K. Alam, M. Khan, and V. V. Silberschmidt, 3d finite-element modelling of drilling cortical bone: Temperature analysis, J Med Biol Eng, vol.34, issue.6, pp.618-641, 2014.

K. Alam, A. Mitrofanov, and V. V. Silberschmidt, Finite element analysis of forces of plane cutting of cortical bone, Computational Materials Science, vol.46, issue.3, pp.738-743, 2009.

K. Alam, A. Mitrofanov, and V. V. Silberschmidt, Thermal analysis of orthogonal cutting of cortical bone using finite element simulations, International Journal of Experimental and Computational Biomechanics, vol.1, issue.3, pp.236-251, 2010.

A. Banerjee, S. Dhar, S. Acharyya, D. Datta, and N. Nayak, Determination of johnson cook material and failure model constants and numerical modelling of charpy impact test of armour steel, Materials Science and Engineering: A, vol.640, pp.200-209, 2015.

H. H. Bayraktar, E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong et al., Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue, Journal of Biomechanics, vol.37, issue.1, pp.27-35, 2004.

A. Bekker, S. Kok, T. Cloete, and G. Nurick, Introducing objective power law rate dependence into a visco-elastic material model of bovine cortical bone, International Journal of Impact Engineering, vol.66, pp.28-36, 2014.

S. Bernard, Q. Grimal, and P. Laugier, Accurate measurement of cortical bone elasticity tensor with resonant ultrasound spectroscopy, Journal of the Mechanical Behavior of Biomedical Materials, vol.18, pp.12-19, 2013.

A. Bolshakov, W. Oliver, and G. Pharr, Influences of stress on the measurement of mechanical properties using nanoindentation: Part ii. finite element simulations, Journal of Materials Research, vol.11, issue.3, pp.760-768, 1996.

A. Bolshakov and G. Pharr, Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques, Journal of Materials Research, vol.13, issue.4, pp.1049-1058, 1998.

A. Bushby, V. Ferguson, and A. Boyde, Nanoindentation of bone: Comparison of specimens tested in liquid and embedded in polymethylmethacrylate, Journal of Materials Research, vol.19, issue.1, pp.249-259, 2004.

W. D. Callister and D. G. Rethwisch, Fundamentals of materials science and engineering, vol.471660817, 2000.

D. Carnelli, D. Gastaldi, V. Sassi, R. Contro, C. Ortiz et al., A finite element model for direction-dependent mechanical response to nanoindentation of cortical bone allowing for anisotropic post-yield behavior of the tissue, Journal of Biomechanical Engineering, vol.132, issue.8, p.81008, 2010.

D. Carnelli, R. Lucchini, M. Ponzoni, R. Contro, and P. Vena, Nanoindentation testing and finite element simulations of cortical bone allowing for anisotropic elastic and inelastic mechanical response, Journal of Biomechanics, vol.44, issue.10, pp.1852-1858, 2011.

A. C. Chang, J. Liao, and B. H. Liu, Practical assessment of nanoscale indentation techniques for the biomechanical properties of biological materials, Mechanics of Materials, vol.98, pp.11-21, 2016.

Z. Chen and S. Diebels, Nanoindentation of hyperelastic polymer layers at finite deformation and parameter re-identification, Archive of Applied Mechanics, vol.82, issue.8, pp.1041-1056, 2012.

Z. Chen and S. Diebels, Parameter re-identification in nanoindentation problems of viscoelastic polymer layers: small deformation, ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, vol.93, issue.2-3, pp.88-101, 2013.

S. C. Cowin, Bone mechanics handbook, 2001.

S. Dey, T. Børvik, O. Hopperstad, and M. Langseth, On the influence of constitutive relation in projectile impact of steel plates, International Journal of Impact Engineering, vol.34, issue.3, pp.464-486, 2007.

D. C. Drucker and W. Prager, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mathematics, vol.10, issue.2, pp.157-165, 1952.

G. Evans, J. Behiri, J. Currey, and W. Bonfield, Microhardness and young's modulus in cortical bone exhibiting a wide range of mineral volume fractions, and in a bone analogue, Journal of Materials Science: Materials in Medicine, vol.1, issue.1, pp.38-43, 1990.

A. Faingold, S. R. Cohen, and H. D. Wagner, Nanoindentation of osteonal bone lamellae, Journal of the Mechanical Behavior of Biomedical Materials, vol.9, pp.198-206, 2012.

Z. Fan, J. Rho, and J. Swadener, Three-dimensional finite element analysis of the effects of anisotropy on bone mechanical properties measured by nanoindentation, Journal of Materials Research, vol.19, issue.1, pp.114-123, 2004.

Z. Fan and J. Rho, Effects of viscoelasticity and time-dependent plasticity on nanoindentation measurements of human cortical bone, Journal of Biomedical Materials Research Part A, vol.67, issue.1, pp.208-214, 2003.

Z. Fan, J. Swadener, J. Rho, M. Roy, and G. Pharr, Anisotropic properties of human tibial cortical bone as measured by nanoindentation, Journal of Orthopaedic Research, vol.20, issue.4, pp.806-810, 2002.

L. Feng, M. Chittenden, J. Schirer, M. Dickinson, and I. Jasiuk, Mechanical properties of porcine femoral cortical bone measured by nanoindentation, Journal of Biomechanics, vol.45, issue.10, pp.1775-1782, 2012.

M. Fondrk, E. Bahniuk, D. Davy, and C. Michaels, Some viscoplastic characteristics of bovine and human cortical bone, Journal of Biomechanics, vol.21, issue.8, pp.623-630, 1988.

G. Franzoso and P. K. Zysset, Elastic anisotropy of human cortical bone secondary osteons measured by nanoindentation, Journal of Biomechanical Engineering, vol.131, issue.2, p.21001, 2009.

J. Ghanbari and R. Naghdabadi, Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure, Journal of Biomechanics, vol.42, issue.10, pp.1560-1565, 2009.

A. Giunta, S. Wojtkiewicz, and M. Eldred, Overview of modern design of experiments methods for computational simulations, 41st Aerospace Sciences Meeting and Exhibit, p.649, 2003.

E. Hamed, Y. Lee, and I. Jasiuk, Multiscale modeling of elastic properties of cortical bone, Acta Mechanica, vol.213, pp.131-154, 2010.

E. Hamed, E. Novitskaya, J. Li, I. Jasiuk, and J. Mckittrick, Experimentally-based multiscale model of the elastic moduli of bovine trabecular bone and its constituents, Materials Science and Engineering: C, vol.54, pp.207-216, 2015.

J. C. Hay, A. Bolshakov, and G. Pharr, A critical examination of the fundamental relations used in the analysis of nanoindentation data, Journal of Materials Research, vol.14, issue.6, pp.2296-2305, 1999.

C. E. Hoffler, X. E. Guo, P. K. Zysset, and S. A. Goldstein, An application of nanoindentation technique to measure bone tissue lamellae properties, Journal of Biomechanical Engineering, vol.127, issue.7, pp.1046-1053, 2005.

H. Isaksson, S. Nagao, M. Ma-lkiewicz, P. Julkunen, R. Nowak et al., Precision of nanoindentation protocols for measurement of viscoelasticity in cortical and trabecular bone, Journal of Biomechanics, vol.43, issue.12, pp.2410-2417, 2010.

I. Jasiuk and M. Ostoja-starzewski, Modeling of bone at a single lamella level, Biomechanics and Modeling in Mechanobiology, vol.3, pp.67-74, 2004.

G. R. Johnson and W. H. Cook, A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, Proceedings of the 7th International Symposium on Ballistics, vol.21, pp.541-547, 1983.

W. M. Johnson and A. J. Rapoff, Characterization of the microindentation of bone via scanning electron microscopy, Proceedings of the Summer Bioengineering Conference, 2003.

W. Joo, B. Kim, S. I. Bae, C. S. Kim, and J. I. Song, Mechanical properties on nanoindentation measurements of osteonic lamellae in a human cortical bone, Key Engineering Materials, vol.353, pp.2248-2252, 2007.

J. Kang, A. A. Becker, and W. Sun, Determination of elastic and viscoplastic material properties obtained from indentation tests using a combined finite element analysis and optimization approach, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol.229, issue.3, pp.175-188, 2015.

Z. B. Lai and C. Yan, Mechanical behaviour of staggered array of mineralised collagen fibrils in protein matrix: Effects of fibril dimensions and failure energy in protein matrix, Journal of the Mechanical Behavior of Biomedical Materials, vol.65, pp.236-247, 2017.

S. B. Lang, Elastic coefficients of animal bone, Science, vol.165, issue.3890, pp.287-288, 1969.

A. Milani, W. Dabboussi, J. Nemes, and R. Abeyaratne, An improved multi-objective identification of johnson-cook material parameters, International Journal of Impact Engineering, vol.36, issue.2, pp.294-302, 2009.

L. Mullins, M. Bruzzi, and P. Mchugh, Calibration of a constitutive model for the post-yield behaviour of cortical bone, Journal of the Mechanical Behavior of Biomedical Materials, vol.2, issue.5, pp.460-470, 2009.

J. ;. Nocedal and S. J. Wright, , 2006.

A. Öchsner and W. Ahmed, Biomechanics of hard tissues, 2011.

S. E. Olesiak, M. L. Oyen, and V. L. Ferguson, Viscous-elastic-plastic behavior of bone using berkovich nanoindentation, Mechanics of Time-Dependent Materials, vol.14, issue.2, pp.111-124, 2010.

W. C. Oliver and G. M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, vol.7, issue.6, pp.1564-1583, 1992.
URL : https://hal.archives-ouvertes.fr/hal-01518596

W. C. Oliver and G. M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology, Journal of Materials Research, vol.19, issue.1, pp.3-20, 2004.

D. R. Peterson and J. D. Bronzino, Biomechanics: principles and applications, 2007.

B. Poon, D. Rittel, and G. Ravichandran, An analysis of nanoindentation in linearly elastic solids, International Journal of Solids and Structures, vol.45, issue.24, pp.6018-6033, 2008.

D. Porter, Pragmatic multiscale modelling of bone as a natural hybrid nanocomposite, Materials Science and Engineering: A, vol.365, issue.1, pp.38-45, 2004.

M. Ramezanzadehkoldeh and B. Skallerud, Nanoindentation response of cortical bone: dependency of subsurface voids, Biomechanics and modeling in mechanobiology, vol.16, issue.5, pp.1599-1612, 2017.

A. G. Reisinger, D. H. Pahr, and P. K. Zysset, Principal stiffness orientation and degree of anisotropy of human osteons based on nanoindentation in three distinct planes, Journal of the Mechanical Behavior of Biomedical Materials, vol.4, issue.8, pp.2113-2127, 2011.

J. Rho, P. Zioupos, J. Currey, and G. Pharr, Variations in the individual thick lamellar properties within osteons by nanoindentation, Bone, vol.25, issue.3, pp.295-300, 1999.

J. Rho, M. E. Roy, T. Y. Tsui, and G. M. Pharr, Elastic properties of microstructural components of human bone tissue as measured by nanoindentation, Journal of Biomedical Materials Research, vol.45, issue.1, pp.48-54, 1999.

J. Rho, T. Y. Tsui, and G. M. Pharr, Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials, vol.18, issue.20, pp.1325-1330, 1997.

R. Hambli and N. Hattab, A. G. e., 2013. Multiscale Computer Modeling in Biomechanics and Biomedical Engineering, vol.14
URL : https://hal.archives-ouvertes.fr/hal-00657650

N. Rodriguez-florez, M. L. Oyen, and S. J. Shefelbine, Insight into differences in nanoindentation properties of bone, Journal of the Mechanical Behavior of Biomedical Materials, vol.18, pp.90-99, 2013.

J. Schwiedrzik, R. Raghavan, A. Bürki, V. Lenader, U. Wolfram et al., In situ micropillar compression reveals superior strength and ductility but an absence of damage in lamellar bone, Nature materials, vol.13, issue.7, p.740, 2014.

J. J. Schwiedrzik, U. Wolfram, and P. Zysset, A generalized anisotropic quadric yield criterion and its application to bone tissue at multiple length scales, Biomechanics and modeling in mechanobiology, vol.12, issue.6, pp.1155-1168, 2013.

J. J. Schwiedrzik and P. Zysset, Quantitative analysis of imprint shape and its relation to mechanical properties measured by microindentation in bone, Journal of Biomechanics, vol.48, issue.2, pp.210-216, 2015.

E. M. Spiesz, A. G. Reisinger, W. Kaminsky, P. Roschger, D. H. Pahr et al., Computational and experimental methodology for site-matched investigations of the influence of mineral mass fraction and collagen orientation on the axial indentation modulus of lamellar bone, Journal of the Mechanical Behavior of Biomedical Materials, vol.28, pp.195-205, 2013.

E. M. Spiesz, P. Roschger, and P. K. Zysset, Elastic anisotropy of uniaxial mineralized collagen fibers measured using two-directional indentation. effects of hydration state and indentation depth, Journal of the Mechanical Behavior of Biomedical Materials, vol.12, pp.20-28, 2012.

J. Swadener, J. Rho, and G. Pharr, Effects of anisotropy on elastic moduli measured by nanoindentation in human tibial cortical bone, Journal of Biomedical Materials Research Part A, vol.57, issue.1, pp.108-112, 2001.

M. Szabó and P. J. Thurner, Anisotropy of bovine cortical bone tissue damage properties, Journal of biomechanics, vol.46, issue.1, pp.2-6, 2013.

K. Tai, F. Ulm, and C. Ortiz, Nanogranular origins of the strength of bone, Nano letters, vol.6, issue.11, pp.2520-2525, 2006.

M. Tanco, E. Viles, L. Ilzarbe, and M. J. Alvarez, Implementation of design of experiments projects in industry, Applied Stochastic Models in Business and Industry, vol.25, issue.4, pp.478-505, 2009.

W. Van-buskirk and R. Ashman, The elastic moduli of bone. Mechanical properties of bone 45, pp.131-143, 1981.

M. Vanleene, P. Mazeran, and M. Ho-ba-tho, Influence of nanoindentation test direction on the elastic properties of human cortical bone lamellae, Computer Methods in Biomechanics and Biomedical Engineering, vol.10, issue.sup1, pp.127-128, 2007.

A. Vercher-martinez, E. Giner, C. Arango, and F. J. Fuenmayor, Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone, Journal of the Mechanical Behavior of Biomedical Materials, vol.42, pp.243-256, 2015.

B. Viswanath, R. Raghavan, U. Ramamurty, and N. Ravishankar, Mechanical properties and anisotropy in hydroxyapatite single crystals, Scripta Materialia, vol.57, issue.4, pp.361-364, 2007.

X. Wang, X. Chen, P. Hodgson, and C. Wen, Elastic modulus and hardness of cortical and trabecular bovine bone measured by nanoindentation. Transactions of nonferrous metals society of china 16, pp.744-748, 2006.

Y. J. Yoon and S. C. Cowin, The estimated elastic constants for a single bone osteonal lamella, Biomechanics and Modeling in Mechanobiology, vol.7, pp.1-11, 2008.

J. Zhang, G. L. Niebur, and T. C. Ovaert, Mechanical property determination of bone through nano-and micro-indentation testing and finite element simulation, Journal of Biomechanics, vol.41, issue.2, pp.267-275, 2008.

Y. Zhang, J. Outeiro, and T. Mabrouki, On the selection of johnson-cook constitutive model parameters for ti-6al-4v using three types of numerical models of orthogonal cutting, Procedia CIRP, vol.31, pp.112-117, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01442867

P. Zysset and A. Curnier, An alternative model for anisotropic elasticity based on fabric tensors, Mechanics of Materials, vol.21, pp.243-250, 1995.

P. K. Zysset, X. E. Guo, C. E. Hoffler, K. E. Moore, and S. A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, Journal of Biomechanics, vol.32, issue.10, pp.1005-1012, 1999.