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Abstract

Background: Mycobacterium ulcerans, the causative agent of Buruli ulcer in humans, is unique among the members of
Mycobacterium genus due to the presence of the virulence determinant megaplasmid pMUM001. This plasmid encodes
multiple virulence-associated genes, including mup011, which is an uncharacterized Ser/Thr protein kinase (STPK) PknQ.

Methodology/Principal Findings: In this study, we have characterized PknQ and explored its interaction with MupFHA
(Mup018c), a FHA domain containing protein also encoded by pMUM001. MupFHA was found to interact with PknQ and
suppress its autophosphorylation. Subsequent protein-protein docking and molecular dynamic simulation analyses showed
that this interaction involves the FHA domain of MupFHA and PknQ activation loop residues Ser170 and Thr174. FHA domains
are known to recognize phosphothreonine residues, and therefore, MupFHA may be acting as one of the few unusual FHA-
domain having overlapping specificity. Additionally, we elucidated the PknQ-dependent regulation of MupDivIVA
(Mup012c), which is a DivIVA domain containing protein encoded by pMUM001. MupDivIVA interacts with MupFHA and this
interaction may also involve phospho-threonine/serine residues of MupDivIVA.

Conclusions/Significance: Together, these results describe novel signaling mechanisms in M. ulcerans and show a three-
way regulation of PknQ, MupFHA, and MupDivIVA. FHA domains have been considered to be only pThr specific and our
results indicate a novel mechanism of pSer as well as pThr interaction exhibited by MupFHA. These results signify the need
of further re-evaluating the FHA domain –pThr/pSer interaction model. MupFHA may serve as the ideal candidate for
structural studies on this unique class of modular enzymes.
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Introduction

Buruli ulcer is a disease of skin and soft tissues caused by the

bacteria Mycobacterium ulcerans [1]. It is the third most important

mycobacterial disease after tuberculosis and leprosy [2], and the

prevalence continues to increase in tropical and sub-tropical

countries [3]. M. ulcerans evolved from an Mycobacterium marinum
ancestor through reductive evolution and acquired a large virulence

determinant plasmid (pMUM001) [4]. This plasmid encodes genes

for mycolactone synthesis that are required to circumvent the host

immune response, as a strain lacking this plasmid is avirulent.

Therefore, the pMUM001 plasmid is considered to be a key

determinant of M. ulcerans pathogenesis [5,6].

Pathogenic species of mycobacteria require stringent control on cell

division for survival in their host, and thus are likely to acquire

specialized mechanisms through evolution to achieve this control.

Signaling proteins that sense environmental changes and mediate cell

response are important for regulating cell division. For instance,

bacterial Serine/Threonine Protein Kinases (STPKs) are known to

regulate cell division by sensing and responding to specific signals in the

host environment [7]. Moreover, according to phospho-proteome

analysis, numerous Ser/Thr phosphorylated proteins have been

identified in Mycobacterium tuberculosis, suggesting that STPKs may

regulate multiple cellular processes [8–12]. Indeed, eleven STPKs have

been identified in M. tuberculosis and the majority of them have been

shown to be involved in pathogenesis and drug resistance [13–15].
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ForkHead-Associated (FHA) domain containing proteins are the

key interacting partners of STPKs that mediate the signals inside

the cells emanating from the cognate kinases [16–18]. FHA

domains are highly conserved modules, known to bind phosphor-

ylated residues within the proteins involved in diverse processes in

bacteria, such as protein secretion, antibiotic resistance, transcrip-

tion, peptidoglycan synthesis, metabolism and virulence [17–20].

Most of the FHA domain containing proteins in M. tuberculosis
are phosphorylated by STPKs [18], and these proteins have been

shown to recruit several other proteins in addition to being STPK

substrates [17,18,21].

Based on the importance of STPKs in M. tuberculosis
physiology and virulence, we explored the molecular transducers

and their associated FHA domains in the M. ulcerans genome. We

identified 13 STPK-encoding genes in silico and focused on a

novel STPK- PknQ, encoded by the virulence-associated plasmid

pMUM001. We identified MupFHA (Mup018c) and MupDivIVA

(Mup012c) as the substrates of PknQ and characterized the

interaction of PknQ and MupDivIVA with MupFHA. MupFHA

contains one FHA domain that interacts with PknQ, as well as

with phosphorylated MupDivIVA. Importantly, we found that the

interactions of these three M. ulcerans proteins encoded by the

virulence-associated plasmid are dependent on phosphorylation of

serine and threonine residues.

Methods

Bioinformatic analyses
BLAST search was performed using the NCBI-BLASTp

(http://blast.ncbi.nlm.nih.gov/Blast.cgi) with proteomes of M.
ulcerans and M. marinum as target and desired protein sequence

as query. The sequences of M. ulcerans STPKs were extracted

using NCBI. These sequences were used for multiple sequence

alignments, performed using ClustalW (http://www.ebi.ac.uk/

Tools/msa/clustalw2). Phylogenetic analysis was performed using

the sequences of STPKs in PHYLIP and phylogenetic tree was

constructed [22]. The presence of conserved domains was detected

by NCBI- conserved domain database (http://www.ncbi.nlm.nih.

gov/Structure/cdd/cdd.shtml).

Homology modeling
To generate the structure of PknQ, intracellular kinase domain

of M. tuberculosis PknB (PDB ID: 1MRU) that shows 42% identity

with the PknQ sequence, was chosen as template. We focused on

the predicted catalytic domain of PknQ (1 to 280 aa). The three-

dimensional models for PknQ were generated using MODELLER

version 9v1. General features were evaluated on the basis of the

MODELLER’s energy and DOPE scores while detailed reliability

indices were obtained by the PROCHECK program. The

PROSA Z-score was calculated using PROSA-II. Best models

were chosen and further refinements were carried out. Disordered

activation loop region was identified and loop refinement

procedure was applied using the automatic loop refinement

method provided in MODELLER 9v1 auto-model class protocol.

In order to model the loop reliably, 500 loop models were sampled

followed by model validation using DOPE scores and Verify 3D.

PTM-Viena server was used to modify the protein and phosphate

group was added at 2 different positions- Ser170 and Thr174. Ab
initio loop modeling was further used to minimize the post-

translation modification effects. For this purpose, loop modeling

protocol of standalone version of Rosetta 3.4 modeling suite was

used and 50 outputs were taken [23]. On the basis of energy score

and visual inspection of the loop we identified top 3 best loop

models and used for further studies.

Similarly, structural modeling of the FHA domain was

performed with MODELLER 9v1. MupFHA protein sequence

spanning the residues 10 to 100 was modeled (containing the FHA

domain and the interaction motif). In order to use the maximum

benefits of sequence identities and to model the maximum part of

sequence contacting FHA domain, multi-template approach

provided by MODELLER 9v1 was utilized and the two templates

of Rv0020c FHA domain (PDB ID: 2LC1, 3PO8) were used to

predict the three dimensional homology model of MupFHA. The

3D models for native FHA domain and mutants were generated,

on the basis of previously generated structures of Rv0020c and

pThr peptide [24,25]. The templates were pair-wise structurally

aligned. Further models were built and validated as described for

PknQ homology modeling.

Protein docking
Protein-protein dockings were performed using HEX 6.3

molecular docking program, correlation type were chosen as

shape and 2000 solutions were chosen for final evaluation. Other

parameters were chosen as default. Structures of the wild type

FHA domain and mutants were used for docking with PknQ

containing pSer170 and pThr174. First 10 solutions were analyzed

for each docking and best docked poses were chosen. A short

minimization was performed with Gromacs to minimize the

complexes. Intermolecular interactions and docking scores were

analyzed.

Molecular dynamics (MD) simulation
Three complexes were prepared using molecular dynamics

simulation- (1) a double phosphorylated PknQ-FHA complex, (2)

mutant complex having single phosphorylation on Ser170 and

mutation at pThr174 to alanine (PknQ-pSer170/Thr174Ala), (3)

phosphorylation at Thr174 and mutation at pSer170 to alanine

(PknQ-Ser170Ala/pThr174). All the simulation studies were

performed on GROMACS 4.5.5 using ffG43a1p force field

provided by Gromacs official website (http://www.gromacs.org/

Downloads/User_contributions/Force_fields) and uploaded by

Graham Smith, which included extended parameters for modified

residues [26].

Author Summary

Mycobacterium ulcerans is a slow growing pathogen, which
is prevalent in many tropical and sub-tropical countries. M.
ulcerans possesses unique signaling pathways with only 13
STPK containing genes. This is strikingly different from its
closest homolog Mycobacterium marinum and surprisingly
closer to the human pathogen, Mycobacterium tuberculo-
sis. PknQ, MupFHA and MupDivIVA are regulatory proteins
encoded by the virulence determining plasmid pMUM001
of M. ulcerans. In addition to characterizing the STPK, we
focused on deciphering the basis of interaction between
the three partner proteins leading to the identification of
critical residues. Present study describes the newly
identified phosphoserine-based interactions, which is
unique amongst the FHA-domain containing proteins.
We confirmed our results using structural analysis via
specific mutants and their interaction profiles. Importantly,
these data highlight the significance of FHA domains and
their role in understanding cellular signaling. This work will
encourage further studies to elucidate role of M. ulcerans
signaling systems. It will also raise questions like how less
studied tropical bacterial pathogens acquire eukaryotic-
like Ser/Thr protein kinase and exhibit unusual mecha-
nisms to interact with its partner domains.

Mycobacterium ulcerans STPK PknQ
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The protein complex was dissolved at the center of a cubic box,

solvated with single point charge water molecules. Solute-box

distances of 1.0 nm were specified. To simulate the protein-protein

complex system and in order to solve the issue of surface effects,

periodic boundary conditions were applied. To neutralize the net

charge on the protein, Na+ ions were added. A short energy

minimization step was performed on the solvated system with

steepest descent algorithm for 50000 steps.

Two phases of equilibration were conducted for 100 ps each-

under constant Number of particles, Volume and Temperature

(NVT) followed by constant Number of particles, Pressure and

Temperature (NPT). Positional restraints were applied on the

protein to allow solvent molecules to relax around the structure. In

the second stage, positional restraints were lifted and the system

was coupled to a heat bath at 300 K using the Berendsen

thermostat and allowed to equilibrate for 100 ps [27]. In an NPT

ensemble, the Parrinello-Rahman barostat was used for control-

ling the pressure [28]. Time constants for controlling the

temperature and pressure were set to 0.1 ps and 2 ps, respectively.

The production run was performed with suitable parameters for

10 ns at a temperature and pressure of 300 K and 1 atm,

respectively. Coordinate sampling was performed at every 2 fs

time interval. Bond-lengths were constrained using the Linear

Constraint Solver (LINCS) algorithm [29]. Various utilities of

GROMACS-4.5.5 package were used for detailed analysis of MD

trajectories. All of the Gromacs MD simulations were run in the

HPC-Supercomputer facility (CSIR-IGIB, India) on 32 Cores at

11.4 ns/day maximum performance speed.

Bacterial strains and growth conditions
Escherichia coli strain DH5a (Novagen) was used for cloning

and BL21 (DE3) (Stratagene) for the expression of recombinant

proteins. E. coli cells were grown and maintained with constant

shaking (200 rpm) at 37uC in LB broth supplemented with

appropriate antibiotic (100 mg/ml ampicillin and/or 12.5 mg/ml

chloramphenicol), when needed.

Gene cloning and generation of site-directed mutants
For cloning of pknQfl (mup011, 1–660 amino acids), its catalytic

kinase domain pknQkd (1–344 aa), mup018c (1–362 aa) and

mup012c (1–87 aa), the respective genes were amplified by PCR

from M. ulcerans Agy99 plasmid pMUM001 using specific

primers (Table S1). The resulting PCR products were cloned into

the selected vectors (pProEx-HTc, pGEX-5X-3, pMAL-c2x and/

or pACYCDuet-1). Rv0020c was PCR amplified from M.
tuberculosis H37Rv genomic DNA and cloned in pProEx-HTc

vector. The plasmid derivatives were confirmed with restriction

digestion and DNA sequencing (Invitrogen) (Table S1). M.
tuberculosis PstP (Rv0018c) and Bacillus anthracis PrkD/

PrkDS162A were cloned as described earlier [30,31].

To generate the specific site mutants (Table S1) of PknQ,

MupFHA and MupDivIVA, site directed mutagenesis was carried

out using QuikChange XL Site-Directed Mutagenesis Kit

(Stratagene) according to the manufacturer’s protocol. The

mutants were confirmed by DNA sequencing.

Expression and purification of recombinant proteins
The plasmids were transformed and proteins were over-

expressed in E. coli BL21 (DE3). The recombinant GST-tagged

fusion proteins were affinity purified with glutathione sepharose

column. The His6-tagged proteins were purified by Ni2+-NTA

affinity chromatography. For both purifications, similar proce-

dures were followed as described before [12,32].

MBP-tagged MupDivIVA was purified using amylose resin as

described before [9]. The purified proteins were resolved by SDS-

PAGE and analyzed after staining with coomassie brilliant blue

R250. The concentration of purified proteins was estimated by

Bradford assay (Bio-Rad).

In vitro kinase assay
In vitro kinase assays of PknQ or PknQK41M (1 mg each) were

carried out in kinase buffer (20 mM HEPES [pH 7.2], 10 mM

MgCl2 and 10 mM MnCl2) containing 2 mCi [c-32P]ATP (BRIT,

Hyderabad, India) followed by incubation at 25uC for 0–

30 minutes, as described previously [30,33]. In all the reactions,

kinase domain of PknQ was used (PknQkd), unless specified.

Myelin Basic protein (MyBP) (5 mg) was used as an artificial

substrate for PknQ in a time-dependent in vitro kinase assay.

Substrates MupFHA and MupDivIVA (5 mg each) were added

with PknQ (1 mg) for phosphotransfer reactions carried out in

kinase buffer containing 2 mCi [c-32P]ATP followed by incubation

at 25uC for 30 minutes. To determine the ionic requirements of

PknQ, in vitro kinase assays were performed in the kinase buffer

containing 20 mM HEPES [pH 7.2] with various concentrations

of divalent cations (MnCl2, MgCl2, ZnCl2, FeCl2 and ammonium

[iron-III] citrate) were included additionally, as indicated.

Inhibition assays with ammonium [iron-III] citrate and hemin

(Sigma) were performed in the presence of 10 mM Mn2+ and

Mg2+ each. Reactions were terminated by 56 Laemmli sample

buffer followed by boiling at 100uC for 5 minutes. Proteins were

resolved by 10% SDS-PAGE and analyzed by Personal Molecular

Imager (PMI, Bio-Rad). Quantification of radioactive bands was

done by Quantity One 1-D Analysis Software (Bio-Rad).

Phosphoamino-acid analysis (PAA)
Autophosphorylated 32P-PknQkd was separated by SDS-PAGE

after in vitro phosphorylation and electroblotted onto Immobilon

PVDF membrane (Millipore). PAA analysis by two-dimensional

thin layer electrophoresis (2D-TLE) was performed as described

earlier [34]. Substrates 32P-MupFHA and 32P-MupDivIVA

(phosphorylated by PknQkd) were analyzed similarly.

Identification of phosphorylation sites
In order to identify the sites of autophosphorylation in PknQ,

His6-PknQkd (5 mg) was autophosphorylated in vitro using 1 mM

cold ATP, in the presence or absence of MupFHA (20 mg). For

identification of phosphosites in MupFHA and MupDivIVA,

kinase assays were performed with GST-MupFHA (5 mg) and

MBP-MupDivIVA (5 mg) in the presence of 1 mM cold ATP and

PknQkd (2 mg). Samples were resolved on 10% SDS-PAGE and

gels were stained with coomassie brilliant blue stain. The stained

bands corresponding to desired protein sizes were cut-out and

used for mass-spectrometry as described earlier [35].

Immunoblotting
Proteins were resolved by SDS-PAGE and transferred onto

nitrocellulose membrane. Membrane was then blocked with 3%

bovine serum albumin (Sigma) in phosphate-buffered saline contain-

ing 0.1% Tween-20 (PBST) overnight at 4uC. After blocking, the blot

was washed thrice with PBST followed by incubation with primary

antibodies at 1:10,000 dilution for 1 h at room temperature.

Subsequently, after five washes, the blot was incubated in secondary

antibodies (Bangalore Genei) at 1:10,000 dilution for 1 h at room

temperature. The blots were developed using SuperSignal West Pico

Chemiluminescent Substrate kit (Pierce Protein Research Products)

according to manufacturer’s instructions.

Mycobacterium ulcerans STPK PknQ
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Affinity pull-down assays
For affinity pull-down assays, Pierce Pull-Down PolyHis

Protein:Protein Interaction Kit was used (Pierce, Thermo Scien-

tific). Briefly, His6-PknQ was over-expressed in E. coli BL-21

(DE3) cells and whole cell lysate was allowed to bind to the resin.

The resin was washed to remove the non-specific unbound

proteins. The lysates of E. coli BL-21 (DE3) cells were prepared

separately containing over-expressed GST-tagged MupFHAwt

(wild type), MupFHAR41A and MupFHAS55A. These three lysates

were incubated with immobilized His6-PknQ for 1 h at 4uC. The

resin was washed again followed by elution. The eluted fractions

were analyzed by SDS-PAGE and immunoblotted with anti-GST

antibodies (Abcam).

Co-expression of MupFHA and MupDivIVA with PknQ
mup018c cloned in pGEX-5X-3 or mup012c cloned in pMAL-

c2x were co-expressed in E. coli BL-21 (DE3) cells with pACYC-

PknQ. PknQK41M was used as a negative control to generate

unphosphorylated proteins. MupDivIVA or MupFHA were thus

purified as MBP-tagged and GST-tagged proteins, respectively.

Phosphorylation status of these proteins was analyzed by Pro-Q

Diamond phospho-protein gel staining of SDS-PAGE gels

followed by SYPRO Ruby protein gel stain, as described before

[30]. These proteins were utilized for subsequent assays.

Enzyme-linked immunosorbent assay (ELISA)
Sandwich ELISA was performed as described earlier [18].

Briefly, His6-tagged kinase (PknQ and its mutants or PrkD/

PrkDS162A mutant) or MBP-MupDivIVA (and its mutants) were

dissolved in coating buffer (carbonate-bicarbonate buffer [pH 9.2])

at a concentration of 10 mg/ml and adsorbed (1 mg/well) on the

surface of a 96-well ELISA plate (Maxisorb, Nunc) for 2 h at room

temperature. After rinsing the wells five times with PBST, the

reactive sites were blocked (3% BSA in PBST) overnight at 4uC.

The adsorbed proteins were challenged with varying concentra-

tions of soluble GST-tagged proteins (MupFHA and its mutants or

Rv0020c) dissolved in blocking buffer for 1 h at room tempera-

ture. After five washes with PBST, the wells were treated with

HRP-conjugated monoclonal antibody against GST (Abcam) at

1:10,000 dilution for 1 h at room temperature. Followed by five

washes, the chromogenic substrate o-phenylenediamine dihydro-

chloride (0.4 mg/ml OPD in 0.1 M phosphate/citrate buffer,

pH 5.0) and H2O2 were used to measure the interaction. After

addition of stop solution (2.5 M H2SO4) the absorbance was read

at 490 nm. The experiments were performed 3 times with freshly

purified proteins along with their mutants.

For interaction study with peptides, GST-tagged MupFHA or

MupFHAS55A (150 nM each) was adsorbed on the 96-well ELISA

plate. After washing, 100 nM of pThr (KRpTIRR, Millipore), pSer

(RRApSVA, Millipore) or a random unphosphorylated peptide

(DRRRRGSRPSGAERRRRRAAAA, [36]) was allowed to inter-

act with MupFHA. The wells were washed with PBST and His6-

tagged PknQ (500 nM) was added. The interaction was measured

as described above except the use of anti-His antibody (Abcam) at

1:10,000 dilution. The resulting values were normalized to

MupFHAS55A interaction, which was used as a negative control.

Results

In silico analysis of M. ulcerans STPKs
To identify the total number of STPKs present in M. ulcerans, we

performed a BLASTp search using the sequence of the catalytic

domain of M. tuberculosis PknB (1–331 aa), corresponding to the most

conserved mycobacterial STPK [37]. Using this approach we

identified 13 distinct ORFs encoding for STPKs, of which twelve

are encoded on the chromosome and one (Mup011 or PknQ) is

encoded on the virulence-associated plasmid pMUM001 (Fig. 1A).

Analysis of the M. ulcerans STPKs showed that they possess unique

kinase modules that are divergent from its close homolog, M.
marinum. Out of the 24 putative STPK encoding genes present in M.
marinum, only 13 are retained in M. ulcerans. This finding suggests

that although M. ulcerans has evolved from M. marinum, it has

retained only those STPKs that are necessary for its survival in

humans while excluding those that may confer adaptation to M.
marinum in fish. STPKs are broadly classified on the basis of

conserved catalytic Arg/Asp (RD) residues present between sub-

domains VIa and VIb [30,38]. Twelve STPKs in M. ulcerans belong

to the RD kinase family, with PknG being the only non-RD kinase.

The domain architecture of these kinases show a modular organiza-

tion in which the kinase domain is located at the N-terminus (Fig. S1).

SMART domain analysis revealed that 9 out of 13 kinases possess a

transmembrane region that divides the N-terminal kinase domain

from the C-terminal residues (Fig. S1). Multiple sequence alignments

and phylogenetic analyses of M. ulcerans STPK sequences revealed

that they belong to diverse origins and form distinct clades with strong

conservation patterns in the catalytic domains, similar to M.
tuberculosis [39] (Fig. 1B). The most striking feature of M. ulcerans
signaling is the presence of PknQ on the virulence-associated plasmid

pMUM001, which was most likely acquired for adaptability.

Therefore, we decided to characterize structural features and

biochemical properties of PknQ.

Structural and biochemical characterization of PknQ
PknQ contains 660 amino acids with an estimated isoelectric point

of 6.46. The domain analysis indicates that the cytosolic N-terminal

region possesses the characteristic Ser/Thr kinase domain (kd), which

is separated from the extracellular C-terminal domain harboring a

FepB-like iron transporter module through a transmembrane region

(Fig. S1). PknQkd (1–344 aa) harbors all 12 conserved Hank’s

subdomains present in eukaryotic STPK counterparts [40] (Fig. S2).

Homology modeling of PknQkd and subsequent structural analysis

revealed that the kinase domain consists of two lobes joined by a hinge

segment. Catalysis occurs at the interface of the two lobes, where the

catalytic amino acid residues interact with both ATP and the protein

substrate (Fig. 2A). Based on our analysis of homology modeling and

sequence similarities, we identified the residues Lys41 and Asp134

important for the phosphorylation reaction.

Therefore, in order to characterize PknQ and decipher its

regulation, the gene coding for PknQkd (1–344 aa) was cloned,

over-expressed and the His6-tag fusion protein was purified from

E. coli (Fig. 2B). The kinase activity of purified protein was

assessed by in vitro kinase assay, in a time-dependent manner

(Fig. 2C). As shown, the maximum activity was achieved in

30 minutes under given conditions. In order to confirm PknQ

phosphorylation, the conserved Lys41 residue was mutated to

methionine as a control. The kinase and its Lys41 mutant were

then assessed for autophosphorylation and phosphorylation of the

universal substrate, myelin basic protein (MyBP). As shown in

Fig. 2D, PknQ was able to phosphorylate MyBP, while PknQK41M

was inactive. The phospho-transfer potential of PknQ was also

assessed in a time dependent manner and phosphorylation of

MyBP was quantified (Fig. 2E). This confirmed the time-

dependent increase of the phospho-transfer potential of PknQ,

with the saturation of signal observed after 30 min.

Ionic requirements of PknQ
The domain organization of PknQ includes a C-terminal ion

transporter module, indicating that cofactors may play an

Mycobacterium ulcerans STPK PknQ
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important role in regulating its activity. To analyze the PknQ ionic

requirements, in vitro kinase assays were performed with

[c-32P]ATP in the presence of different divalent cations known

to regulate the activity of STPKs [32,33,41]. PknQ kinase activity

was found to be dependent on the presence of Mn2+, although

slight activation was also observed in the presence of Mg2+, Fe2+,

and Zn2+ ions (Fig. 3A). However, no activation was observed in

the presence of Fe3+ ions, rather they inhibited the activity of

PknQ in a concentration-dependent manner, even in the presence

of Mn2+ and Mg2+ (Fig. 3B). To confirm these results we

performed an in vitro kinase assay with PknQkd and hemin,

which contains integrated Fe3+ ions. Since the C-terminal FepB

domain of PknQ is known to release iron from heme [42], the

kinase activity of PknQfl was also checked. Hemin indeed inhibited

the activity of PknQfl as well as PknQkd (Fig. 3C).

Identification of PknQ phosphorylation sites
We identified the phosphorylated amino acid(s) on PknQkd

using 2D-TLE. We found that both serine and threonine residues

were phosphorylated, while no phosphorylation was observed on

tyrosine residues (Fig. 4A). Mass spectrometric analysis of PknQkd

identified multiple phosphorylated Ser/Thr residues (Table 1,

Fig. 4B). Sequence analysis of residues proximal to the phospho-

sites identified proline residues in close proximity to seven

phosphosites. The importance of proline in proximity to

phospho-acceptor residues has been well established in eukaryotic

STPKs [43,44]. Thus, these residues may help in PknQ

autophosphorylation and would be useful for identifying PknQ-

specific phosphorylation motifs.

We next generated the two phospho-ablative mutants of Thr164

and Thr166 sites, since their homologous residues are known to be

the most conserved phosphorylated residues in the activation loop

of STPKs [33,45,46]. Equal amounts of PknQ and its mutants

were used in the in vitro kinase assays with [c-32P]ATP, resolved

on SDS-PAGE, and analyzed by autoradiography. In the

quantitative analysis, there was no significant loss in phosphory-

lation observed in the PknQT164A single mutant, while PknQT166A

and PknQT164/166A showed significant loss in signal intensity

(Fig. 4C). The Ser170 and Thr174 residues were also present in the

activation loop of the PknQ catalytic domain (Fig. 4B). In order to

determine the impact of phosphorylation of these residues together

with the residues of the juxtamembrane region, site-directed

mutagenesis was performed to generate mutations at these sites.

We observed that the PknQS170A mutant had a marked reduction

in phosphorylation activity, suggesting that this site is critical for

PknQ activation (Fig. 4C). PknQT174A and PknQT260A mutants

also exhibited ,80% loss in phosphorylation signal. Comparison

of PknQ, PknQK41M and PknQT174A phosphorylation indicated

that PknQT174A is partially active and is distinct from PknQK41M

derivative, which is completely inactive (Fig. S3A). No loss in

phosphorylation levels was observed with other single site mutants

(Fig. S3B), indicating that phosphorylation of these residues

(including the juxtamembrane region) does not seem to play a

major role in PknQ autokinase activity. Hence, the most

important phosphorylation sites in the PknQ are Ser170, Thr174,

Thr166 and Thr260. In most bacterial STPKs, activity is regulated

by threonine residues in the activation loop and not by serine

[11,30]. Thus, it was surprising that Ser170 plays a major role in

PknQ activation and indicates a novel feature of PknQ in the

mycobacterial kinome.

Identification of PknQ interacting proteins in M. ulcerans
In order to regulate and amplify signals, protein kinases

associate and interact with a number of proteins within the cell.

Most of the bacterial protein kinases are known to exhibit synteny

with their substrates. In M. ulcerans, analysis of pknQ genetic loci

revealed a possible operon between mup012c and mup018c.

These genes code for proteins whose homologs are known as key

kinase substrates in M. tuberculosis and many other bacteria. The

search for kinase interacting domain took us to the FHA domain

that is present in Mup018c (renamed as MupFHA). In M.
tuberculosis, several STPK-FHA domain containing protein

partners are broadly conserved at the same genetic loci, such as

PknB-Rv0019c, PknF-Rv1747 or PknH-EmbR [18,47,48].

FHA domains are comprised of approximately 55–75 amino

acids with three highly conserved blocks- GR, SXXH, and NG-

separated by divergent spacer regions [49]. Structurally, the FHA

domain contains an 11-stranded b-sandwich with small helical

insertions at the loops connecting the strands [49]. Recent reports

suggest that the FHA domain-containing proteins interact with

and recruit other phospho-proteins [17,18,21]. In eukaryotes,

STPKs associate with multiple signaling domains, such as the

BRCT, 14-3-3, Polo box, SH2, WW, WD40, and FHA domains

[18,50], while in bacteria, only FHA domains have been identified

as the conserved STPK interacting domains. In addition, their role

has been studied in important cellular processes [49]. In order to

determine the status of FHA domain containing proteins in M.
ulcerans, we performed a BLASTp search using Rv0020c of M.
tuberculosis as a query [51] and found six additional FHA domain

containing proteins (compared to M. marinum, which has ten

FHA domain containing proteins, including the one encoded by

the pMUM003 plasmid in M. marinum DL240490). A domain

analysis and homology search showed that all of the proteins have

functional homologs in M. tuberculosis except MupFHA (Table 2).

To further explain the relationships of MupFHA with other FHA

domain homologs in other bacteria that carry a megaplasmid, for

example non-pathogenic bacteria Mesorhizobium cicero, we

performed BLASTp search with MupFHA sequence in the M.
cicero database. There are two FHA domain containing proteins

encoded by the M. cicero megaplasmid. However, the two proteins

named Mesci_6382 and Mesci_6368 are annotated as type-VI

secretion system FHA domain proteins and thus, are different

from MupFHA. Similarly, in another pathogenic bacterium,

Yersinia pestis, the virulence-associated plasmid pLB1 encodes an

FHA domain protein YscD that is a part of the type-III secretion

apparatus. Thus, it is possible that MupFHA, YscD, Mesci_6382

and Mesci_6368 are related evolutionarily. However, MupFHA

does not contain any such secretory domain indicating divergence

at some point. Thus, these analyses indicate that the MupFHA is a

unique FHA domain containing protein present in the virulence-

associated plasmid of M. ulcerans.

Structural analysis of PknQ and MupFHA domain
interactions through docking

mup018c (mupFHA) is present in the vicinity of pknQ
(mup011), suggesting that the two proteins encoded by these

Figure 1. In silico analysis of M. ulcerans STPKs. (A) Genomic alignment of M. ulcerans STPKs showing conserved patterns (NCBI). Genetic
patterns show twelve STPKs present in the chromosome in addition to one STPK, PknQ, which is encoded by the virulence-associated plasmid
pMUM001. (B) Phylogenetic analysis of all M. ulcerans STPKs. The phylogenetic tree was generated using protein FASTA sequences of M. ulcerans
STPKs in Phylip. PknQ clearly belongs to the PknF/PknI/Mul_2200 clade.
doi:10.1371/journal.pntd.0003315.g001
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Figure 2. Characterization of PknQ phosphorylation. (A) Homology modeling showing the structure of the PknQ kinase domain (PknQkd). The
structure shows a ribbon diagram (left) and surface-filled model (right) of PknQkd, highlighting the N- and C-terminal regions. (B) SDS-PAGE analysis
of His6-tagged PknQkd. PknQkd was purified to near homogeneity as observed on SDS-PAGE. (C) Time-dependent autophosphorylation of PknQ. PknQ
was allowed to phosphorylate itself for 0–30 minutes. Relative phosphorylation (normalized to protein amounts) is plotted and corresponding
autoradiogram (top) and SDS-PAGE images (bottom) are shown. The intensity of phosphorylation on protein bands was calculated using Personal
Molecular Imager (Bio-Rad) using quantification software Quantity One (Bio-Rad). The phosphorylation after 30 min was taken as 100% (signal
saturation) and relative phosphorylation was calculated. The experiment was repeated thrice and error bars show S.D. of three values. (D)
Autophosphorylation of PknQkd and phosphorylation of Myelin basic protein (MyBP). Autoradiogram (top) and corresponding SDS-PAGE images
(bottom) are shown. No phosphorylation was observed in the presence of the kinase-dead mutant PknQK41M. (E) Time-dependent phosphorylation of
MyBP using PknQkd. Relative phosphorylation (normalized to protein amounts) is plotted and corresponding autoradiogram (top) and SDS-PAGE
images (bottom) are shown. The quantification of phosphorylation intensity was done as described earlier (Fig. 1C). The experiment was repeated
three times and error bars show S.D. of three values.
doi:10.1371/journal.pntd.0003315.g002
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genes may interact with each other. In order to confirm this

hypothesis, we first performed multiple sequence alignment of

MupFHA and other known FHA-domain containing proteins.

The alignment shows that the five most conserved residues of

FHA-domain (Gly40, Arg41, Ser55, His58 and Asn76) are also

present in MupFHA (Fig. S4). Next, we generated a structural

model of the FHA domain of MupFHA using M. tuberculosis
Rv0020c as a template. MupFHA was found to contain 11 b-

strands as is true for all the FHA-domain containing proteins

[24,49]. PknQkd and MupFHA models were then used for the

docking studies and to characterize the key interacting residues.

Amongst the major phosphorylation sites of PknQ (Thr166, Thr174,

Ser170 and Thr260), Thr166 and Thr260 do not make close contact

with MupFHA (Fig. S5). Thus, the docking was further performed

using PknQ phosphorylated at Ser170 and Thr174. PknQ was

found to interact with the residues present in the loops b3–b4, b4–

b5 and b6–b7 of MupFHA, as described previously for other FHA

domains [24,52,53]. Figure 5 shows the various docked complexes

emphasizing the role of activation loop residues PknQ-pSer170

(Sep170) and PknQ-pThr174 (Tpo174) in stabilizing the complex

formed with MupFHA (Fig. 5A and 5B). PknQ-Thr174 exhibits

canonical binding with the FHA-domain residues as observed in

various previous studies [24,52,53]; and forms H-bonds with

Ser55, Ser75 and Arg53 residues of MupFHA (Fig. 5B and 5C).

PknQ-pThr174 interacts with MupFHA-Ser55, one of the five most

conserved FHA-domain residues, exactly in the same manner as

Human Rad53-FHA1 and M. tuberculosis Rv0020c bind to their

phospho-peptides [24,53]. Rv0020c contains a Thr at position

corresponding to MupFHA-Ser75 (Fig. S4) that also forms H-bond

with pThr of the phospho-peptide [24]. The MupFHA model

differs from the known Human Rad53 structure with respect to

the binding of pThr174 with the other absolutely conserved residue

MupFHA-Arg41. MupFHA-Arg41 was not found to interact with

pThr174; instead it forms H-bond with PknQ-pSer170. MupFHA-

Arg41 holds PknQ-pSer170 like a clip with the help of MupFHA-

Arg56 (Fig. 5B and 5D), reminiscent of pSer binding by Human

PNK-FHA and M. tuberculosis Rv0020c [24,52]. Presence of

negatively charged pSer residue in proximity to these positively

Figure 3. Ionic requirement of PknQ. (A) Ionic requirement of
PknQkd using divalent cations (Mg2+, Mn2+, Fe2+, and Zn2+) and
ammonium [iron-III] citrate. Maximum activity (taken as 100%) was
found in the presence of Mn2+ and relative phosphorylation was
calculated in all other lanes. The quantification of phosphorylation
intensity was done as described earlier (Fig. 1C). The experiment was
repeated three times and error bars show standard deviation (S.D.) of
three values. Representative gel images are shown above the
histogram, with the coomassie-stained gel (above panel) showing
equal loading of PknQ. The lower panel is the corresponding
autoradiogram. (B) Histogram showing inhibition of PknQkd by
ammonium [iron-III] citrate (in the presence of Mn2+ and Mg2+). The
quantification of phosphorylation intensity was done as described
earlier (Fig. 1C). Maximum activity was found in the absence of
ammonium [iron-III] citrate and was taken as 100%. Relative phosphor-
ylation was calculated in all other lanes. The experiment was repeated
three times and error bars show S.D. of three values. Representative gel
images shown above indicate equal loading of PknQkd (above panel)
and the corresponding autoradiogram (lower panel). (C) Histogram
showing inhibition of full-length PknQ (PknQfl) and kinase domain
(PknQkd) by hemin (in the presence of Mn2+ and Mg2+). Maximum
activity was found in the absence of hemin and was taken as 100%.
Relative phosphorylation was calculated in all other lanes. The
experiment was repeated three times and error bars show S.D. of three
values.
doi:10.1371/journal.pntd.0003315.g003
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charged arginine residues have been proposed to provide

favorable interaction [52]. MupFHA-Arg56 is not among the five

absolutely conserved residues but is found in most of the FHA

domains (Fig. S4). Rad53-FHA1 contains an asparagine at this site

which also forms H-bond with pThr [53]. This analysis indicates

that residues Ser170 and Thr174 of PknQ are important for its

interaction with MupFHA.

To further apprehend the interaction between these two

proteins, we performed docking of the FHA domain mutants of

the two absolutely conserved residues- Arg41 and Ser55 with

the wild-type PknQkd. Significant loss of H-bonds within PknQ

activation loop was observed in both the cases (Fig. 5E and

5F). Serine to alanine substitution at position 55 of MupFHA

led to the loss of H-bonding with PknQ-Thr174 (Fig. 5E).

Similarly, MupFHAR41A mutation abolished the formation of

H-bonds with PknQ-Ser170 that were essential for holding the

complex (Fig. 5F). Together, these analyses identified critical

amino acid residues involved in the PknQ and MupFHA

interaction.

Structural basis of MupFHA-pSer/pThr interaction
Molecular dynamics simulation was performed to probe the

conformational relaxation of the PknQ-MupFHA complex and

to evaluate the dynamic interaction of phosphorylated residues

in PknQ activation loop (pSer170 and pThr174) with the FHA

domain (Supplementary movie files S1, S2 and S3). Apart from

the dually phosphorylated PknQ-pSer170/pThr174 (Fig. 6A,

left panel), the molecular dynamics simulation was also

performed with PknQ-pSer170/Thr174Ala (Fig. 6A, middle

panel) or PknQ-Ser170Ala/pThr174 (Fig. 6A, right panel).

The snapshots of complexes at different time points suggest

that the dually phosphorylated form of PknQ makes the most

stable complex with MupFHA. Both the mutations- T174A

and S170A, lead to destabilization and fluctuations in the

Figure 4. Phosphorylation sites of PknQ. (A) Phosphoamino acid (PAA) analysis of PknQkd autophosphorylation using 2D-TLE. The left panel
shows ninhydrin-stained phospho-amino acid spots and the right panel shows the corresponding autoradiogram. Phosphorylation was detected on
the spots corresponding to Ser(P) and Thr(P). (B) Domain architecture of PknQ showing catalytic domain (cytosolic) and extracellular FepB-like
transporter domain. Four of the phosphorylated residues that are present in the activation loop are marked. (C) Single and double site mutants of
PknQ were generated for the two most conserved activation loop residues (Thr164 and Thr166) (left histogram). Single site mutants of PknQ were
subsequently generated for multiple residues (Ser170, Thr174 and Thr260) as identified by mass spectrometry (right histogram). Phosphorylation of
PknQ was taken as 100% and relative phosphorylation was estimated. The experiment was repeated three times and error bars show S.D. of three
values. A representative autoradiogram is shown above each histogram. PknQS170A exhibited the maximum loss in phosphorylation.
doi:10.1371/journal.pntd.0003315.g004

Mycobacterium ulcerans STPK PknQ

PLOS Neglected Tropical Diseases | www.plosntds.org 9 November 2014 | Volume 8 | Issue 11 | e3315



complex (Fig. 6A). The analysis of overall H-bonding in the

complex again shows that the dually phosphorylated PknQ

forms a stable complex with MupFHA. The number of H-

bonds decreases in the case of complex formed with PknQ

mutants.

Analysis of charge distribution in the complex suggests that in

the dually phosphorylated model, Ser55 and Ser75 of MupFHA

play an important role in the recognition and form 3–4 H-bonds

during interaction with PknQ-pThr174. PknQ-pSer170 interacts

with the Arg41 and Arg56 residues of MupFHA. These

interactions are maintained even when there is a Thr174 to

alanine substitution in PknQ. When Ser170 is substituted to

alanine, MupFHA-Arg56 becomes available for H-bonding.

There is a relative movement of Arg56 so that it now interacts

with PknQ-pThr174. The analogous interaction of MupFHA-

Arg56 and PknQ-pThr174 has also been observed previously in

other studies [24,52], but is not seen when there is a pSer170

residue in PknQ. Thus, MupFHA-Arg56 moves towards PknQ-

pThr174 only when pSer170 is absent. In this case, when H-bonds

between PknQ-Thr174 and MupFHA-Arg56 were analyzed, it

indicated that before 4 ns there is no significant interaction, but

after 4 ns, 2–3 H-bonds are formed between these two residues

(Fig. 6B).

The RMSD values were then calculated and plotted for all the

three complexes (Fig. 6C). The graph shows an initial structural

rearrangement (1–2 ns) contributing to higher fluctuations in RMSD

values for all the three protein complexes (Fig. 6C). The complexes

formed with single phosphorylated residue of PknQ exhibit higher

Table 1. Phosphorylated residues of PknQ identified by in vitro kinase assays.

Phosphorylated tryptic peptide sequence of autophosphorylated PknQ Phosphorylated residue(s)

Number of detected
phosphate groups
LC/MS/MS

HPpTLPRSDALK [31–41] T33 1

HPpTLPRpSDALK [31–41] T33+S37 2

ILpSAELSQDEQFR [42–54] S44 1

ILSAELpSQDEQFR [42–54] S48 1

EADLAApTLSHPNIVTVFNR [60–78] T66 1

EADLAApTLpSHPNIVTVFNR [60–78] T66+S68 2

LHApTVLTPAR [100–110] T104 1

VAAIIpTDVGAALDYAHSR [110–128] T116 1

DIKPpSNFLVSADHER [134–148] S138 1

DIKPSNFLVpSADHER [134–148] S143 1

AFDDTpTLTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164 1

AFDDTpTLpTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164+T166 2

AFDDTpTLpTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164+T166+(S170 or T174) 3

IGSLVGpTASYAAPEAIQGGSVDQR [168–191] T174 1

FPpTAGALAGAAR [258–269] T260 1

AALpSGQPLPQAPPGGPKpTR [270–288] S273+T287 2

AALSGQPLPQAPPGGPKpTR [270–288] T287 1

IWAAPPLSYPpTTRPPGI [289–305] T299 1

GFAGAAHPGLAGAApSSSDER [314–333] S328 1

AGAAHPGLAGAASpSSDER [316–333] S329 1

Sequences of the phosphorylated peptides identified in autophosphorylated PknQ in the absence of MupFHA are indicated, as determined by mass spectrometry.
Phosphorylated residues (pT or pS) are shown in bold.
doi:10.1371/journal.pntd.0003315.t001

Table 2. Conserved FHA-domains in M. ulcerans.

M. ulcerans M. tuberculosis

MUL_1424 Rv1747

MUL_0024 Rv0020c

MUL_0023 Rv0019c

MUL_3149 Rv1747

MUL_4018 EmbR, Rv1267c

MUL_3046 GarA, Rv1827

MUP018c Rv3863

doi:10.1371/journal.pntd.0003315.t002
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structural rearrangements and higher RMSD fluctuations compared

to the double phosphorylated protein complex. These results indicate

that Thr174 and Ser170 of PknQ are important mediators of the

interaction with MupFHA. Phosphorylation of Ser170 may regulate

interaction of MupFHA with PknQ by making MupFHA-Arg56 and

Arg41 unavailable for pThr174.

Figure 5. Docking analysis of PknQ with MupFHA domain. (A) Homology modeling derived structural models showing docking of wild-type
PknQ (stick diagram) with the wild-type FHA domain variable loop region of MupFHA (green ribbon diagram). Phosphate group (orange) has been
added to Ser170 and Thr174 of PknQ and the phosphorylated residues have been renamed as Sep170 and Tpo174, respectively. The red encircled
region of interaction has been enlarged in (B). The residues Arg41, Arg53, Ser55, Arg56 and Ser75 of MupFHA show stable interactions with the PknQ
activation loop and form H-bonds with the negatively charged pSer170 (Sep170) and pThr174 (Tpo174). (C) Enlarged region of interaction between
PknQ-pThr174 and MupFHA. Canonical interaction of pThr174 is observed showing H-bonds with Arg53, Ser55 and Ser75 of MupFHA (see text). (D)
Enlarged region of interaction between PknQ-pSer170 and MupFHA. PknQ-pSer170 is shown to be anchored by the residues Arg41 and Arg56 of
MupFHA. (E) Region of interaction between PknQ-pThr174 and MupFHAS55A (in red stick). (F) Region of interaction between PknQ-pSer170 and
MupFHAR41A (in red stick). Both (E) and (F) show the loss of H-bond network and thus destabilized interaction between PknQ and MupFHA.
doi:10.1371/journal.pntd.0003315.g005
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Characterization of the PknQkd and MupFHA interaction
To validate the interactions between MupFHA and PknQ

observed through docking analysis, we performed affinity pull-down

assays. Mup018c was cloned in an E. coli expression vector and the

corresponding protein MupFHA was purified as a GST-tagged

fusion protein. Site-specific mutants of MupFHA were also

generated and used for pull-down assays with PknQ to validate

the docking studies. Pull-down assays showed that PknQ strongly

interacts with wild-type MupFHA and that the interaction was

reduced with the MupFHAR41A and MupFHAS55A mutants

(Fig. 7A).

To further validate the interaction of the FHA domain with

PknQ, we studied specific protein-protein interactions through

sandwich ELISA. His6-PknQ was adsorbed on a 96-well plate and

Figure 6. Molecular dynamics simulation of PknQ and MupFHA. (A) MD simulation analysis of interaction between MupFHA and PknQ-
pSer170/pThr174, PknQ-pSer170/Thr174Ala or PknQ-Ser170Ala/pThr174. The upper panel shows snapshots taken every 2 ns to assess the backbone
fluctuations of the complex of MupFHA (ribbon representation) with PknQ activation loop (stick representation). The dually phosphorylated
activation loop of PknQ shows the most significant interaction and a stable complex. The middle panel shows the charge distribution during the
interaction of MupFHA with PknQ. The central part of the PknQ activation loop is shown to interact with the FHA domain surface. The charge
distribution along with the molecular surface of FHA is shown coloured according to the electrostatic potential- blue for positive and red for negative.
Phosphate groups added to Ser170 and Thr174 are shown in orange color. The lower panel shows H-bonding between all the complexes during the
entire simulation as a function of time. (B) H-bond plot for PknQ-pThr174 in PknQ-Ser170Ala/pThr174 and MupFHA-Arg56. Residue pThr174 elucidates
the canonical interaction after 4 ns which was occupied by pSer170 in dually phosphorylated activation loop. (C) RMSD curve for a total of 10 ns
during the MD simulation.
doi:10.1371/journal.pntd.0003315.g006
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allowed to interact with equimolar amounts of GST-tagged

substrates. Significant interaction was observed between His6-

PknQ and GST-MupFHA (Fig. 7B). Interaction assays of PknQ

were also performed with the GST-MupFHAR41A and GST-

MupFHAS55A mutants. The interactions were severely disrupted

by mutating the two residues of MupFHA (Fig. 7B). Thus, our

results confirmed that the interaction of PknQ:MupFHA occurred

via the FHA domain and requires Arg41 and Ser55.

Specificity of MupFHA domain towards phospho-
residues

Docking studies and MD analysis indicated the critical role of

the activation loop residue Ser170 in the PknQ:MupFHA

interaction along with the pThr174. FHA domains are primarily

pThr binding domains. In fact, such pThr specificity helps in

decreasing the potential interaction sites of FHA domains, as 90%

of all Ser/Thr kinase activity in eukaryotes is directed towards

serine phosphorylation [54]. However, in prokaryotes, and even

more so in Mycobacterium, STPKs more often act upon threonine

residues [11]. However, PknQ is an exception, as it requires Ser170

in addition to threonine residues. Therefore, to investigate the role

of Ser170 in PknQ:MupFHA interaction, we performed an ELISA

with MupFHA and PknQS170A. Our results showed a loss of

interaction between MupFHA and PknQS170A compared to wild-

type PknQ and PknQT166A (Fig. 7C). The interaction of

PknQS170A was similar to the kinase inactive mutant PknQK41M,

which is the completely unphosphorylated form of the kinase. We

also compared this interaction with interaction of other key

phospho-residue mutants (Thr174 and Thr260) (Fig. 7D). Apart

from Ser170, the only residue important for interaction is Thr174

confirming the results obtained from structural modeling (Fig. 5A).

Furthermore, MupFHA-PknQ interaction was probed in

competition ELISA-based assays using synthetic peptides phos-

phorylated either on threonine or serine residue. Immobilized

MupFHA was first incubated with pSer, pThr or random

unphosphorylated peptide and competitively replaced by PknQ.

In this assay, the MupFHA-PknQ interaction was proportionally

dependent on MupFHA:phospho-peptide binding. We observed

that both pThr and pSer peptides showed affinity to MupFHA but

not the unphosphorylated random peptide (Fig. S6). Notably, the

binding of MupFHA with both phospho-peptides was not very

strong, which probably indicates the role of neighbouring residues

(of phospho-acceptor site) in these interactions. To further probe

the pSer/pThr interaction, we also utilized Bacillus anthracis
kinase PrkD that autophosphorylates on Ser162 residue, in addition

to several threonine and tyrosine residues [30]. MupFHA was

allowed to bind with PrkD and PrkDS162A where the interaction

was found to be reduced after mutation of Ser162 (Fig. S7).

Together, these results indicate the affinity of MupFHA with both

pThr and pSer.

Identification of MupFHA as a PknQ substrate and role of
PknQ autophosphorylation sites in MupFHA
phosphorylation

FHA domain containing proteins are known to be phosphor-

ylated by their neighboring kinases [18,20,48]. To explore this

possibility in M. ulcerans, we performed kinase assays with PknQ

and MupFHA and found that PknQ phosphorylated MupFHA,

while no phosphorylation was observed with PknQK41M (Fig. 8A).

To further validate MupFHA phosphorylation by PknQ, we co-

expressed the two proteins in E. coli using compatible vectors, one

expressing either PknQ or PknQK41M (pACYCDuet-1) and the

second expressing MupFHA (pGEX-5X-3). Affinity purified

MupFHA that was co-expressed with PknQ (renamed as

MupFHA-P) showed an intense phosphorylation signal, while no

phosphorylation was found in MupFHA co-expressed with

PknQK41M (MupFHA-UP) (Fig. 8B).

We also assessed the role of active site residues of PknQ on its ability

to phosphorylate MupFHA. Considerable loss of phosphotransfer was

observed with the mutants- PknQT166A, PknQS170A and PknQT174A

compared to the wild-type and PknQT164A (Fig. 8C). Therefore, in

addition to autophosphorylation, the residues Ser170, Thr166, and

Thr174 are also critical for regulating the phosphotransfer.

Identification of MupFHA phosphorylation sites and role
of the FHA domain in PknQ-mediated phosphorylation of
MupFHA

To identify the MupFHA residues phosphorylated by PknQ,

PAA analysis was performed. PknQ phosphorylated MupFHA on

threonine residue(s), while no signal was observed on the spots

corresponding to pSer and pTyr (Fig. 9A). We subsequently

identified the phosphorylation sites in MupFHA by mass spectrom-

etry. PknQ phosphorylated MupFHA on four threonine residues

(Thr8, Thr123, Thr210, and Thr214), which confirmed the results

obtained from the PAA analysis (Fig. 9B, Table 3). Interestingly,

none of these residues were present in the FHA domain. To verify

these phosphorylation sites, we generated single and multiple

phospho-ablative mutants of MupFHA and compared the level of

phosphorylation in all the mutants with wild-type MupFHA.

Surprisingly, loss of only Thr210 resulted in approximately a 50%

reduction in phosphorylation signal, while ,20% loss of signal

intensity was observed with the double mutant MupFHAT8A/T214A

(Fig. 9C). No loss was observed for the MupFHAT123A mutant.

Since the FHA domain of MupFHA is involved in its interaction

with PknQ, it was essential to study the role of the FHA domain in

its phosphorylation. Therefore, the two conserved FHA domain

residues, Arg41 and Ser55, were mutated to alanine and the effect

on PknQ-mediated phosphorylation of MupFHA was subsequent-

ly analyzed. We found that the MupFHAR41A and MupFHAS55A

mutants had an approximately 40% and 80% loss of phosphor-

ylation signal compared to wild-type protein, respectively

(Fig. 9D). These results indicate that FHA-mediated interaction

of MupFHA is necessary for its phosphorylation by PknQ. This

cooperation between FHA domain residues and other phosphor-

ylated residues most likely helps in enhancing and regulating the

interaction as well as phosphorylation of MupFHA. Importantly,

these results are also in agreement with the docking studies where

the Arg41 and Ser55 mutations weakened the interaction between

MupFHA and PknQ (Fig. 5E and 5F).

Autophosphorylation of PknQ is regulated by MupFHA
In the M. tuberculosis CDC1551 strain, the FHA domain

containing protein EmbR2 (a structural homologue of EmbR)

affects the kinase activity of PknH. Although EmbR2 is not

phosphorylated by PknH, it inhibits the kinase autophosphory-

lation and inactivates the protein [55]. Similarly, Rv0020c, a FHA

domain containing protein of M. tuberculosis, regulates the cell

wall regulator pseudokinase MviN [17]. In our study, we found

that MupFHA specifically inhibited PknQ activity in the in vitro
kinase assay, indicating that their interaction may have a negative

impact on the kinase activity (Fig. 8A). To further investigate the

effect of the MupFHA interaction on PknQ activity, we used mass

spectrometry to assess changes in phosphorylation patterns. PknQ

was allowed to autophosphorylate in the presence of MupFHA

and then analyzed by mass spectroscopy to determine the

phosphorylation sites. Our results showed that PknQ only

Mycobacterium ulcerans STPK PknQ
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Figure 7. Interaction of MupFHA with PknQ. (A) Affinity pull-down assay of PknQ with MupFHA and its FHA domain mutants. Immobilized His6-
PknQ was allowed to interact with GST-tagged MupFHA and its mutants (MupFHAR41A and MupFHAS55A). GST served as a negative control for the
pull-down assay and showed no interaction, which confirmed the specificity of the PknQ:MupFHA interaction (lane 4). The eluted fractions were
immunoblotted with anti-GST antibodies to assess the levels of interactions. The upper panel shows ponceau-stained membrane and lower panel is
the corresponding immunoblot. As evident from the immunoblot, MupFHA was eluted together with PknQ, while MupFHAR41A and MupFHAS55A

were weakly co-eluted. Purified MupFHA was used as a positive control for immunoblotting (lane 6). (B) Histogram showing ELISA-based interaction
of PknQ with MupFHA and its variants. PknQ strongly interacts with wild-type MupFHA, while the interactions with MupFHAR41A and MupFHAS55A

mutants were significantly decreased (also observed in the pull-down assay). The experiment was performed three times (error bars show standard
error of three values) and GST/no protein were used as negative controls. (C) Graph showing ELISA-based interaction of MupFHA with PknQ and
PknQS170A mutant. Loss of PknQ-Ser170 leads to an attenuated interaction with the MupFHA, indicating the role of this pSer residue in the interaction
with MupFHA. No interaction was observed with PknQK41M, while loss of PknQ-Thr166 did not significantly affect its interaction with MupFHA. The
experiment was performed three times (error bars show S.E. of three values). (D) Graph showing ELISA-based interaction of MupFHA with PknQ,
PknQS170A, PknQT174A and PknQT260A mutants. PknQT174A mutant shows decreased interaction with MupFHA while PknQT260A exhibits comparable
interaction to the MupFHA wild type protein. The experiment was performed three times (error bars show S.E. of three values).
doi:10.1371/journal.pntd.0003315.g007
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autophosphorylates on eight sites in the presence of MupFHA

(Table 4) as compared to 20 sites in the absence of MupFHA

(Table 1). These results confirm that MupFHA acts as a negative

regulator of PknQ kinase activity. Interestingly, the phosphoryla-

tion of Thr166, Ser170 and Thr174 residues was impervious to

MupFHA-based inhibition, underscoring the critical requirement

of activation loop residues in the activity of PknQ. The kinase

activation process involves initial phosphorylation on activation

loop residues and subsequently other sites are phosphorylated to

generate its active conformation. Inhibition by MupFHA may

reduce/abrogate these conformational changes and therefore the

kinase may only be able to reach its fully active conformation

either in the absence of MupFHA or by any other ligand that

might abolish this interaction.

Interestingly, Ser/Thr phosphatases are the only known

negative regulators of STPK-mediated signaling and there is no

such phosphatase encoding gene present on the pMUM001

plasmid. Therefore, MupFHA may help in regulating the activity

of PknQ by limiting phosphorylation to specific substrate(s) and act

as a principal controller of this signaling scheme. However,

MupFHA may only act as an additional regulator of the kinase

activity, while Ser/Thr phosphatase (Mul_0022) encoded in M.
ulcerans genome may control the dephosphorylation as we found

that MupFHA and PknQ get dephosphorylated by M. tuberculosis

Figure 8. Phosphorylation of MupFHA by PknQ. (A) In vitro kinase assay showing phosphorylation of MupFHA by PknQ and PknQK41M. The
upper panel shows a coomassie-stained SDS-PAGE and the lower panel shows the corresponding autoradiogram. MupFHA is phosphorylated by
PknQ while no phosphorylation was observed with PknQK41M. Surprisingly, in the presence of MupFHA, the level of PknQ phosphorylation was
reduced (lanes 1 and 3). (B) Phosphorylation status of MupFHA, co-expressed with PknQ or PknQK41M in E. coli, was estimated using ProQ Diamond
phosphoprotein staining (upper panel). MupFHA co-expressed with PknQ was found to be phosphorylated (MupFHA-P), while no phosphorylation
was observed when it was co-expressed with PknQK41M (MupFHA-UP). The same gel was stained with Sypro Ruby stain (lower panel) to show equal
loading of both samples. (C) The mutants of PknQ, which showed loss in autophosphorylation potential, were used to assess their phosphotransfer
ability on MupFHA. Phosphorylation by wild-type PknQ was taken as 100% and relative phosphorylation was calculated. The experiments were
repeated three times and error bars show S.D. of three values. Representative autoradiograms with MupFHA bands are shown above the histograms
(left and right panels).
doi:10.1371/journal.pntd.0003315.g008
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Ser/Thr phosphatase PstP (which is ,94% similar to M. ulcerans
PstP Mul_0022, Fig. S8).

PknQ-mediated phosphorylation of MupDivIVA regulates
its interaction with MupFHA

STPKs regulate peptidoglycan synthesis and other cell wall

processes in diverse bacteria [56–58]. In M. tuberculosis, PknA

and PknB regulate Wag31, which is a DivIVA domain containing

protein that regulates growth, morphology, polar cell wall

synthesis, and peptidoglycan synthesis [59,60]. In pMUM001,

the kinase gene mup011 (pknQ) and mup012c (encoding the

DivIVA domain-containing protein MupDivIVA, Fig. S9) are

adjacent. In earlier reports of M. tuberculosis STPKs, the proteins

encoded by the neighboring genes of kinases were found to be

Figure 9. Phosphorylation sites of MupFHA and role of FHA domain residues. (A) PAA analysis of MupFHA phosphorylated by PknQ. The
left panel shows ninhydrin-stained phosphoamino acid spots and the right panel shows the corresponding autoradiogram. Phosphorylation was
detected on the spot corresponding to Thr(P). (B) Domain architecture of MupFHA analyzed by SMART software. The four threonine residues (Thr8,
Thr123, Thr210, and Thr214) that were phosphorylated are marked. The two conserved residues in the FHA domain (Arg41 and Ser55) are also marked.
(C) Multiple mutants of MupFHA phosphorylation sites were generated and the loss in phosphorylation by PknQ was assessed. Phosphorylation on
wild-type MupFHA was taken as 100% and relative phosphorylation was calculated. As shown in the histogram, maximum loss was observed when
Thr210 of MupFHA was mutated. The experiment was repeated three times and error bars show S.D. of three individual values. A representative
autoradiogram with MupFHA bands is shown above the histogram. (D) Histogram showing phosphorylation of MupFHA and its FHA domain mutants
by PknQ. Phosphorylation on wild-type MupFHA was taken as 100% and relative phosphorylation was calculated. A significant loss was observed for
the MupFHAS55A mutant compared to MupFHAR41A. The experiment was repeated three times and error bars show S.D. of three values. A
representative autoradiogram with MupFHA bands is shown above the histogram.
doi:10.1371/journal.pntd.0003315.g009

Table 3. Phosphorylated residues of MupFHA identified by in vitro kinase assays.

Phosphorylated tryptic peptide sequence of MupFHA phosphorylated by PknQ Phosphorylated residue(s)

Number of detected
phosphate groups LC/
MS/MS

MQQPTEHpTTPMDSLAPPALVIK [1–22] T8 1

pTEHIEDTSDPK [122–133] T123 1

GHIMWLYEQDIQPDEERpTHVLTATTPVPEITGATK [193–227] T210 1

THVLpTATTPVPEITGATK [210–227] T214 1

Sequences of the phosphorylated peptides identified in MupFHA phosphorylated by PknQ are indicated, as determined by mass spectrometry. Phosphorylated residues
(pT) are shown in bold.
doi:10.1371/journal.pntd.0003315.t003
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specific substrates of those kinases [18,39,61]. To validate this

hypothesis in the case of M. ulcerans, we determined if

MupDivIVA was a PknQ substrate. The mup012c was cloned

into pMAL-c2x and MupDivIVA was purified as a MBP-tagged

fusion protein. We found that PknQ efficiently phosphorylated

MupDivIVA in the in vitro kinase assay while there was no

phosphorylation on MupDivIVA with PknQK41M (Fig. 10A). To

test the authenticity of PknQ-dependent phosphorylation of

MupDivIVA, we co-expressed PknQ or PknQK41M with MupDi-

vIVA in the surrogate host E. coli using compatible expression

vectors (pMAL-c2x-MupDivIVA and pACYCDuet1-PknQ).

Phosphorylation-specific ProQ Diamond staining revealed that

MupDivIVA was phosphorylated only when co-expressed with the

catalytically active kinase (MupDivIVA-P) and not with the kinase-

inactive mutant (MupDivIVA-UP) (Fig. 10B). PAA analysis

showed that phosphorylation was located at serine and threonine

residues of MupDivIVA (Fig. 10C). Mass spectrometry analysis of

MupDivIVA identified six phosphorylation sites (Table 5). Inci-

dentally, all phosphorylation sites were found to be localized

within DivIVA core domain (42–83 aa) (Fig. 10D). Comparison of

MupDivIVA phosphorylation sites with only phosphorylated

threonine residue identified in M. tuberculosis Wag31 revealed

that the three serine phosphorylation sites are present in the same

DivIVA region in both the proteins (Fig. S9). Such strikingly

similar phosphorylation patterns may indicate their conserved

role. The three serine phosphorylation sites were mutagenized to

alanine and were compared for their phosphorylation levels. The

triple mutant MupDivIVAS43/45/49A showed ,70% loss of

phosphorylation, indicating the importance of serine phosphory-

lation (Fig. 10E).

Since the FHA domain recognizes phosphorylated proteins, we

hypothesized that MupFHA may interact with the phosphorylated

MupDivIVA through a three-way regulatory process with PknQ.

To evaluate this hypothesis, the MBP-tagged proteins MupDivIVA-

P (phosphorylated) or MupDivIVA-UP (unphosphorylated) and

GST-tagged MupFHA were used in a sandwich ELISA. We found

that MupDivIVA phosphorylation increased its affinity for

MupFHA (Fig. 11A). Furthermore, there was a considerable loss

in interaction with MupDivIVA when the conserved FHA domain

residues of MupFHA were mutated (Fig. 11B). These results

confirm that the FHA domain mediates the interaction of MupFHA

with phosphorylated MupDivIVA. Therefore, MupFHA interacts

with MupDivIVA through a phosphorylation dependent manner,

which is regulated by PknQ. Further, we used MupDivIVA to probe

pSer binding affinity of MupFHA. We compared the interaction of

MupDivIVA phosphorylation site mutants with MupFHA. M.
tuberculosis Rv0020c was used to compare pThr specificity

(Fig. 11C). This analysis revealed role of phosphorylated serine/

threonine residues in MupFHA:MupDivIVA interaction while only

pThr residues regulate Rv0020c:MupDivIVA interaction.

Discussion

In this study we analyzed the STPK-mediated signaling system

of M. ulcerans, which is the causative agent of Buruli ulcer. M.
ulcerans is a slow growing bacterium (slower than M. marinum
and M. tuberculosis) [62,63] and this slow growth together with

restrictive temperature requirements are the major reasons for our

limited understanding about this important human pathogen and

its signaling systems. Using in silico analysis, we identified 13

STPKs in the M. ulcerans genome that are distinct from its close

relative M. marinum that has 24 STPKs [39]. STPKs of M.
tuberculosis have been classified in five clades [39], and

phylogenetic analysis reveals that M. ulcerans also has individual

STPKs related to all five clades with an over-representation of the

PknF/PknI/PknJ clade. Analyses of STPKs and FHA domain

encoding genes confirmed that M. ulcerans underwent reductive

evolution compared to M. marinum.

The presence of PknQ on the virulence-associated plasmid

pMUM001 makes the M. ulcerans kinome exclusive than M.
tuberculosis and other characterized bacterial kinomes [64]. Three

such plasmids have been identified in the Mycobacterium species,

including pMUM001 (M. ulcerans Agy 99), pMUM002 (M.
liflandii 128FXT), and pMUM003 (M. marinum DL240490)

[65]. These three plasmids are involved in mycolactone synthesis

and most likely in pathogenesis. In addition, all of the plasmids

encode a homolog of STPK (MUP011, MULP_022, and

MUDP_075, respectively), although a frameshift mutation sug-

gests that MUDP_075 is a pseudogene [65]. Notably, these

plasmids have a conserved kinase locus (from the STPK gene

[mup011] to the FHA domain-containing protein [mup018c]),

although pMUM003 is slightly different, most likely due to a

frameshift mutation [65]. Large plasmids, such as pMUM001,

which encode proteins involved in adaptation to new environ-

ments, represent regular theme among many other bacterial

pathogens, such as B. anthracis, Y. pestis, and Shigella [64,66–68].

These species share a nearly identical genome structure and

sequence with other species in their genera, but due to the

Table 4. Phosphorylated residues of PknQ identified by in vitro kinase assays.

Phosphorylated tryptic peptide sequence of autophosphorylated PknQ Phosphorylated residue(s)

Number of detected
phosphate groups
LC/MS/MS

EADLAApTLSHPNIVTVFNR [60–78] T66 1

AFDDTpTLTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164 1

AFDDTpTLpTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164+T166 2

AFDDTpTLpTAIGSLVGTASYAAPEAIQGGSVDQR [159–191] T164+T166+(S170 or T174) 3

IGSLVGpTASYAAPEAIQGGSVDQR [168–191] T174 1

FPpTAGALAGAAR [258–269] T260 1

AALSGQPLPQAPPGGPKpTR [270–288] T287 1

IWAAPPLSYPpTTRPPGI [289–305] T299 1

Sequences of the phosphorylated peptides identified in autophosphorylated PknQ in the presence of MupFHA are indicated, as determined by mass spectrometry.
Phosphorylated residues (pT or pS) are shown in bold.
doi:10.1371/journal.pntd.0003315.t004
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acquisition of virulence-associated plasmids, these bacteria tend to

acclimatize better to new conditions. In the plague causing

bacteria Y. pestis, the virulence-associated plasmid pLB1 encodes a

STPK YpkA that acts as a direct inducer of cell death by

promoting apoptosis and actin depolymerization during infection

[66,69]. Interestingly, other than YpkA, pLB1 encodes several

other antigens, and one of them, the type III secretion apparatus

protein YscD also possesses an FHA domain [70]. The role of a

virulence-associated plasmid in the pathogenesis of M. ulcerans

has previously been described [4,71], but its significance beyond

mycolactone biosynthesis has not been appreciated until now. Our

results demonstrated that multiple proteins encoded on

pMUM001 are regulated by phosphorylation, and therefore this

plasmid may be an important component of signaling cascades in

M. ulcerans.
To understand the significance of PknQ in M. ulcerans, we

elucidated the biochemical characteristics of this kinase. Our

biochemical characterization identified both common and novel

Figure 10. Phosphorylation of MupDivIVA by PknQ and interaction with MupFHA. (A) An in vitro kinase assay showing the
phosphorylation of MupDivIVA by PknQ and PknQK41M. MupDivIVA was phosphorylated by PknQ, while no phosphorylation was observed by
PknQK41M. The upper panel shows coomassie-stained SDS-PAGE and the lower panel shows the corresponding autoradiogram. (B) MupDivIVA was
co-expressed with PknQ or PknQK41M in E. coli and the phosphorylation status of MupDivIVA was estimated using ProQ Diamond phosphoprotein
staining. As shown in the upper panel, MupDivIVA co-expressed with PknQ was phosphorylated (MupDivIVA-P), while no phosphorylation was
observed when it was co-expressed with PknQK41M (MupDivIVA-UP). The same gel was stained with Sypro Ruby stain (lower panel) to show equal
loading of both samples. (C) PAA analysis of MupDivIVA phosphorylated by PknQ. The left panel shows ninhydrin-stained phosphoamino acid spots
and the right panel shows the corresponding autoradiogram. Phosphorylation was detected on the spot corresponding to Thr(P), while minor
phosphorylation was also seen on Ser(P). (D) Domain architecture of MupDivIVA analyzed by SMART domain prediction software. The
phosphorylated residues (Ser43, Ser45, Ser49, Thr59, Thr64, and Thr77) are marked. (E) Relative phosphorylation of MupDivIVA phospho-site mutants
using PknQ. Multiple mutants of MupDivIVA phosphorylation sites were generated and the loss in phosphorylation by PknQ was assessed.
Phosphorylation on wild-type MupDivIVA was taken as 100% and relative phosphorylation was calculated. As shown in the histogram, maximum loss
was observed in MupDivIVAS43/45/49A triple mutant. The experiment was repeated three times and error bars show S.D. of three values.
doi:10.1371/journal.pntd.0003315.g010
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features. PknQ kinase activity is dependent on cofactors such as

Fe2+, Mn2+, Mg2+, and Zn2+. Interestingly, the kinase is activated

by Fe2+, while its activity is inhibited by Fe3+. This inhibition

occurs in the presence of hemin, indicating that PknQ activity is

regulated by iron and its redox state in the cellular milieu. The role

of iron in the regulation of its kinase activity is justified by the

presence of a FepB-like iron transporter domain at the C-terminus

of PknQ. However, further studies are required to validate this

aspect of PknQ signaling.

To understand the activation mechanism of PknQ, several

mutants were generated. We found that the autophosphory-

lation of serine and threonine residues in the activation loop

region regulates PknQ activity. In most M. tuberculosis
STPKs, activity is regulated by two threonine residues present

in the activation loop. Analogous residues (Thr164 and Thr166)

are also phosphorylated in PknQ, but only Thr166 is critical for

autophosphorylation activity. Furthermore, a novel serine

residue, Ser170, was found to regulate the autokinase and

substrate phosphorylation activities of PknQ. In fact, phos-

phorylation of activation loop residues is known to be required

for stabilization of kinases as it can induce specific conforma-

tional changes important in substrate binding [72]. Thus,

further structural studies on PknQ are needed to understand

the role of each phosphoresidue and how this serine

phosphorylation is mechanistically different from threonine

phosphorylation.

We also identified the FHA-domain containing protein

MupFHA as an interacting partner of PknQ. To understand

how MupFHA and PknQ interact, we generated structural models

to establish the basis of MupFHA and PknQ interaction.

Interestingly, the PknQ and MupFHA interaction highlighted

several novel aspects. The structural analyses suggest that PknQ-

MupFHA interaction follows the canonical binding mode of pThr

interaction with specific arginine and serine residues of FHA-

domain. However, MupFHA additionally interacts with a pSer

residue present in the activation loop of PknQ. The structural

models were validated by experimental analysis using ELISA and

affinity pull-down assays, thus establishing the structure-activity

relationship for PknQ. Together, these findings highlighted the

unconventional molecular recognition patterns of kinase:FHA

interactions.

The second unique aspect of the MupFHA:PknQ interaction

is the role of MupFHA as a negative regulator of PknQ. To the

best of our knowledge, this is only the second report of any

bacterial FHA-mediated regulation of the cognate kinase

activity. It has been previously reported that EmbR2 inhibits

PknH phosphorylation [55], but this is restricted to the M.
tuberculosis CDC1551 strain. Nevertheless, MupFHA signal-

ing is unique, as PknH does not phosphorylate EmbR2, while

MupFHA is a substrate of PknQ. This regulation of kinase

activity by FHA domains could have important implications in

the spatio-temporal regulation of cellular signaling. It is

important to note that the critical activation loop residues

were phosphorylated even in the presence of MupFHA, thus

indicating that MupFHA may only regulate the secondary

phosphorylation sites and substrate binding of PknQ. To

understand this inhibition further, we applied mass spectrom-

etry and found a significant reduction in number of

phosphorylation sites. However, the mass spectrometry anal-

ysis did not quantitate the phosphorylation stoichiometry of

each site and we cannot rule out the possibility that the

phosphorylation of key activation loop residues is also

inhibited.

The third aspect of MupFHA signaling is the ability of both

PknQ and MupFHA to interact with another phosphorylated

protein, MupDivIVA. Our results indicate that PknQ phosphor-

ylates MupDivIVA, which is a homolog of M. tuberculosis Wag31,

another DivIVA domain-containing protein [60]. Wag31 in M.
tuberculosis is already known to be phosphorylated by PknB and

PknA and this phosphorylation is critical for cell growth and

peptidoglycan synthesis [59]. Upon phosphorylation, MupDivIVA

also interacts with MupFHA in a phosphorylation-dependent

manner. Therefore, this study provides insights into three-way

regulation involving dynamic signaling between PknQ, MupFHA,

and MupDivIVA.

In conclusion, our study is the first analysis of signaling

pathways in M. ulcerans and has revealed many novel aspects of

signaling systems among Mycobacterium species. Our results

indicate that PknQ could be an important sensor of extracellular

cues in M. ulcerans and can propagate the signals to MupFHA

and MupDivIVA. Moreover, iron and MupFHA may act as

quenchers in this phosphorylation cascade. Taken together, our

data underscore the importance of structure-activity studies in

unraveling the PknQ-MupFHA signaling axis in M. ulcerans and

provide an interesting starting point to work towards understand-

ing this pathogen.

Table 5. Phosphorylated residues of MupDivIVA identified by in vitro kinase assay.

Phosphorylated tryptic peptide sequence of
MupDivIVA phosphorylated by PknQ Phosphorylated residue(s)

Number of detected phosphate
groups LC/MS/MS

CAAPLpTR [54–60] T59 1

CAAPLpTRGYDTESVDR [54–69] T59 1

CAAPLpTRGYDpTESVDR [54–69] T59+T64 2

LIADELQGSDLpSESDIHSITFR [32–53] S43 1

LIADELQGSDLSEpSDIHSITFR [32–53] S45 1

LIADELQGSDLSESDIHpSITFR [32–53] S49 1

GYDpTESVDRFLDR [61–73] T64 1

IAEpTIAR [74–80] T77 1

Sequences of the phosphorylated peptides identified in MupDivIVA phosphorylated by PknQ are indicated, as determined by mass spectrometry. Phosphorylated
residues (pT/pS) are shown in bold.
doi:10.1371/journal.pntd.0003315.t005
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Figure 11. Interaction analysis of MupDivIVA and MupFHA. (A) In vitro interaction of MupFHA with MupDivIVA-P and MupDivIVA-UP by
ELISA. As shown in the graph, MupFHA interacts profoundly with MupDivIVA-P, while weak interaction was observed with MupDivIVA-UP. The
experiment was repeated three times and error bars show S.E. of three values. (B) Histogram showing ELISA-based comparative interaction of
MupFHA and its mutants with MupDivIVA-P. The FHA domain mutants showed less interaction with MupDivIVA-P compared to the wild-type
MupFHA. The experiment was repeated three times and error bars show S.E. of three values. (C) Relative interaction of MupFHA or Rv0020c with
MupDivIVA and its mutants. ELISA was performed to study the interaction of MupDivIVA and its mutants with FHA domain containing proteins.
Relative interaction was calculated considering the interaction of wild type MupDivIVA as 100% (for both MupFHA and Rv0020c). The triple mutant
MupDivIVAS43/45/49A (MupDivIVA-SerTM) shows decreased interaction with MupFHA but not with Rv0020c, thus signifying the binding of MupFHA
(and not Rv0020c) with pSer residues. The experiment was repeated three times and error bars show S.E. of three values.
doi:10.1371/journal.pntd.0003315.g011
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Supporting Information

Figure S1 Domain analysis of M. ulcerans STPKs. Since

the STPKs are not characterized, we used SMART domain

analysis to predict the possible domains present in these STPKs on

the basis of their conserved protein sequences. PknQ possesses N-

terminal catalytic domain and C-terminal extracellular region

containing a periplasmic-binding domain, which also contains

sequences conserved for FepB (such as iron transporter domain).

(TIF)

Figure S2 PknQ domain organization. Multiple sequence

alignment showing conserved Hank’s subdomains present in

PknQ. The alignment was done with M. tuberculosis STPKs

PknB and PknJ. The conserved subdomain sequences have been

highlighted (yellow) and the corresponding domains have been

marked.

(TIF)

Figure S3 Relative phosphorylation efficiencies of PknQ
and its mutants. (A) Histogram shows relative phosphorylation

considering the intensity of PknQWT as 100%. Corresponding

autoradiogram (top) and SDS-PAGE image (lower) is shown. (B)

Histogram shows relative phosphorylation of PknQ phosphoryla-

tion site mutants, considering the intensity of PknQ as 100%. The

experiment was repeated three times and error bars represent S.D.

of three values.

(TIF)

Figure S4 Multiple sequence alignment of MupFHA.
Multiple sequence alignment of amino acid sequences of M.
ulcerans MupFHA, M. tuberculosis Rv0020c and Human

enzymes Rad53-FHA1, Rad53-FHA2 and polynucleotide kinase

(PNK). MupFHA Residues corresponding to the five most

conserved FHA-domain residues are colored red. Additional

MupFHA residues that are involved in binding with PknQ are

colored green.

(TIF)

Figure S5 Docking analysis of MupFHA with PknQ
activation loop. The structure of PknQ phosphorylated at

Ser170 and Thr174 was docked with MupFHA. As clearly evident,

Thr166 does not interact with MupFHA. Figure A shows the whole

complex and B shows enlarged section of interaction locus.

(TIF)

Figure S6 Interaction of MupFHA and PknQ in the
presence of phospho-peptides. Treatment of MupFHA with

pThr or pSer peptides saturates the phosphoprotein binding sites

of the FHA domain. Therefore, PknQ and MupFHA show

decreased interaction after the phospho-peptide treatment as most

of the phosphoprotein binding sites are already saturated. Relative

interaction values were calculated considering 100% interaction in

absence of any peptide. Addition of pSer or pThr peptides leads to

decrease in interaction and thus proves phospho-specific affinity of

MupFHA.

(TIF)

Figure S7 Relative interaction of MupFHA with PrkD
and its mutant PrkDS162A. ELISA was used to demonstrate the

interaction of these proteins and relative interaction was calculated

considering the interaction of PrkDwt as 100%. PrkDS162A shows

considerably less interaction with MupFHA.

(TIF)

Figure S8 Role of Ser/Thr phosphatase. (A) Multiple

sequence alignment (clustalW) of M. ulcerans Ser/Thr phospha-

tase (Mul_pstP) with M. tuberculosis phosphatase (Mtb_pstP). The

alignment shows .90% sequence identity. (B) Dephosphorylation

of PknQ and MupFHA by M. tuberculosis PstP. Autoradiogram

(lower panel) shows loss in phosphorylation signal in presence of

PstP. Corresponding SDS-PAGE image is shown in upper panel.

(TIF)

Figure S9 Multiple sequence alignment (clustalW) of M.
ulcerans MupDivIVA with M. tuberculosis Wag31. The

phosphorylated residues are highlighted in both the sequences. As

shown in the alignment, the 3 phosphorylated serine residues of

MupDivIVA are localized in the same region as that of the only

phosphorylation site of Wag31.

(TIF)

Table S1 Primers and clones used in the study.
(DOCX)

Movie S1 Movie of the PknQ-pSer170/pThr174 and
FHA domain complex simulation for 10 ns (stick repre-
sentation).
(MP4)

Movie S2 Movie of the PknQ-pSer170/Thr174Ala and
FHA domain complex simulation for 10 ns (stick repre-
sentation).
(MP4)

Movie S3 Movie of the PknQ-Ser170Ala/pThr174 and
FHA domain complex simulation for 10 ns (stick repre-
sentation).
(MP4)
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