. Section

2 shows the equations of the new micro-mechanical model using the self-consistent scheme.

In section 3, a numerical identification of the intergranular hardening is presented. Other

1In the sequel, the use of the term “phase” refers to a domain with specific local mecanical properties in a

heterogeneous material as a particle, a fiber or grains with a given crystallographic orientation
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homogenization techniques are introduced to evaluate the capabilities of the proposed model,

a simpler model which assumes purely elastic interaction between grains and another which

introduces more complex schemes as the so-called translated fields to significantly account

for viscous effects. Two elementary cases of pure tensile and pure shear loading are used to

calibrate the β model. In this work, we have paid attention to the local responses provided

by micro-mechanical models by comparing them with “reference” curves obtained by means

of several full-field simulations. Section 4 presents additional comparisons for more complex

numerical tests like one-dimensional and multiaxial cyclic loadings. Some parameters which

control the hardening at the grain scale are modified in order to demonstrate the capabilities

of the model to represent cyclic hardening or ratchetting.

2. A micro-mechanical model adapted to directionally solidified alloys

First, the local behaviour of grains is fixed, considering the crystal plasticity model proposed

by Meric et al [18] for Ni-based single crystal superalloys. The model uses the classical

framework of crystal plasticity in small strain. Twelve FCC slip systems are considered. The

equations (2) below recall how the plastic strain rate for the grain g, ε̇∼
gp, is deduced from the

value of the stress tensor for this grain, σ∼
g.

τ s = m∼
s : σ∼

g = 1
2
(
~ns ⊗~ls +~ls ⊗ ~ns

)
: σ∼

g

γ̇s =
〈 |τ s − xs| − rs

K

〉n
ηs

xs = cαs , α̇s = γ̇s − dv̇sαs and v̇s = ηsγ̇s (1)

rs = τ c +
∑
r 6=s

QH∼
rs(1− e−bvr)

ε̇∼
gp =

∑
s

γ̇sm∼
s

where m∼
s represents the orientation tensor of the s system defined by the symmetric part

of the tensor product of the normal ~ns and a slip direction ~ls of one octahedral slip plane.

τ s is the resolved shear stress, γ̇s is the shear rate and ηs = sign(τ s − xs). The Macauley

brackets are defined as 〈p〉 = max(p, 0). The material parameters for the plastic flow are τc
for the critical resolved shear stress, c and d for the kinematic hardening and Q and b for the

isotropic hardening. The slip interaction matrix, Hrs, is chosen as the identity matrix.

The local behaviour of a grain being defined, a scale transition rule has to be applied
4



to access the mechanical properties of polycrystalline aggregates. A first solution is to

find it numerically by using a full field approach. Then, simulations are carried out on

a representative volume element of the material (realistic using Xray tomography [19] or

synthetic by a Voronöı tessellation) and are solved by either a crystal plasticity finite elements

method (CPFEM) [20, 21, 22] or a fast Fourier transform algorithm (CPFFT) [23, 24]. In

another hand, this paper is focused on mean field approaches, where the scale transition rule is

approximated analytically. In such a case, various strategies had been proposed in the literature

as the self-consistent scheme [12, 13], the variational method [25, 26], the transformation

field analysis (TFA) [27] [28], ... For the self-consistent scheme, the heterogeneous material is

reduced to a collection of simple problems, represented by an inclusion embedded in a searched

homogeneous equivalent media (HEM). Each inclusion (also called a crystallographic phase

in the sequel) is defined by a crystal orientation and a simplified shape (a cylinder for DS

alloys). Then the common track consists in solving analytically the inclusion problems by

using either the exact Eshelby’s solution [29] if the local phases are linear elastic or extended

solutions for more complex behaviour [30]. In this work, a particular point is the use of a

“phenomenological” transition rule, introducing parameters which have to be identified. In

these works, these parameters are adjusted to provide similar results compared to CPFE

simulations.

2.1. Some previous works

This section addresses only to first order mean field models which consist in estimating

“per phase” average values of the stress and strain tensors. This assumption comes from the

Eshelby’s solution for a cylindrical inclusion whereas in full field approaches, polyhedral grains

involve field fluctuations. More sophisticated models take into account this heterogeneity but

are not within the main scope of this paper [31, 32]. The local quantities such as strain or

stress tensors are identified by superscript g and refer to a cylindrical crystallographic phase

with a crystal orientation φ1 around the longitudinal axis (the other Euler’s angles Φ and φ2

are supposed to be equal to zero for perfect DS alloys) and volume fraction fg (see the “Local

scale” rectangle of Fig. 2). For a purely linear elastic behaviour, the local stress and strain in

a grain are expressed by:

σ∼
g = C

≈
g : ε∼

g ; ε∼
g = S

≈
g : σ∼

g (2)
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For DS nickel-based superalloys, the local elasticity tensor, C
≈
g and the local compliance S

≈
g

have a cubic symmetry. Otherwise, the overall stress is defined by a volume average of the

local stress. The same applies to compute the macroscopic strain, so that an equation similar

to Eq. 2 is written at the global scale, defining an effective elasticity tensor C
≈

and a global

compliance S
≈
el:

Σ∼ = C
≈

: E∼ ; E∼ = S
≈
el : Σ∼ (3)

The Eshelby solution [29] provides a concentration law which links the local stress to the

macroscopic stress, and a residual stress induced by the local and global strains:

σ∼
g = Σ∼ +C

≈
:
(
S
≈
−1
C
− I

≈

)
: (E∼ − ε∼

g) (4)

where I
≈

is the fourth order identity tensor and S
≈C

is the Eshelby tensor computed with respect

to the effective elasticity tensor. Two localization tensors, B
≈
g and A

≈
g, are then introduced to

respectively link the local stress to the global stress and the local strain to the global strain:

σ∼
g = B

≈
g : Σ∼

ε∼
g = A

≈
g : E∼

B
≈
g =

[
C
≈

: C
≈
g−1 +C

≈
: S

≈C
:
(
C
≈
−1 −C

≈
g−1
)]−1

A
≈
g =

[
I
≈
− S

≈C
:
(
I
≈
−C

≈
−1 : C

≈
g
)]−1

(5)

The local and global tensors are linked by the following relations:
C
≈
−1 = S

≈
el =

〈
S
≈
g : B

≈
g
〉

C
≈

=
〈
C
≈
g : A

≈
g
〉 (6)

For the case of an elasto-viscoplastic behaviour at the local scale, the expression of a concen-

tration law is not a trivial task. Both the non linear form of local equations and the time

dependency of the stress state at different orders need additional hypotheses. In the theoretical

case of time-independent plasticity, Hill proposed the use of a linear tangent tensor [30] L
≈
g,

defined in a rate form:

σ̇∼
g = L

≈
g : ε̇∼

g (7)

An Eshelby-type problem is solved at each time increment, defining a “stress-free” strain rate

proportionally to the local strain rate within the inclusion. The transition rule is expressed
6



incrementally using the assumption of a homogeneous stress rate field within the inclusion:

σ̇∼
g = Σ̇∼ +L

≈
:
(
S
≈
−1
L
− I

≈

)
: (Ė∼ − ε̇∼

g) (8)

The fourth order tensor L
≈

represents the effective elastoplastic tangent tensor and the Eshelby

tensor, S
≈L

, is then computed with respect to this tangent tensor. For an anisotropic elastic

behaviour at the grain scale, Eq. 8 can be developed, using a decomposition of the strains as

the sum of thermal, elastic and viscoplastic contributions, according to:

S
≈L

: L
≈
−1 : σ̇∼

g = S
≈L

: L
≈
−1 : Σ̇∼ +

(
I
≈
− S

≈L

)
:
[
C
≈
−1 : Σ̇∼ + Ė∼

p +α∼ Ṫ −C≈
g−1 : σ̇∼

g − ε̇∼
gp −α∼

gṪ

]



B
≈
g

L

−1 : σ̇∼
g = B

≈ L
: Σ̇∼ +C

≈
∗ : (Ė∼

p − ε̇∼
gp) +C

≈
∗ : (α∼ −α∼

g) Ṫ

B
≈
g

L
=

[
C
≈

: S
≈L

: L
≈
−1 +C

≈
∗ : C

≈
g−1

]−1

B
≈ L

=
[
C
≈

: S
≈L

: L
≈
−1 +C

≈
∗ : C

≈
−1
]

C
≈
∗ = C

≈
:
(
I
≈
− S

≈L

)

α∼ =
〈
B
≈
g

L
: C

≈
∗
〉−1

:
〈
B
≈
g

L
: C

≈
∗ : α∼

g

〉

(9)

where α∼ represents the overall thermal expansion tensor, α∼
g the local thermal expansion tensor

and T the temperature. The constitutive equations are then implicit, so that the numerical

resolution may need intensive computations. The contributions of Kröner [13], Budiansky &

Wu [33], and Weng [34] (called KBW in the sequel) consist in replacing the effective tangent

operator by the effective elasticity tensor. For an anisotropic elastic behaviour at the grain

scale, the KBW model conducts to the explicit transition rule given by:

σ∼
g = B

≈
g :
[
Σ∼ +C

≈
∗ : (E∼

p − ε∼
gp) +C

≈
∗ : (α∼ −α∼

g) (T − T0)
]

(10)

where α∼
g (thus α∼ also) does not depend on temperature for the sake of simplicity and the

Eshelby tensor in C
≈
∗ is associated to the effective elastic tensor C

≈
. In the case of FCC lattice

structures, the local thermal expansion is isotropic, so that the scalar value of the effective

thermal expansion is equal to the local one. In such crystals, the thermal strain of a grain do

not influence the others. Otherwise, the localization rule only depends on the elastic properties

of both the grain g and the HEM. This model is well known to overestimate the residual stress
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during plastic regime [35], leading to a too stiff global response.

Several solutions are available to introduce a softer accommodation. In the case of pure

viscoplastic behaviour, a linearisation of the local behaviour was proposed by Hutchinson [36]

for FCC polycrystalline aggregates, considering a power law for viscosity effects. Thereafter,

more complex linearisation rules (either tangent [37, 38] or affine [39, 40]) were proposed. In

all cases, the implicit form of the localisation equation ends with another iterative procedure,

in order to introduce the dependence of linearised tensors to the local plastic activity of grains.

Other problems concern the resolution of the general EVP problem, with the dual occurrence

of time-derivative of stresses at two orders. First methods are based on the addition of a new

time-integral term in the localization rule, called “long memory effect” [41, 42, 43]. These

approaches are so-called hereditary. Another strategy assumes that loading path history

is included within the local internal variables [44, 45]. Following this, a solution for EVP

behaviour concerns the use of both asymptotic purely elastic and plastic responses (initially

proposed by Kouddane et al [44]) and the definition of a “translated field” [46, 47]. The first

model was developed using a symmetric construction based on elastic and plastic solutions.

The plastic solution was first based on the secant linearisation in [46, 47] and later based on

the affine linearisation in [48, 49]. A non-symmetrical approach was also proposed, considering

only the viscoplastic solution, which was then “projected” in the purely elastic case [50]. This

attempt provided a shorter transition rule:

σ̇∼
g = B

≈
g : (Σ̇∼ +C

≈
∗ : (A

≈
g

L
: Ė∼

vp − ε̇∼
gvp))

A
≈
g

L
= [I

≈
− S

≈Lsec
: (I

≈
−L

≈
eff

sec

−1 : L
≈
g

sec
)]
−1

(11)

C
≈
∗ = C

≈
:
(
I
≈
− S

≈Lsec

)
σ∼
g = L

≈
g

sec
: ε̇∼

gvp

This model (marked TF in the sequel) leads to softer mechanical responses compared to

KBW model [50]. Other models have been developed into the field of homogenization of

polycrystalline aggregates, taking into account local field fluctuations [51, 52] or hereditary

effects [39]. Another way to linearise the local mechanical behaviour was proposed by Doghri

et al as an “incrementally affine” model [53, 54]. The idea is to construct a numerical tangent

operator using the discrete form of the stress and strain tensors instead of the continuous ones
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[55].

2.2. The proposed micro-mechanical model

As mentioned above, an elastic accommodation of grains (e.g. in the KBW model) is not

good enough to represent the overall response of polycrystalline aggregates. The pragmatic

solution of the β rule, first proposed by Cailletaud [14], is based on the definition of a second

level of hardening at the mesoscale, reflecting plastic interactions between grains. A new set of

internal variables, β
∼
g, is introduced in the localization equation. Using the non-symmetrical

translated field model recalled in Eq. 12, we replace the term which represents plastic

interactions (A
≈
g

L
: Ė∼

vp − ε̇∼
gvp) by using the “intergranular” hardening variables proposed

(β̇
∼
− β̇

∼
g). The new scale transition rule is written (using a time integration to get an explicit

form):

σ∼
g = B

≈
g :
[
Σ∼ +C

≈
∗ : (β

∼
− β

∼

g)
]

(12)

The rule can also be seen as an extension of Eq. 10, where the global and local plastic strain

have been replaced by non-linear variables. The second order tensor β
∼

represents an effective

intergranular hardening compared to the local ones β
∼
g. The model provides a pragmatic

framework with a few degrees of freedom to reproduce complex interactions between grains

coming from the single crystal model. Otherwise, if we start with the Hill’s incremental

self-consistent scheme expressed in Eq. 8, the introduction of intergranular variables may be

done in two steps. First, we assume that the apparent elastic modulus of each crystal, mainly

deduced from the term proportional to the global stress rate, is not affected by plasticity:

B
≈
g

L

−1 : B
≈ L
≈ B

≈
g−1 : B

≈
= B

≈
g−1 (13)

The plastic dependency of the second term is supposed to be rewritten from B
≈
g

L

−1 : C
≈
∗ to

B
≈
g−1 : C

≈
∗ : ∆BL

≈
. In such a case, the tensor ∆BL

≈
is associated to the overall and the local

plastic strain rates and replaced by the internal variables β
∼

and β
∼
g. It is worth mentioning that

the first assumption could have a non-neglecting effect in the elastic-plastic transition where

the internal variables β
∼
g are not high enough to replace the softening action of B

≈
g

L

−1 : B
≈ L

.
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2.3. Some features around the set of internal variables β
∼
g

To enforce the condition 〈σ∼
g〉 = Σ∼ , we found an expression of the effective intergranular

hardening variable such as:

β
∼

= C
≈
∗−1 :

〈
B
≈
g : C

≈
∗β

∼

g
〉

(14)

Usually, the evolution law of the local internal variables β
∼
g takes a form similar to one used

for nonlinear kinematic hardening with one scalar parameter D [15]. But it can be extended

for anisotropic materials such as DS alloys following [10]:

β̇
∼

g = ε̇∼
gvp −D

≈
: β

∼

g
∑
s

|γ̇s| (15)

The fourth order tensor D
≈

represents the anisotropic accommodation parameter. Other

parameters can be introduced to capture the saturation of the plastic strain for non-proportional

cyclic loadings (ratcheting effect) [56] or dynamic recovery effects. In the work of Sai et al

[10], the accommodation parameter D
≈

has the symmetry of the HEM, which is transversely

isotropic for DS materials. Since the variables β
∼
g refer to the accommodation of the given

grain g with the HEM, we suggest to express this parameter in its crystallographic coordinates.

Others authors proposed to assign a different accommodation parameter for each phase [57, 58].

The FCC lattice structure of Ni-based superalloys involves a cubic symmetry for D
≈
g.

Another particular issue associated to DS structures is the uniform strain in the longitudinal

direction, even if the loading is multi-axial. It is due to fact that grains work in parallel and

have the same behaviour. Eq. 12 can be turned into:[
I
≈

+ S
≈C

: (C
≈
−1 : C

≈
g − I

≈
)
]

: ε∼
g,el = E∼

el + (I
≈
− S

≈C
) : (β

∼
− β

∼

g) (16)

Using the Voigt notation, we can express the longitudinal strain (along ~x3) as follow:[
I3k + SC3u(C

≈
−1 : C

≈
g − I

≈
)
uk

]
: εg,elk = Eel3 + β3 − βg3 + SC3kβk − SC3kβ

g
k (17)

For DS alloys, the Eshelby tensor has a particular form with a line of zeros (the third in

this paper) to express the fact that there is no interaction between grains in the longitudinal

direction. Thus, Eq. 17 can be simplified as:

εg,el3 = Eel3 + β3 − βg3 (18)
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One solution to get the equality between the local and overall total strains in the longitudinal

direction is to introduce a line of zeros at the third position of the tensor D
≈
g. Doing so, the

variables βg3 are equal to εgp3 and β3 is equal to Ep3 . With this proposition, the accommodation

parameter can be represented by a matrix in the crystal coordinates, [D0]:

[D0] =



D0
1111 D0

1122 D0
1122 0 0 0

D0
1122 D0

1111 D0
1122 0 0 0

0 0 0 0 0 0

0 0 0 D0
1212 0 0

0 0 0 0 D0
1212 0

0 0 0 0 0 D0
1212


(19)

As discussed by Sai et al [10], another condition has to be imposed on the D0
ijkl to preserve

the assumption of incompressibility. The authors imposed trace(β
∼
g) = 0 and found a relation

between the components of the accommodation parameter (with a transverse isotropic symme-

try). In our model, where the accommodation parameter is written in the crystal coordinates,

it is not that easy to preserve trace(β
∼
g) = 0 for any given crystallographic orientation. But

our main interest is to ensure trace(E∼
p) = 0, which can be found even for trace(β

∼
g) 6= 0, as

shown below. The localization rule can be written in terms of strain rates following:

C
≈
g : (ε̇∼

g − ε̇∼
gvp) = B

≈
g : C

≈
: (Ė∼ − Ė∼

p) +B
≈
g : C

≈
∗ : (β̇

∼
− β̇

∼

g) (20)

Applying a volume average upon the two members of the equality, the overall plastic strain

rate can be expressed as:

Ė∼
p = 〈ε̇∼

gvp〉+
〈
C
≈
g−1 : B

≈
g : C

≈
∗ : (β̇

∼
− β̇

∼

g)
〉

(21)

To prove that the trace of the plastic strain rate is equal to zero, we have to demonstrate that

the second term of Eq. 21 is purely deviatoric. We can rewrite this term as follow:〈
C
≈
g−1 : B

≈
g : C

≈
∗ : (β̇

∼
− β̇

∼

g)
〉

=
〈
S
≈
g : B

≈
g
〉

: C
≈
∗ : β̇

∼
−
〈
S
≈
g : B

≈
g : C

≈
∗ : β̇

∼

g
〉

(22)

By using the expression of the overall hardening variable β
∼

in Eq. 14, it comes:〈
S
≈
g : B

≈
g
〉

: C
≈
∗ : β̇

∼
−
〈
S
≈
g : B

≈
g : C

≈
∗ : β̇

∼

g
〉

=
〈(
S
≈
el − S

≈
g
)

: B
≈
g : C

≈
∗ : β̇

∼

g
〉

(23)

The pure deviatoric character of this term is proven by showing that the spherical part of

S
≈
el − S

≈
g vanishes. Indeed, we can write the spherical part of the local compliance tensor
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as 3k−1
0 K

≈
for any g because the tensor K

≈
is invariant. The spherical term of S

≈
el can be

transformed successively:

S
≈
el : K

≈
=
〈
S
≈
g : B

≈
g
〉

: K
≈

=
〈

3k−1
0 K

≈
: B

≈
g
〉

: K
≈

= 3k−1
0 K

≈
:
〈
B
≈
g
〉

: K
≈

= 3k−1
0 K

≈

As a consequence, the term S
≈
el − S

≈
g is purely deviatoric, which ensures that there is no

volume change due to plastic flow. It is worth noting that, for a hexagonal crystal, for which

the local elasticity tensor also has a transverse isotropic symmetry, the result is no longer

verified. The proposed model, with the accommodation parameter expressed in the crystal

coordinates, authorizes a non-isochoric strain by dislocation slips. In Fig. 2, a scheme describes

the micro-mechanical model proposed for DS alloys.

Global scale

E∼ , Σ∼
X2

X3

X1

Ė∼
p

C
≈
g, β

∼
g

C
≈
eff , β

∼+ . . . +

Local scale

m∼
s

σ∼
g

[010]

[001], z

[100]
X1φ1

ε̇∼
gp

LOCALIZATION HOMOGENIZATION

Figure 2: Multi-scale scheme for FCC polycrystalline aggregates with a directional solidification.

3. Calibration method used for β rules

As already discussed before, the β rules introduce plastic accommodations by means of

phenomenological hardening variables. A new material parameter has been introduced, D
≈

0

12



and must be identified using either benchmark results provided by experimental tests in the

transverse direction, more sophisticated mean-field models or CPFE simulations. In this paper,

values for the three independent components of the accommodation parameter are searched

by a comparison with CPFEM results using a representative volume element (RVE) of the

material.

3.1. Definition of the RVE

This first part is devoted to the definition of a RVE for DS alloys. First, a Voronöı tes-

selation has been used to generate a square of a periodic synthetic aggregate in the plane

(x1, x2) (schematized in the “Global scale” rectangle of Fig. 2). This surface was extended

in the x3 direction to provide a perfect columnar structure as assumed ideally for this kind

of material (mesh of synthetic aggregates are presented in Fig. 3). In addition, a periodic

mesh was achieved to get coincident nodes between two opposite faces, edges and corners.

This was generated using the Z-set code [59] (developed by Mines ParisTech and ONERA)

with the module called vpoly3d [60]. For pure tensile or shear tests in the transverse direction,

the strain along x3 axis remains uniform, allowing the use of one element for this kind of

loading. However, for shear tests with components E31 or E23, several elements may be added

in the thickness. Fig.3 shows the strategy of computations which is achieved for each loading

investigated.

First, we assign different set of crystallographic orientations to each group of elements depicting

a grain. Due to the symmetry of FCC crystal and the texture of DS materials, only one

Euler angle is used and chosen between 31 different orientations from φ1 = 0◦ to φ1 = 90◦ (i.e

∈ {0◦, 3◦, ..., 87◦, 90◦}). These crystallographic orientations are randomly assigned to the 256

grains of the cubic cell, respecting the “grain continuity” on the edges of the volume (the same

colour is found for the two parts of grains cut by an edge in Fig. 3. The combination of the

periodic mesh and one set of orientations represents one CPFE realization. To define rigorously

the RVE, we have to introduce a sufficient number of grains within the volume to get stable

effective properties if its size is extended. In [61], the authors proposed to enlarge the definition

of a RVE to smaller volume, adding several realizations and making a volume average. In this

paper, the size of the volume is fixed and the number of realizations is defined in order to

access overall quantities with a given relative errors (less than 1 % for the presented results).
13



+ ... + →

Macroscopic
response of
the material→

Converge to

Response of
SR grains→

Converge to

+ ... + ... + ... + → φg1 = 0◦

+ ... + ... + ... + → φg1 = 3◦

Volume average of the me-
chanical reponses of SVEs

Volume average of grains with
same orientations for SVEs

Figure 3: Strategy of computations used to calibrate the accommodation parameter of the β model, which is

composed of (i) several CPFE computations on a periodic synthetic DS aggregate seen as a Statistical Volume

Element (SVE) (ii) a volume average of the stress and strain components to access the effective behaviour and

(iii) a volume average of stress and strain for grains with the same crystallographic orientation to access local

estimations for statistically representative (SR) grains.
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Otherwise, mean-field models give also access to average quantities per crystallographic phase

(e.g. σ∼
g, ε∼

g, ...). In this paper, we try to define similar quantities in the case of a full-field

modeling. Doing so, all the data collected from the number of CPFEM realizations are sorted

in order to make volume averages of grains with the same crytallographic orientation but

different shapes and neighbours (see the Fig. 3).

3.2. Single crystal behaviour

The parameters of the single crystal model (the same for full-field and mean-field sim-

ulations) are calibrated with the experimental tests in the longitudinal direction of a DS

Ni-based superalloy found in [8] (see Fig. 4). Assuming that all the grains share their 〈001〉

crystallographic axes, there is no intergranular residual stresses, and the overall response of

the β model is exactly the same as the single crystal in this crystallographic direction.

C1111 [MPa] C1122 [MPa] C1212 [MPa]

190207 110773 118500

K [MPa.s1/n] n τ c [MPa]

150 16 240

Q [MPa] b C [MPa]

30 100 100000

D

5000
0
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400

600

800

1000

0 0.005 0.01 0.015 0.02

Σ
3
3

(M
P
a)

E33

T = 650 C̊
DS nickel-base superalloy DZ125

model
exp

model
Ė33 = 5.10−3

Ė33 = 1.10−3
exp

Figure 4: Tensile curves in the longitudinal (x3) direction for the DS superalloy DZ125 at 650 ◦C for two strain

rates. There is a good agreement between the experimental data [8] and the response of the model (DS and

single crystal models give thei same curves).

The next part deals with the calibration of the accommodation tensor D
≈

0 using a full field

modeling (called “FF model” in the sequel) with the local behaviour identified.

3.3. Uniaxial transverse tensile test

A transverse tensile test is performed in the direction ~x1. The macroscopical strain

E11 = 0.02 is imposed with a constant rate Ė11 = 10−5s−1. All the components of the overall
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stress tensor Σ∼ , except Σ11, remain equal to zero. The effect of the viscosity can be quantified

using an upper bound (uniform strain) following Σv = K(Ė11)
1
n . In the present case, the

viscous effect is limited in comparison to the yield stress (Σv = 73 MPa). The map of the

axial strain ε11 at the end of the loading and the effective responses for both the full field (FF)

model and the three MF models are plotted in Fig. 5.
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Figure 5: Map of the transverse axial component of the strain tensor at the end of the loading and the overall

response for both FF and MF models during an uniaxial transverse tensile test in the ~x1 direction.

We can observe a heterogeneous strain field in Fig. 5.a, with local values fifty percent higher

or smaller than the overall strain. Otherwise, the continuity of the strain around the border

of the volume is preserved, as allowed by the periodic boundary conditions. The overall

stresses computed by both the translated field model and the β rule are in good agreement

with the FF model. As well commented in the literature, a purely elastic accommodation of

grains yields to an overestimate of the stress for large plastic strains. Even if these results

at the macroscopic scale are well known, the consistency of local estimations provided by

micro-mechanical models (σ∼
g, ε∼

g) and used to compute the overall behaviour are not often

studied. In this study, a procedure was developed to evaluate these quantities. They are

obtained by a volume average of numerous “avatars” (grains with a given orientation but

different shapes and neighbourhoods). The averaging process allows to reach the behaviour of

a cylindrical grain in an homogenized matrix, meeting the conditions of the self-consistent

scheme. Even for a one-dimensional macroscopic load, the local stress state is no longer
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one-dimensional at the local scale (see Fig. 6).
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Figure 6: Local “per phase” average responses of an uniaxial transverse tensile loading in the ~x1 direction

for the FF model (dotted curves) and the β model (full lines) (the color code refers to the orientation of the

crystallographic phase).

The uniaxial transverse tensile test is mainly used to adjust the value of D0
1111. This parameter

control the overall hardening slope and the release of the residual stresses due to plasticity.

In a second step, the value of D0
1212 must be checked, since coupling effects appear (Fig. 6)

between the applied tensile loading and plastic flow for the shear component εgp12. The key

issue when analyzing local responses of the β rule with FF model is to converge to an optimal

accommodation tensor with a low number of cases. For the evolution of local responses with

respect to their crystallographic orientations, a symmetry is found for an orientation φ1 and

90− φ1. The local responses for the 11 and 12 components are plotted for both the TF model

and the KBW model in Fig. 7.

For the KBW model, the accommodation slope is linear, as well known in the isotropic
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Figure 7: Local “per phase” average responses of an uniaxial transverse tensile loading in the ~x1 direction for

the FF model (dotted curves) and the TF and KBW models (full lines) (the color code refers to the orientation

of the crystallographic phase).
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case and equal to the shear coefficient µ if ν = 0.33. Otherwise, considering only an elastic

accommodation prevents the formation of a shear plastic flow (ε̇gp12 = 0). And that is due to

the tensile/shear components of the effective elastic tensor which are equal to zero. For the

TF model, the local estimations are quite similar to those provided by the β rule. During

plastic flow, the slope of hardening in the plan (ε12, σ12) is in good agreement with the FF

model. However, the plastic strain is overestimated for crystal orientations close to φ1=0◦. It

is worth mentioning that the evolution of the stress and strain (in terms of absolute value) for

these kinds of crystal orientation is unusual, with a decrease of the stress and strain levels

after the onset of plasticity.

To quantify more precisely the local errors attached to each homogenization technique, the

final values of σg11 and εg11 are plotted against FF results for each orientation (see Fig. 9,(a)

and (b)). The maximal error on the local stresses for the three MF models is less than

5 %. Regarding the local strains, the values estimated by the β rule are not satisfactory for

crystallographic phases with φ1 ∈ {0◦, 3◦, 87◦}. We chose a value of the parameter D0
1212

which does not provide optimal results for this kind of test but a compromise with the results

of pure shear loading.

As discussed in section 2, the rate dependency of the behaviour adds new complexities in

the definition of a scale transition rule. Among the three models compared, KBW does not

account for VP effects in the stress redistribution, the β rule takes into account plasticity

by a phenomenological way but a priori not the viscosity whereas the translated field model

is developed using the general EVP framework. It may then be useful to understood how

these different natures affect the mechanical predictions. To elucidate this point, the strain

rate is increased to 10−4s−1 and the two parameters used to define the flow rule K, n are

turned respectively into 2000 MPa.s1/n and 4 (called the “HV” parameters). The color map of

the total axial strain at the end of the loading and the effective responses of the models are

plotted in Fig. 8.

The observation shows that MF models, independently from their transition rule, provide an

overall response close to the FF model. Regarding local estimations, the viscosity seems to be

beneficial since the errors on local stresses and strains with respect to FF are smaller with a
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Figure 8: Map of the transverse axial component of the strain tensor at the end of the loading and the overall

response for both FF and MF models during an uniaxial transverse tensile test in the ~x1 direction (with the

HV parameters).

large viscosity than for the low viscosity case (see Fig. 9,(c) and (d)). It might be associated

to the decrease of the anisotropy of single crystal Ni-based superalloys at high temperature

(and where viscous effects are predominant) [62, 63, 64].

Regarding the local stresses, even though the values are higher for the HV parameters, the

differences between the MF models and the FF model seem to meet the case with low viscosity

(LV) parameters. All results provided by each MF model with the HV parameters are included

within the ±5% error bars. Nevertheless, the influence of the crystallographic orientation on

the local strains is not the same for the LV and the HV parameters. In the LV case, the local

strain increases when the Euler angle φ1 increases up to approximately 15◦. Then, the local

strain decreases when φ1 increases until 45◦. In the case of HV parameters, the local strain is

quasi stable for crystallographic orientations between 0◦ and 15◦ and equal to 2.1 %.

3.4. One-dimensional transverse shear test

The other test case used to calibrate the components of the tensor D
≈

0 is a pure transverse

shear loading. For this, an overall strain E12 = 0.02 is applied, with a constant strain rate

Ė12 = 10−5s−1. As done for the previous loading case, all the components of the stress tensor,

except Σ12, are imposed equal to zero. The effective response for both FF and MF models are

plotted in Fig. 10.
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Figure 9: Comparative results on the final values of the local stress component σg11 (a) and (c) and the local

strain component εg11 (b) and (d) for each MF model and the FF model with a “low viscosity (LV)” (a) and (b)

or a “high viscosity (HV)” (c) and (d). Black dotted lines represent ±5%.
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Figure 10: Map of the transverse shear component of the strain tensor at the end of the loading and the overall

response for both FF and MF models during an uniaxial transverse shear test in the plane X1/X2.

The phenomenological form of the plastic accommodation into the β rule gives the

opportunity to access to a softer overall response than TF and KBW models. The values of

the three parameters used for the calibration of β̇
∼
g can be found in Tab.1.

D0
1111 D0

1122 D0
1212

Low viscosity 180 80 100

High viscosity 130 40 70

Table 1: Values of tensor D
≈

0 for high and low viscosity cases

Otherwise, the three MF models are not able to track precisely the yield stress observed on

the FF results. This conducts to overestimate the global stress for low plastic strain amplitude.

The β rule allows artificially to merge the FF response when the strain still increases, thanks

to the intergranular hardening. However, when “per phase” local responses are compared for

FF and MF models (see Fig. 11), the yield stresses of the first grains becoming plastically

activated (φ1 ∈ {39◦, 42◦, 45◦, 48◦, 51◦}) are very similar to FF predictions.

The problem seems to be elsewhere, maybe into the modification of the purely elastic behaviour

of others grains. This can be highlighted by plotting the final errors for MF local stresses

compared to FF ones (see Fig. 12,(a)). The linear slope predicted by the KBW model for

the intergranular accommodation is too stiff. By consequence, the final values of the local
22
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Figure 11: Local responses averaged on 12 CPFE simulations and estimated by each MF model during an

uniaxial shear loading: (a,b) for the β rule, (c,d) for the KBW model and (e,f) for the translated field model.
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strain for close [110]-oriented grains and [100]-oriented grains are respectively underestimated

or overestimated (see Fig. 12,b.). For the other local nonzero components (“11” and “22”)

of the stress and strain tensors, the β rule and the TF models provide good estimations. As

discussed before, the KBW model is not able to predict the coupling due to the interaction

between tensile and shear components of the plastic strain rate.
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Figure 12: Comparison of the final value of the local stress (a) and the local strain (b) component εg12/σg12 for

each MF model with FF responses.

To conclude this section, the calibration of the β rule was done using two uniaxial loading

paths in the transverse direction (tensile and shear). But if we use local estimations in the

identification process, we may have enough information to obtain a unique and optimal D
≈

0.

The modification of the β model proposed in this paper provides decent results in comparison

to the KBW model and the translated field model. It seems to be a good compromise between

the precision of the mechanical response and the CPU cost, five times lowest for the β rule

than for the translated field model for a transverse tensile test. Otherwise, some drawbacks,

like the interaction between plastically activated grains and those which are not, still generate

overestimations on the effective stress in some cases. Finally, it is worth noting that assuming

a perfect DS microstructure induces a uniform mechanical response of the aggregate when a

pure longitudinal tensile test is applied (i.e. a tensile loading applied parallel to the axis of

cylindrical grains), so that we can use longitudinal experimental tests on DS alloys to identify
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the single crystal behaviour of grains.

4. Investigation of unidimensional and two-dimensional cyclic loadings

In this section, more complex tests are investigated. The main purpose is to check the

capabilities of the β rule, when other phenomena such as cyclic ratchetting are considered.

4.1. One-dimensional transverse tensile test with a cyclic strain ratio Rε = −1

The boundary conditions imposed are the same as for the monotonic loading cases used

in 3.2. Only five cycles are calculated because the steady state is rapidly reached, due to

the value of the parameter b (b = 100). In addition, the value of the cyclic hardening is low

(Q=30 MPa). Results in Fig. 13.(a) show good agreement between the β rule and the FF

model for the first and the stabilized cycle. The comparative procedure was also made with

a higher local isotropic hardening. In such a case, the asymptotic stress induced by cyclic

hardening is increased to Q = 200 MPa (the other parameter b is turned to 10). Then, the

behaviour obtained is no longer associated to a real material and is only used to show the

ability of MF model to represent other phenomena such as cyclic hardening or ratchetting.

Without modifying the other constants, there is a rather good correlation between the two

models for the effective quantities (see Fig. 13.b).
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Figure 13: Effective response with both FF and MF models for a one-dimensional transverse tensile load with a

cyclic strain ratio Rε = −1 with (a) low isotropic hardening effects and (b) high isotropic hardening effects.
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As done during the identification procedure, the local responses of the models have also

been studied, and particularly for this test case, the evolution of the cyclic hardening for each

crystallographic phase. Fig. 14 shows the evolution of the “per phase” local stress and strain

values at the end of both load and unload parts of each cycle.
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Figure 14: Evolution of the absolute value of the local plastic strain and the local stress at the end of each load

and unload cycle. (a) Location of the extrema in the εpg11-|σg11| plan, with points for the FF model, and lines as

envelopes of the β model points. (b) Evolution of the hardening versus the number of cycles

The β rule is able to predict the stress hardening during cycles. Moreover, it appears that the

positions of each crystallographic phase in the local stress distribution remain stable. The

form of the curves composed of each local values at a given time does not vary significantly

and may be only amplified by a growth of the global stress.

4.2. One-dimensional transverse tensile test with a cyclic stress ratio Rσ = −0.5

Non-proportional cyclic loads allow investigating a well known effect called cyclic “ratchet-

ting”. This phenomenon has been extensively studied for various kind of metallic aggregates

[65, 66, 67]. A review of several modeling strategies can be found in [68]. In the case of the β

rule, the ratchetting effect has been already well studied in [69]. A specific parameter was

introduced, in order to control the plastic strain increment along cycles. Otherwise, Säı &

Cailletaud studied the impact of the form of intergranular and intragranular hardening on the

evolution of ratchetting [70]. When the intergranular kinematic hardening (i.e. the evolution

of the set of variables β
∼
g) is kept nonlinear, authors showed that it is the value of the local
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kinematic hardening parameter d which has a prominent effect on ratchetting. If d = 0 (the

local kinematic hardening is linear), shakedown occurred. Otherwise, a ratchetting effect is

observed. In this part, the idea is to compare the prediction of the β rule with full-field results

with d 6= 0. The main difference between the previous comparisons and the present study is

the introduction of elastic heterogeneity.

For the FF model, a periodic reaction force is applied in the transverse direction. The max-

imum and minimum stress values are respectively 820 MPa and −410 MPa. If the material

parameters fitted on the experimental results of Dong et al are used [8], we observe closed loops

in compression in the effective stress and strain space (see Fig. 15(a)). This is not exactly

ratchetting, but a creep effect, mainly controlled by viscosity. In such cases, the accumulated

plastic strain tends to saturate after some cycles. The β rule provides an evolution of the

effective axial strain close to the results of the FF model. The yield surface translation is

not big enough, so that there is no plastic strain during unloading. In this way, the same

work was carried out with a lowest value of the parameter d = 100 (see Fig. 15(b)), and the

ratchetting phenomenon is then observed.

The effective response predicted by the MF model is in good agreement with the FF model.

After ten cycles, there is a short decrease in the value of the increment of axial strain. For more

accuracy, a specific shape could be used for the variables β
∼
g, but it does not seem mandatory

in the present case.

4.3. Two-dimensional transverse tension/shear loading

As seen in the previous section, the β model but also the other mean-field models studied

in this paper overestimate the overall stress during transverse shear loading. Otherwise, during

cyclic tests with a mean stress (which generates ratchetting), the mistaken values of the stress

and strain made tend to be magnified after several loops. In this part, a two-dimensional

cyclic path is achieved. A tensile mean-stress is first imposed to the material with a value

Σ11=1000 MPa, so that the macroscopic yield stress is exceeded. While maintaining this

constant mean-stress, a cyclic shear loading in the transverse direction is carried out with a

strain ratio Rε = −1 and with a shear strain amplitude of 0.04. It is well known that this

kind of test may generate an accumulation of inelastic strain in the axial direction. Results
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Figure 15: Effective response (a,b) and accumulated strain for each crystallographic phase of both FF and

β models for a one-dimensional transverse tensile load with a cyclic stress ratio Rσ = −0.5 with (a,c) high

kinematic hardening parameter d = 5000 and (b,d) low kinematic hardening parameter d = 100.
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for the FF model and the β rule in the tensile-shear strain plan are plotted in Fig. 16.a. In

Fig. 16.b, the accumulated axial strains for each phase is represented along cycles. We use

the local kinematic hardening parameter d which generates ratchetting.
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Figure 16: (a) Overall response and (b) local responses averaged on 12 CPFE simulations and estimated by the

β model for a two-dimensional transverse tensile/shear loading with a mean-stress and a shear strain ratio

Rε = −1.

At each cycle, the β rule predicts a higher value of the accumulated axial strain. This difference

is added along cycles and becomes non-negligible after ten cycles (see Fig. 16.a). Another

interesting feature is the evolution of the accumulated axial strain with respect to crystal

orientations, plotted in Fig. 16.b. At the first point E12 = 0.02, the maximum and minimum

axial strains are localized for respectively φ1 = 18◦ and φ1 = 63◦ (i.e. +45◦ toward the extreme

values). A same distribution of the axial local strains was observed for an uniaxial shear test

(see Fig. 11). Along cycles, the “per phase” accumulated axial strains have different slopes

with respect to their crystallographic orientation. After five cycles, the largest axial strain

is obtained for φ1 = 0◦ and the lowest value for φ1 = 45◦. Such a distribution is more in

accordance with an uniaxial tensile test (see Fig. 11).

5. Concluding remarks and further works

In this study, the so-called β rule applied to a polycrystalline plasticity model was extended

to the general case of heterogeneous local elasticity tensors. For directionally solidified alloys,

we have proposed an evolution for the internal variables β
∼
g by using an accommodation

parameter written in the crystal coordinates, a cubic symmetry and a line of zeros in the
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longitudinal direction such as the Eshelby tensor. In a second part, the accuracy of the

proposed model was quantified in comparison with two models of the literature. A reference

response was constructed by means of several CPFE simulations using a volume element.

The “intergranular hardening” parameter, D
≈

0, is first calibrated to fit the global response

and “per phase” estimates given by the FF model for uniaxial tests. We have observed a well

known features of the KBW model which clearly overestimated the global response during an

uniaxial shear loading and, to a lesser extent, for an uniaxial tensile loading. Another issue of

a purely elastic accommodation was the uncoupling in the plastic flow between tensile and

shear components. Otherwise, the β model developed provided rather good local estimations

compared to more complex “mean-field” models such as the Translated Field approach. In this

paper, we have worked towards a better understanding of the mechanical responses of models

at the scale of crystallographic phases. First, this kind of study was useful to find optimal

values for the accommodation parameter introduced into the β rule without a large number

of cases. Secondly, the results of some mean-field models are consistent, in the evolution

of stress and strain with respect to crystallographic orientation but also in the final values,

with full-field simulations. It is worth noting that the upper and lower bounds of these local

responses can be equal to ±10% for a uniaxial tensile test and can be reached ±20% for a

shear loading. Such values appear non-negligible when life prediction is investigated. As

a consequence, it may be useful to design components with the knowledge of this average

scatter, particularly for directionally solidified superalloys where the size of grains may be

really large compared to the dimensions of the structure. With the improved performance

of data processing, a structural computation with this kind of model, which involves a very

large number of internal variables, is now accessible. Thus, only one simulation gives us an

access to a more precise overall response, but also a first idea of how a given crystallographic

orientation could control the mechanical response of each zone of a 3D component.
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