F. Bonahon, The geometry of Teichmüller space via geodesic currents, Invent. Math, vol.92, issue.1, pp.139-162, 1988.

J. Danciger, F. Guéritaud, and F. Kassel, Margulis spacetimes via the arc complex, Invent. Math, vol.204, issue.1, pp.133-193, 2016.

D. Dumas, A. Lenzhen, K. Rafi, and J. Tao, Coarse and fine geometry of the Thurston metric, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01389498

F. Guéritaud and F. Kassel, Maximally stretched laminations on geometrically finite hyperbolic manifolds, Geom. Topol, vol.21, issue.2, pp.693-840, 2017.

Y. Huang and A. Papadopoulos, Optimal Lipschitz maps on bordered hyperbolic surfaces and the Thurston metric theory of Teichmüller space

Y. Huang and Z. Sun, McShane identities for higher Teichmüller theory and the GoncharovShen potential, 2018.

A. Lenzhen, K. Rafi, and J. Tao, The shadow of a Thurston geodesic to the curve graph, J. Topol, vol.8, pp.1085-1118, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01044489

A. Papadopoulos, Sur le bord de Thurston de l'espace de Teichmüller d'une surface non compacte, Math. Ann, vol.282, pp.353-359, 1988.

L. Liu, A. Papadopoulos, W. Su, and G. Théret, On length spectrum metrics and weak metrics on Teichmüller spaces of surfaces with boundary, Ann. Acad. Sci. Fenn. Math, vol.35, issue.1, pp.255-274, 2010.

A. Papadopoulos and G. Théret, Shortening all the simple closed geodesics on surfaces with boundary, Proc. Amer. Math. Soc, vol.138, pp.1775-1784, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00389344

A. Papadopoulos and G. Théret, Some Lipschitz maps between hyperbolic surfaces with applications to Teichmüller theory, Geom. Dedicata, vol.150, issue.1, pp.233-247, 2011.

A. Papadopoulos and S. Yamada, Deforming Hexagons and the arc and the Thurston metric on Teichmüller space, Monatsh. Math, vol.172, issue.1, pp.97-120, 2017.

K. Rafi, Hyperbolicity in Teichmüller space, Geom. Topol, vol.18, issue.5, pp.3025-3053, 2014.

W. Thurston, Minimal stretch maps between hyperbolic surfaces, 1986.

C. Walsh, The horoboundary and isometry group of Thurston's Lipschitz metric, Handbook of Teichmuller theory, IRMA Lect. Math. Theor. Phys, vol.IV, 2014.