M. A. Green, Solar cell efficiency tables (version 51), Prog. Photovolt. Res. Appl, vol.26, pp.3-12, 2018.

, Solar Frontier achieves world record thin-film solar cell efficiency of 22, 9%. Solar. Frontier, Accessed, 2017.

C. Chen, Characterization of basic physical properties of Sb 2 Se 3 and its relevance for photovoltaics, Front, Optoelectron, vol.10, pp.18-30, 2017.

C. Yuan, Rapid thermal process to fabricate Sb 2 Se 3 thin film for solar cell application, Sol. Energy, vol.137, pp.256-260, 2016.

K. Shen, Mechanisms and modification of nonlinear shunt leakage in Sb 2 Se 3 thin film solar cells, Sol. Energy Mater. Sol. Cells, vol.186, pp.58-65, 2018.

M. Sarah, Antimony selenide absorber thin films in all-chemically deposited solar cells, J. Electrochem. Soc, vol.156, pp.327-332, 2009.

Y. Zhou, Solution-processed antimony selenide heterojunction solar cells, Adv. Energy Mater, vol.4, pp.1079-1083, 2014.

X. Liu, Thermal evaporation and characterization of Sb 2 Se 3 thin film for substrate Sb 2 Se 3 /CdS solar cells, ACS Appl. Mater. Interfaces, vol.6, pp.10687-10695, 2014.

M. Leng, Selenization of Sb 2 Se 3 absorber layer: an efficient step to improve device performance of CdS/Sb 2 Se 3 solar cells, Appl. Phys. Lett, vol.105, p.83905, 2014.

X. Liu, Improving the performance of Sb 2 Se 3 thin film solar cells over 4% by controlled addition of oxygen during film deposition, Prog. Photovolt. Res. Appl, vol.23, pp.1828-1836, 2015.

Y. Zhou, Thin-film Sb 2 Se 3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries, Nat. Photonics, vol.9, pp.409-415, 2015.

L. Wang, Stable 6%-efficient Sb 2 Se 3 solar cells with a ZnO buffer layer, Nat. Energy, vol.2, p.17046, 2017.

X. Wen, Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency, Nat. Commun, vol.9, p.2179, 2018.

Z. Q. Li, 2%-efficient core-shell structured antimony selenide nanorod array solar cells, Nat. Commun, vol.9, p.125, 2019.

A. Chiril?, Potassium-induced surface modification of Cu(In,Ga)Se 2 thin films for high-efficiency solar cells, Nat. Mater, vol.12, pp.1107-1111, 2013.

L. Kranz, Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil, Nat. Commun, vol.4, p.2306, 2013.

W. Wang, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency, Adv. Energy Mater, vol.4, p.1301465, 2014.

N. J. Jeon, Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells, Nat. Mater, vol.13, pp.897-903, 2014.

J. H. Shi, Fabrication of Cu(In,Ga)Se 2 thin films by sputtering from a single quaternary chalcogenide target, Prog. Photovolt. Res. Appl, vol.19, issue.2, pp.160-164, 2011.

C. Yan, Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment, Nature Energy, vol.3, issue.9, p.764, 2018.

G. X. Liang, Thermally induced structural evolution and performance of Sb 2 Se 3 films and nanorods prepared by an easy sputtering method, Sol. Energy Mater. Sol. Cells, vol.174, pp.263-270, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01619420

J. H. Tao, Investigation of electronic transport mechanisms in Sb 2 Se 3 thin-film solar cells, Sol. Energy Mater. Sol. Cells, vol.197, pp.1-6, 2019.

J. H. Tao, Solution-processed SnO 2 interfacial layer for highly efficient Sb 2 Se 3 thin film solar cells, Nano Energy, vol.60, pp.802-809, 2019.

C. Chen, Efficiency improvement of Sb 2 Se 3 solar cells via grain boundary inversion, ACS Energy Letters, vol.3, issue.10, pp.2335-2341, 2018.

W. H. Wang, Promising Sb 2 (S,Se) 3 solar cells with high open voltage by application of a TiO 2 /CdS double buffer layer, Solar RRL, vol.2, issue.11, p.1800208, 2018.

Z. Q. Li, Sb 2 Se 3 thin film solar cells in substrate configuration and the back contact selenization, Sol. Energy Mater. Sol. Cells, vol.161, pp.190-196, 2017.

X. M. Wang, Interfacial engineering for high efficiency solution processed Sb 2 Se 3 solar cell, Sol. Energy Mater. Sol. Cells, vol.189, pp.5-10, 2019.

D. B. Li, Stable and efficient CdS/Sb 2 Se solar cells prepared by scalable close space sublimation, Nano Energy, vol.49, pp.346-353, 2018.

G. Li, Improvement in Sb2Se3 solar cell efficiency through band Alignment engineering at the buffer/absorber interface, Appl. Mater. Interfaces, vol.11, pp.828-834, 2019.

X. B. Hu, Improving the efficiency of Sb 2 Se 3 thin-film solar cells by post annealing treatment in vacuum condition, Sol. Energy Mater. Sol. Cells, vol.187, pp.170-175, 2018.

Y. Zhou, Buried homojunction in CdS/Sb 2 Se 3 thin film photovoltaics generated by interfacial diffusion, Appl. Phys. Lett, vol.111, issue.1, p.13901, 2017.

O. S. Hutter, 6% efficient antimony selenide solar cells using grain structure control and an organic contact layer, Sol. Energy Mater. Sol. Cells, vol.6, pp.177-181, 2018.

H. S. Duan, The role of sulfur in solution-processed Cu 2 ZnSn(S,Se) 4 and its effect on defect properties, Adv. Funct. Mater, vol.23, issue.11, pp.1466-1471, 2013.

J. J. Li, Tailoring the defects and carrier density for beyond 10% efficient CZTSe thin film solar cells, Sol. Energy Mater. Sol. Cells, vol.159, pp.447-455, 2017.

X. S. Liu, Enhanced Sb 2 Se 3 solar cell performance through theory-guided defect control, Prog. Photovolt. Res. Appl, vol.25, issue.10, pp.861-870, 2017.