C. Dye and B. G. Williams, The population dynamics and control of tuberculosis, Science, vol.328, p.20466923, 2010.

H. Murray and J. Errington, Dynamic control of the DNA replication initiation protein DnaA by Soj/ParA, Cell, vol.135, p.18854156, 2008.

B. N. Chaudhuri and R. Dean, The evidence of large-scale DNA-induced compaction in the mycobacterial chromosomal ParB, J Mol Biol, vol.413, p.21839743, 2011.

D. A. Mohl and J. W. Gober, Cell cycle-dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus, Cell, vol.88, p.9054507, 1997.

D. A. Mohl, J. Easter, and J. W. Gober, The chromosome partitioning protein, ParB, is required for cytokinesis in Caulobacter crescentus, Mol Microbiol, vol.42, p.11722739, 2001.

D. Jakimowicz, K. Chater, and J. Zakrzewska-czerwinska, The ParB protein of Streptomyces coelicolor A3 (2) recognizes a cluster of parS sequences within the origin-proximal region of the linear chromosome, Mol Microbiol, vol.45, p.12207703, 2002.

H. J. Kim, M. J. Calcutt, F. J. Schmidt, and K. F. Chater, Partitioning of the linear chromosome during sporulation of Streptomyces coelicolor A3(2) involves an oriC-linked parAB locus, J Bacteriol, vol.182, p.10671452, 2000.

C. Donovan, A. Schwaiger, R. Kramer, and M. Bramkamp, Subcellular localization and characterization of the ParAB system from Corynebacterium glutamicum, J Bacteriol, vol.192, pp.3441-3451, 2010.

A. A. Bartosik, K. Lasocki, J. Mierzejewska, C. M. Thomas, and G. Jagura-burdzy, ParB of Pseudomonas aeruginosa: interactions with its partner ParA and its target parS and specific effects on bacterial growth, J Bacteriol, vol.186, p.15466051, 2004.

A. M. Godfrin-estevenon, F. Pasta, and D. Lane, The parAB gene products of Pseudomonas putida exhibit partition activity in both P. putida and Escherichia coli, Mol Microbiol, vol.43, p.11849535, 2002.

R. A. Lewis, C. R. Bignell, W. Zeng, A. C. Jones, and C. M. Thomas, Chromosome loss from par mutants of Pseudomonas putida depends on growth medium and phase of growth, Microbiology, vol.148, p.11832517, 2002.

A. Harms, A. Treuner-lange, D. Schumacher, and L. Sogaard-andersen, Tracking of chromosome and replisome dynamics in Myxococcus xanthus reveals a novel chromosome arrangement, PLoS Genet, vol.9, p.24068967, 2013.

A. A. Iniesta, ParABS System in Chromosome Partitioning in the Bacterium Myxococcus xanthus, PLoS One, vol.9, p.24466283, 2014.

P. J. Lewis and J. Errington, Direct evidence for active segregation of oriC regions of the Bacillus subtilis chromosome and co-localization with the SpoOJ partitioning protein, Mol Microbiol, vol.25, p.9364919, 1997.

D. C. Lin, P. A. Levin, and A. D. Grossman, Bipolar localization of a chromosome partition protein in Bacillus subtilis, Proc Natl Acad Sci U S A, vol.94, p.9114058, 1997.

C. D. Webb, A. Teleman, S. Gordon, A. Straight, A. Belmont et al., Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis, Cell, vol.88, p.9054506, 1997.

A. M. Breier and A. D. Grossman, Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome, Mol Microbiol, vol.64, p.17462018, 2007.

K. Ireton and P. Cossart, Interaction of invasive bacteria with host signaling pathways, Curr Opin Cell Biol, vol.10, p.9561853, 1998.

M. V. Madiraju, M. Moomey, P. F. Neuenschwander, S. Muniruzzaman, K. Yamamoto et al., The intrinsic ATPase activity of Mycobacterium tuberculosis DnaA promotes rapid oligomerization of DnaA on oriC, Mol Microbiol, vol.59, p.16553890, 2006.

M. H. Qin, M. V. Madiraju, and M. Rajagopalan, Characterization of the functional replication origin of Mycobacterium tuberculosis, Gene, vol.233, p.10375628, 1999.

M. Rajagopalan, M. H. Qin, D. R. Nash, and M. V. Madiraju, Mycobacterium smegmatis dnaA region and autonomous replication activity, J Bacteriol, vol.177, p.7592430, 1995.

A. Zawilak, A. Kois, G. Konopa, A. Smulczyk-krawczyszyn, and J. Zakrzewska-czerwinska, Mycobacterium tuberculosis DnaA initiator protein: purification and DNA-binding requirements, Biochem J, vol.382, p.15137907, 2004.

A. Chauhan, M. V. Madiraju, M. Fol, H. Lofton, E. Maloney et al., Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings, J Bacteriol, vol.188, p.16484196, 2006.

J. Dziadek, M. V. Madiraju, S. A. Rutherford, M. A. Atkinson, and M. Rajagopalan, Physiological consequences associated with overproduction of Mycobacterium tuberculosis FtsZ in mycobacterial hosts, Microbiology, vol.148, p.11932443, 2002.

Q. Huang, P. J. Tonge, R. A. Slayden, T. Kirikae, and I. Ojima, FtsZ: a novel target for tuberculosis drug discovery, Curr Top Med Chem, vol.7, p.17346197, 2007.

M. Rajagopalan, E. Maloney, J. Dziadek, M. Poplawska, H. Lofton et al., Genetic evidence that mycobacterial FtsZ and FtsW proteins interact, and colocalize to the division site in Mycobacterium smegmatis, FEMS Microbiol Lett, vol.250, p.16040206, 2005.

Y. Casart, E. Gamero, S. Rivera-gutierrez, Y. Gonzalez, and L. Salazar, par genes in Mycobacterium bovis and Mycobacterium smegmatis are arranged in an operon transcribed from "SigGC" promoters, BMC Microbiol, vol.8, p.51, 2008.

E. Maloney, M. Madiraju, and M. Rajagopalan, Overproduction and localization of Mycobacterium tuberculosis ParA and ParB proteins, Tuberculosis (Edinb), vol.89, issue.1, pp.65-69, 2009.

C. M. Sassetti, D. H. Boyd, and E. J. Rubin, Genes required for mycobacterial growth defined by high density mutagenesis, Mol Microbiol, vol.48, p.12657046, 2003.

D. Jakimowicz, A. Brzostek, A. Rumijowska-galewicz, P. Zydek, A. Dolzblasz et al., Characterization of the mycobacterial chromosome segregation protein ParB and identification of its target in Mycobacterium smegmatis, Microbiology, vol.153, p.18048919, 2007.

K. Ginda, M. Bezulska, M. Ziolkiewicz, J. Dziadek, J. Zakrzewska-czerwinska et al., ParA of Mycobacterium smegmatis co-ordinates chromosome segregation with the cell cycle and interacts with the polar growth determinant DivIVA, Mol Microbiol, vol.87, pp.998-1012, 2013.

A. Wehenkel, M. Bellinzoni, M. Grana, R. Duran, A. Villarino et al., Mycobacterial Ser/Thr protein kinases and phosphatases: physiological roles and therapeutic potential, Biochim Biophys Acta, vol.1784, p.17869195, 2008.
URL : https://hal.archives-ouvertes.fr/pasteur-00508942

V. Molle and L. Kremer, Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way, Mol Microbiol, vol.75, pp.1064-1077, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02282762

C. M. Kang, D. W. Abbott, S. T. Park, C. C. Dascher, L. C. Cantley et al., The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape, Genes Dev, vol.19, p.15985609, 2005.

M. Thakur and P. K. Chakraborti, GTPase Activity of Mycobacterial FtsZ Is Impaired Due to Its Transphosphorylation by the Eukaryotic-type Ser/Thr Kinase, PknA, J Biol Chem, vol.281, p.17068335, 2006.

K. Sureka, T. Hossain, P. Mukherjee, P. Chatterjee, P. Datta et al., Novel role of phosphorylation-dependent interaction between FtsZ and FipA in mycobacterial cell division, PLoS One, vol.5, p.8590, 2010.

M. J. Canova, L. Kremer, and V. Molle, pETPhos: a customized expression vector designed for further characterization of Ser/Thr/Tyr protein kinases and their substrates, Plasmid, vol.60, pp.149-153, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00315262

V. Molle, J. Leiba, I. Zanella-cleon, M. Becchi, and L. Kremer, An improved method to unravel phosphoacceptors in Ser/Thr protein kinase-phosphorylated substrates, Proteomics, vol.10, pp.3910-3915, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02282736

R. M. Corrales, V. Molle, J. Leiba, L. Mourey, C. De-chastellier et al., Phosphorylation of mycobacterial PcaA inhibits mycolic acid cyclopropanation: consequences for intracellular survival and for phagosome maturation block, J Biol Chem, vol.287, p.22621931, 2012.

N. Slama, J. Leiba, N. Eynard, M. Daffe, L. Kremer et al., Negative regulation by Ser/Thr phosphorylation of HadAB and HadBC dehydratases from Mycobacterium tuberculosis type II fatty acid synthase system, Biochem Biophys Res Commun, vol.412, p.21819969, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02282724

J. Leiba, K. Syson, G. Baronian, I. Zanella-cleon, R. Kalscheuer et al., Mycobacterium tuberculosis maltosyltransferase GlgE, a genetically validated antituberculosis target, is negatively regulated by Ser/Thr phosphorylation, J Biol Chem, vol.288, pp.16546-16556, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02282659

J. Leiba, T. Hartmann, M. E. Cluzel, M. Cohen-gonsaud, F. Delolme et al., A novel mode of regulation of the Staphylococcus aureus catabolite control protein A (CcpA) mediated by Stk1 protein phosphorylation, J Biol Chem, vol.287, p.23132867, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02282664

M. Jackson, D. C. Crick, and P. J. Brennan, Phosphatidylinositol is an essential phospholipid of mycobacteria, J Biol Chem, vol.275, p.10889206, 2000.

G. Karimova, A. Ullmann, and D. Ladant, A bacterial two-hybrid system that exploits a cAMP signaling cascade in Escherichia coli, Methods Enzymol, vol.328, p.11075338, 2000.

S. T. Cole, R. Brosch, J. Parkhill, T. Garnier, C. Churcher et al., Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence, Nature, vol.393, p.9634230, 1998.

Y. Av-gay and M. Everett, The eukaryotic-like Ser/Thr protein kinases of Mycobacterium tuberculosis, Trends Microbiol, vol.8, p.10785641, 2000.

A. Walburger, A. Koul, G. Ferrari, L. Nguyen, C. Prescianotto-baschong et al., Protein kinase G from pathogenic mycobacteria promotes survival within macrophages, Science, vol.304, p.15155913, 2004.

K. G. Papavinasasundaram, B. Chan, J. H. Chung, M. J. Colston, E. O. Davis et al., Deletion of the Mycobacterium tuberculosis pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice, J Bacteriol, vol.187, p.16077122, 2005.

V. Molle, A. K. Brown, G. S. Besra, A. J. Cozzone, and L. Kremer, The condensing activities of the Mycobacterium tuberculosis type II fatty acid synthase are differentially regulated by phosphorylation, J Biol Chem, vol.281, p.16873379, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00314933

R. Veyron-churlet, V. Molle, R. C. Taylor, A. K. Brown, G. S. Besra et al., The Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III activity is inhibited by phosphorylation on a single threonine residue, J Biol Chem, vol.284, pp.6414-6424, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00373656

P. Barthe, C. Roumestand, M. J. Canova, L. Kremer, C. Hurard et al., Dynamic and structural characterization of a bacterial FHA protein reveals a new autoinhibition mechanism, Structure, vol.17, pp.568-578, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02282845

R. Veyron-churlet, I. Zanella-cleon, M. Cohen-gonsaud, V. Molle, and L. Kremer, Phosphorylation of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein reductase MabA regulates mycolic acid biosynthesis, J Biol Chem, vol.285, pp.12714-12725, 2010.

M. J. Canova, L. Kremer, and V. Molle, The Mycobacterium tuberculosis GroEL1 chaperone is a substrate of Ser/Thr protein kinases, J Bacteriol, vol.191, pp.2876-2883, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02282849

R. Plocinska, L. Martinez, P. Gorla, E. Pandeeti, K. Sarva et al., Mycobacterium tuberculosis MtrB Sensor Kinase Interactions with FtsI and Wag31 Proteins Reveal a Role for MtrB Distinct from That Regulating MtrA Activities, J Bacteriol, vol.196, pp.4120-4129, 2014.

A. Dasgupta, P. Datta, M. Kundu, and J. Basu, The serine/threonine kinase PknB of Mycobacterium tuberculosis phosphorylates PBPA, a penicillin-binding protein required for cell division, Microbiology, vol.152, p.16436437, 2006.

M. U. Shiloh and P. A. Champion, What can mycobacterial models teach us about Mycobacterium tuberculosis pathogenesis?, Curr Opin Microbiol, vol.13, pp.86-92, 2010.