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Economic optimization of full-sib test 
group size and genotyping effort in a breeding 
program for Atlantic salmon
Kasper Janssen1* , Helmut W. Saatkamp2, Mario P. L. Calus1 and Hans Komen1

Abstract 

Background: Breeding companies may want to maximize the rate of genetic gain from their breeding program 
within a limited budget. In salmon breeding programs, full-sibs of selection candidates are subjected to performance 
tests for traits that cannot be recorded on selection candidates. While marginal gains in the aggregate genotype from 
phenotyping and genotyping more full-sibs per candidate decrease, costs increase linearly, which suggests that there 
is an optimum in the allocation of the budget among these activities. Here, we studied how allocation of the fixed 
budget to numbers of phenotyped and genotyped test individuals in performance tests can be optimized.

Methods: Gain in the aggregate genotype was a function of the numbers of full-sibs of selection candidates that 
were (1) phenotyped in a challenge test for sea lice resistance (2) phenotyped in a slaughter test (3) genotyped in 
the challenge test, and (4) genotyped in the slaughter test. Each of these activities was subject to budget constraints. 
Using a grid search, we optimized allocation of the budget among activities to maximize gain in the aggregate 
genotype. We performed sensitivity analyses on the maximum gain in the aggregate genotype and on the relative 
allocation of the budget among activities at the optimum.

Results: Maximum gain in the aggregate genotype was €386/ton per generation. The response surface for gain in 
the aggregate genotype was rather flat around the optimum, but it curved strongly near the extremes. Maximum 
gain was sensitive to the size of the budget and the relative emphasis on breeding goal traits, but less sensitive to the 
accuracy of genomic prediction and costs of phenotyping and genotyping. The relative allocation of budget among 
activities at the optimum was sensitive to costs of phenotyping and genotyping and the relative emphasis on breed-
ing goal traits, but was less sensitive to the accuracy of genomic prediction and the size of the budget.

Conclusions: There is an optimum allocation of budget to the numbers of full-sibs of selection candidates that are 
phenotyped and genotyped in performance tests that maximizes gain in the aggregate genotype. Although poten-
tial gains from optimizing group sizes and genotyping effort may be small, they come at no extra cost.

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
When the genetic level of a breeding stock from a breed-
ing company is superior to that of its competitors, the 
breeding company may want to sell its products at a 
premium price or to increase its market share [1, 2]. 
Since genetic gain is cumulative, even small differences 
in the rate of genetic gain between breeding companies 

become significant over time. In Atlantic salmon breed-
ing, the sale price of eggs does not vary much between 
breeding companies because either the differences in the 
genetic level of eggs are small or these differences are not 
reflected in the sale price of eggs. In contrast to the sale 
price of eggs, market shares vary a lot between salmon 
breeding companies [3]. The turnover of a breeding 
company increases with its market share. If a breeding 
program has a fixed cost, a larger turnover will gener-
ate higher profits. Assuming that the market share of a 
breeding company is related, at least partly, to the genetic 
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level of its products, there is a clear incentive to maxi-
mize the rate of genetic gain from the breeding program 
with regard to the limited annual budget that is available.

Salmon breeding programs often use nested mating 
designs to create both full- and half-sib groups. Since in 
salmon, family sizes are large, a portion of the members 
of each family is used as selection candidates, while the 
remaining individuals are subjected to dedicated perfor-
mance tests for traits that cannot be recorded on selec-
tion candidates, such as disease resistance and slaughter 
traits. These large family sizes allow for within-family 
genomic selection, with the use of pedigree information 
to predict family means and genomic information to 
exploit within-family variation, i.e. to estimate the Men-
delian sampling terms [4]. In pedigree-based selection, 
accuracy increases at a declining rate with the number of 
test individuals that are phenotyped, such that marginal 
gains in the aggregate genotype decrease. Similarly, with 
genomic selection, accuracy increases at a declining rate 
with the number of test individuals that are genotyped 
[4, 5], such that marginal gains in the aggregate geno-
type decrease. In contrast, the cost of a performance test 
increases (more or less) linearly with the number of test 
individuals that are phenotyped and the number of test 
individuals that are genotyped. When the annual budget 
of a breeding company that is available for its breeding 
program is limited, the budget allocated to phenotyping 
and genotyping individuals in one performance test is at 
the expense of the budget for an alternative performance 
test. In other words, such a limited budget has to be allo-
cated among multiple competing activities. Since each 
activity has decreasing marginal returns, we hypothesize 
that there is an optimum allocation of the budget.

Here, we studied how allocation of a budget to the num-
ber of test individuals that are phenotyped and the num-
ber of test individuals that are genotyped for performance 
tests can be optimized in a breeding program for Atlan-
tic salmon. Furthermore, we evaluated the sensitivity of 
maximum gain in the aggregate genotype and the sen-
sitivity of the relative allocation of budget among activi-
ties at the optimum level to (1) the cost of phenotyping in 
a performance test (2) the cost of genotyping (3) the size 
of the budget, and (4) the relative emphasis on breeding 
goal traits. In the "Discussion" section, we elaborate on the 
mechanisms that underlie optimum allocations strategies 
and their implications for any breeding program that uses 
performance tests on sibs of selection candidates.

Methods
The simulated nucleus breeding program was based on a 
simplified version of the real-life breeding program of the 
Norwegian breeding company SalmoBreed, as it was set-up 
until 2016 (Håvard Bakke, pers. comm. 2018). The breeding 

program in our analyses used two performance tests: one 
challenge test for resistance to sea lice (Lepeophtheirus sal-
monis), and one slaughter test. Our aim was to maximize 
gain in the aggregate genotype ( �H ) by optimizing alloca-
tion of the budget to phenotyping and genotyping in each 
performance test. First, we describe the optimization and 
sensitivity analyses, and then we provide a detailed descrip-
tion of the prediction of �H.

Optimization
�H is a function of the number of phenotyped full-sibs per 
family in the challenge test ( n1 ), the number of phenotyped 
full-sibs per family in the slaughter test ( n2 ), the number of 
genotyped full-sibs per family in the challenge test ( n3 ), and 
the number of genotyped full-sibs per family in the slaugh-
ter test ( n4 ). Three hundred families were phenotyped each 
generation. Females were selected based on estimated 
breeding values (EBV) that were derived from pedigree 
data only. Males were selected in a two-step procedure: 
selection was based first on pedigree EBV and second on 
genomic EBV. Males from only 120 families were selected 
in the first step, such that the number of families used for 
genotyping was 120. This two-step selection strategy allows 
major savings in the costs for genotyping, while it has little 
effect on �H [6]. Costs were assumed to be linearly related 
to the number of records. Costs were €15/fish for n1 , €60/
fish for n2 , and €20/fish for genotyping ( n3 and n4 ). The 
annual budget for performance tests was €444,000, which 
was based on the budget necessary to phenotype (300 fam-
ilies) and genotype (120 families) 20 full-sibs per family in 
the challenge test and 15 full-sibs per family in the slaugh-
ter test, as in the SalmoBreed breeding program. Using for-
mal notation, the optimization problem was defined as:

 where n is a vector with elements ni ( i = 1, 2, 3, 4 ), 300 
is the number of full-sib families that were phenotyped, 
and 120 is the number of full-sib families that were 
genotyped. To solve this optimization problem, we per-
formed a grid search. First, we computed all possible n 
at which the budget was exhausted, i.e. when there was 
no more budget available to increase any of the activi-
ties by one unit. This was done by first generating the 
sequence n1,i , where i = 0, . . . , imax , with imax being the 
maximum within the budget constraint. For each n1,i , a 
sequence n2,ij was generated, where j = 0, . . . , jmax , with 
jmax being the maximum for the remaining budget. For 
each n1,i and n2,ij , a sequence n3,ijk was generated, where 
k = 0, . . . , kmax , with kmax being the maximum for the 

max�H(n)

subject to ni ∈ Z≥0, i = 1, 2, 3, 4

300× (15n1 + 60n2)+ 120× 20× (n3 + n4) ≤ 444,000

n1 ≥ n3

n2 ≥ n4
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remaining budget, provided that it  did not exceed n1,i . 
Finally, for n1,i , n2,ij , and n3,ijk , a sequence n4,ijkl was 
generated, where l = 0, . . . , lmax , with lmax being the 
maximum for the remaining budget, provided that 
it did not exceed n2,ij . Any n for which the budget was 
not exhausted was removed. We predicted �H for each 
remaining n . The point at which �H reached a maximum 
returned the optimal solution for n . The maximum �H 
and the solutions for n and ni are indicated by an asterisk 
as: �H∗ , n∗ , and n∗i .

First, as a simple example, we performed the optimiza-
tion for pedigree-based selection. In this case, only n1 and 
n2 were allowed to vary, while n3 and n4 were set to zero, 
and �H was predicted for one-step truncation selec-
tion on EBV. Then, we performed the optimization for 
genomic selection, where n1 , n2 , n3 and n4 were allowed 
to vary. When allocation of the budget was optimized 
for genomic selection, we estimated the shadow value of 
the budget constraint, defined as the gain in the objective 
function �H from a marginal relaxation of the budget 
constraint. Because we subsequently found that solutions 
for n3 and n4 were fixed at the boundary, i.e. n∗3 = n∗1 and 
n∗4 = n∗2 , the shadow value was estimated as the increase 
in �H per euro cost of a simultaneous increase by one 
unit of either n∗1 and n∗3 , or n∗2 and n∗4.

In sensitivity analyses, we evaluated the sensitivity of 
�H∗ and the relative allocation of budget among activities 
at n∗ to (1) the accuracy of genomic prediction, by reduc-
ing the accuracy (Eq. 1) by 10 or 20%; (2) the cost of phe-
notyping in the challenge test, by increasing the cost for 
n1 from half to double the original cost (€15/fish) in steps 
of €7.5/fish; (3) the cost of phenotyping in the slaughter 
test, by increasing the cost for n2 from half to double the 
original cost (€60/fish) in steps of €30/fish; (4) the cost of 
genotyping, by increasing the cost for n3 and n4 from half 
to double the original cost (€20/fish) in steps of €10/fish; 
(5) the size of the budget, by increasing the budget from 
zero to double the original budget (€444,000) in steps of 
€111,000; and (6) the relative emphasis on breeding goal 
traits, by changing the economic value of sea lice resist-
ance ( R0) by a factor 0.5, 1.5, or 2. In an additional sce-
nario, we used the desired gains [7] to maintain fillet fat 
content (FilletFat) close to its current level for the index 
corresponding to n′ = [20 15 20 15] by deriving the cor-
responding breeding goal weight for FilletFat by iteration. 
Then, this weight was used in the breeding goal to find 
�H∗ in the grid search as before.

To speed up the optimizations, we excluded any n 
from the grid search that was unlikely to be n∗ , based on 
previous results. For example, when the original budget 
was doubled, there were more than  105 possible n that 
exhausted the budget, but we expected any new n∗i  to be 
at least as high as in the solution for the original budget. 

This reduced the possible n to only 3017 options, thereby 
reducing computation time substantially.

Prediction of gain with the aggregate genotype
The actual SalmoBreed breeding program was more 
complex than presented in this paper. In this section, we 
describe only the aspects of the breeding program that 
were relevant to the prediction of �H in the context of 
this study. The breeding goal included thermal growth 
coefficient (TGC), thermal feed intake coefficient (TFC), 
fillet yield (FY), and R0 for sea lice. TGC is a measure 
of growth rate that accounts for heterogeneity in smolt 
weight, rearing period and temperature. TFC is the TGC-
analogue for feed intake [8]. FY is the ratio of fillet weight 
to whole round weight in %. R0 is the rate at which sea 
lice spread across the farmed population, which, com-
bined with the management strategy, determines disease 
prevalence [9].

Economic values for TGC and TFC were derived using 
an adapted version of the bio-economic model described 
in Janssen et al. [8]. The bio-economic model accounted 
for quota on the number of smolts stocked per cage 
and on biomass at the farm level. The number of smolts 
stocked per cage was optimized before and after simu-
lated changes in trait levels. The economic value of FY 
was derived by substituting (FY/100%)× fillet price for 
the price of fish in the profit equation of Janssen et al. [8], 
such that the economic value equalled the ratio of the sale 
price of fish over FY. Survival was ignored in the breeding 
goal, because response in this trait is difficult to predict 
accurately, while its economic effect was expected to be 
small [10]. Parameters used to predict �H are in Table 1.

Year classes in the SalmoBreed breeding program 
overlapped, resulting in a 3.7  year generation interval. 
Here, we predicted �H per year class, assuming that 
the 4 year classes in the nucleus were discrete. An over-
view of the annual selection procedure is in Fig. 1. Each 
year class consisted of 150 males and 300 females. Each 
male was mated to two females, such that 300 full-sib 
families were produced. Families were reared in sepa-
rate tanks until tagging. After tagging, each full-sib 
family was divided into three groups. From each family, 
a group of 170 fish was reared as selection candidates, 
a group of n1 full-sibs was subjected to a challenge test 
for sea lice resistance, and a group of n2 full-sibs was 
subjected to a slaughter test. All selection candidates 
had a phenotypic record for TGC. In the challenge test, 
lice density [14] was recorded to estimate breeding val-
ues for R0.

In the slaughter test, TGC, deheaded gutted yield 
(DGY), fillet fat content (FilletFat), and visceral fat score 
(ViscFat) were recorded. DGY was the ratio of deheaded 
gutted weight to whole round weight in %, and was used 
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to predict FY. FilletFat and VIscFat were used to pre-
dict TFC. From the challenge test, a group of n3 full-sibs 
per family was genotyped, and from the slaughter test, 
a group of n4 full-sibs per family was genotyped. Geno-
typing was performed on a 55k SNP array. At the time 
of selection, 120 candidates per full-sib family had sur-
vived and reached sexual maturity. Their sex ratio was 
1:1. Females were selected in a single step based on pedi-
gree EBV, obtained using best linear unbiased predic-
tion (BLUP). Males were selected in two steps: selection 
was first on pedigree EBV using BLUP, and second on 
genomic EBV using within-family genomic selection, as 
described in Lillehammer et  al. [4]. Genomic selection 
was applied only in males and not in females, because 
its impact was strongest on males due their higher selec-
tion intensity and because nucleus males were also used 

to fertilize females in the multiplier tier. Females in the 
multiplier tier, about 10,000 in total, were mass-selected 
from about 50,000 female offspring of the very best sires 
and dams of the nucleus.

Heritabilities and genetic and phenotypic correlations 
used are in Table  2. Genetic parameters for TGC and 
TFC were estimated from a simulated bivariate normal 
distribution for gain in bodyweight and cumulative feed 
intake at harvest, as in Janssen et  al. [10]. The underly-
ing assumptions were a genetic coefficient of variation of 
bodyweight of 0.15 and a heritability of 0.36 [15]. For the 
regression of cumulative feed intake at harvest on gain in 
bodyweight, a slope of 1.17 g feed/g gain, an intercept of 
145 g feed, a genetic correlation of 0.70, and phenotypic 
correlation of 0.60 were assumed. For R0 , genetic param-
eters were unknown, but we assumed that a change in 

Table 1 Parameters used for each trait to predict the gain in the aggregate genotype

TGC  thermal growth coefficient  (g1/3/(day degrees × 1000)), TFC thermal feed intake coefficient  (g0.317/(day degrees × 1000)), R0 for sea lice, FY fillet yield (%), DGY 
deheaded gutted yield (%), FilletFat fillet fat content (%), ViscFat visceral fat score (from 0 to 4)
a Genetic standard deviation
b Janssen et al. [9]
c Powell et al. [11]
d Haffray et al. [12]
e Do [13]

Trait Baseline trait level 
(trait unit)

Phenotypic variance 
(trait  unit2)

σA (trait unit)a Economic value (€/trait unit/
ton production)

Standardized economic 
value (€/σA/ton 
production)

TGC 2.92 0.127 0.208 1780 370

TFC 2.76 0.322 0.272 − 1100 − 299

R0 4.7 11.6 1.74 − 65b − 113

FY 69c 4.0d 1.18 63.8 75.5

DGY 80c 2.25d 1.10 – –

FilletFat 17e 4.4e 1.36 – –

ViscFat 3.0e 0.49e 0.336 – –

Selection

Step 2 – 120  full-sib families

Step 1 – 300 full-sib families

Selection candidates
60♂/family
60♀/family

Phenotyping 
challenge test
full-sibs/family

Phenotyping 
slaughter test
full-sibs/family

Preselected males
4000♂

Genotyping
challenge test
full-sibs/family

Genotyping
slaughter test
full-sibs/family

300♀

150♂

Fig. 1 Schematic overview of selection of parents in the nucleus
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the EBV for lice density in the challenge test would give 
a proportional change in R0 [9, 16]. Thus, we used the 
same phenotypic coefficient of variation and heritability 
as for lice density [14]. This is equivalent to including lice 
density in the selection index and R0 in the breeding goal, 
while assuming a genetic correlation of 1 between the 
two traits.

Breeding programs that apply genomic selection can be 
simulated deterministically by using extended selection 
index theory, as outlined by Dekkers [18]. For each trait 
for which phenotypes were recorded (TGC, R0 , DGY, 
FilletFat, and ViscFat), an additional genomic trait was 
added to the selection index. Each of these genomic traits 
had a heritability of 0.999, a phenotypic variance of 1, 
and a genetic correlation with the corresponding breed-
ing goal trait equal to the expected accuracy of genomic 
prediction for that trait ( rGS ). Hayes et al. [19] developed 
deterministic equations to estimate rGS from full- and 
half-sib records, but here we ignored the information 
from half-sib records, because they were not available for 
some of the preselected males. The genomic prediction 
accuracy for m full-sib records was estimated as in [19], 
using:

where Me is the effective number of chromosome seg-
ments that segregate independently in the population, 
which was estimated from the variation in kinship among 
full-sibs ( V (PFS) ) as in Hayes et al. [19]:

(1)rGS =

√

0.5×m

m− 1+ 2/h2
+

0.5×m

m+ 4 ×Me/h2

(2)Me =
1

8× V (PFS)

where V (PFS) was estimated as in Hill [20]:

where L is the total length of the genome in Morgan (M), 
Nchr. is the number of chromosomes, and li is the length 
of chromosome i . For Atlantic salmon, L = 3.9 M in 
males and L = 19.83 M in females, Nchr. is equal to 29, 
and values for li were obtained from Moen et  al. [21]. 
Me was calculated separately for each sex and averaged, 
resulting in Me = 37.5.

To compute rGS for TGC, we made the simplifying 
assumption that the number of preselected male selection 
candidates was the same for each of the 120 remaining 
families, such that the number of genotyped selection can-
didates per family was 33, i.e. 32 full-sibs per candidate. An 
additional n4 full-sibs per family from the slaughter test 
had records for TGC, hence rGS for TGC was computed 
for 32+ n4 full-sibs per family. For R0 , rGS was based on 
records for n3 full-sibs per family. For DGY, FilletFat, and 
ViscFat, rGS was based on records for n4 full-sibs per fam-
ily. Correlations of genomic traits with other traits were 
derived using path coefficients [18]. A table with all the 
correlations for the optimum index for genomic selection 
is in Appendix. As an example, for DGY with n4 = 16

rGS =
√

0.5×16
16−1+2/0.542

+ 0.5×16
16+4×37.5/0.542

= 0.674 (Eq. 1).

Thus, the corresponding index included a genomic trait 
with a heritability of 0.999, a phenotypic variance of 1, a 
genetic correlation with DGY of 0.674, a phenotypic cor-
relation with DGY of 0.674 ×

√
0.54 = 0.50 , a genetic 

correlation with FY of 0.674 × 0.97 = 0.65 , and a pheno-
typic correlation with FY of 0.65×

√
0.35 = 0.39.

Gain in the aggregate genotype, �H , was predicted 
by deterministic simulation of two-step selection in 

(3)V (PFS) =
4 × L− Nchr. +

∑Nchr.
i=1 e−4×li

64 × L2

Table 2 Genetic correlations (below diagonal), phenotypic correlations (above diagonal), and  heritability estimates 
(diagonal) for the traits used

TGC  thermal growth coefficient  (g1/3/(day degrees × 1000)), TFC thermal feed intake coefficient  (g0.317/(day degrees × 1000)), R0 for sea lice, FY fillet yield (%), DGY 
deheaded gutted yield (%), FilletFat fillet fat content (%), ViscFat visceral fat score (from 0 to 4)
a Kause et al. [17]
b Gjerde et al. [14]
c Haffray et al. [12]
d Do [13]

TGC TFC R0 FY DGY FilletFat ViscFat

TGC 0.34 0.56 0 0 0 0.07a 0.13a

TFC 0.69 0.23 0 0 0 0.06a 0.09a

R0 0 0 0.26b 0 0 0 0

FY 0 0 0 0.35c 0.71c 0 0

DGY 0 0 0 0.97c 0.54c 0 0

FilletFat − 0.26a 0.41a 0 0 0 0.42d 0.01d

ViscFat 0.29a 0.09a 0 0 0 0.01d 0.23d
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SelAction [22]. Selected proportions ( p ) for males 
were set to p = 4000

18,000 = 0.22 in the first step and to 
p = 150

4000 = 0.038 in the second step, and for females 
p = 0.999 in the first step and p = 300

18,000 = 0.017 in the 
second step. For all non-genomic traits, the proportion 
of phenotypic variance explained by the effects that were 
common to full-sibs ( c2) was set to 0.05. Selection indices 
are in Table 3. The rate of inbreeding was not evaluated, 
because it is not computed by SelAction for two-step 
selection and, in reality, generations overlapped.

Results
Pedigree‑based selection
When the objective was to maximize �H with pedi-
gree-based selection (Table  4), the optimum number of 
phenotyped full-sibs per family was equal to 22 in the 
challenge test ( n∗1 ) and 19 in the slaughter test ( n∗2 ). �H∗ 
was equal to €351/ton, corresponding to €95/ton per year 
for a 3.7 year generation interval, of which 81% was due 
to improvement of TGC and TFC. The combined effect 
of gains in TGC and TFC reduced feed conversion ratio 
(FCR) from 1.20 to 1.08 (results from the bio-economic 
model). The gain in R0 corresponds to an expected reduc-
tion in treatment frequency from 3.7 to 3.3 treatments 
per production cycle, while the average number of lice 
remains unchanged.

The �H for any combination of n1 and n2 that 
exhausted the (fixed) budget is in Fig. 2. At the maximum 
value of �H , most of the budget was allocated to the 
slaughter test. Around the maximum value of �H , the 
curve in Fig. 2 is relatively flat, which means that �H was 
rather robust to changes in budget allocation to n1 and 
n2 . However, at both extremes, and particularly with few 
full-sibs per family in the slaughter test, �H was compro-
mised. Marginal gains from phenotyping an extra full-sib 
per family were relatively high when the number of full-
sibs per family was small, and decreased as it increased. 
The selection intensity was constant for any combination 
of n1 and n2 and, therefore, differences in �H were largely 
due to differences in the accuracy of the index and to a 
minor extent due to differences in genetic variation in the 
breeding goal caused by the Bulmer-effect (results from 
SelAction output).

Genomic selection
When the objective was to maximize �H with genomic 
selection (Table 4), the optimum number of phenotyped 

Table 3 Selection indices used in  the  nucleus breeding 
program

TGC  thermal growth coefficient  (g1/3/(day degrees × 1000)), R0 for sea lice, DGY 
deheaded gutted yield (%), FilletFat fillet fat content (%), ViscFat visceral fat score 
(from 0 to 4)
a SelAction condenses all ancestral information into estimated breeding values 
of parents as described by Wray and Hill [23]. In SelAction, this is termed ‘BLUP’.
b Breeding value estimated using within-family genomic prediction

Trait Records Females 
and 1st step 
males

2nd 
step 
males

TGC Own performance ✔ ✔
Pedigree  indexa ✔ ✔
119 full-sibs ✔ ✔
120 half-sib ✔ ✔
GEBVb for 32 + n4  full-sibs ✔

R0 Pedigree index ✔ ✔
n1 full-sibs ✔ ✔
n1 half-sibs ✔ ✔
GEBV for n3 full-sibs ✔

TGC, DGY, 
FilletFat, and 
ViscFat

Pedigree index ✔ ✔
n2 full-sibs ✔ ✔
n2 half-sibs ✔ ✔
GEBV for n4 full-sibs ✔

Table 4 Genetic gain per generation in the optimized breeding program for Atlantic salmon using pedigree or genomic 
selection

TGC  thermal growth coefficient  (g1/3/(day degrees × 1000)), TFC thermal feed intake coefficient  (g0.317/(day degrees × 1000)), R0 for sea lice, FY fillet yield (%), DGY 
deheaded gutted yield (%), FilletFat fillet fat content (%), ViscFat visceral fat score (from 0 to 4)

Trait Pedigree‑based selection Genomic selection

Genetic gain (σA) Genetic gain (€/ton 
production)

Genetic gain (σA) Genetic gain (€/
ton production)

TGC 0.90 331.6 0.96 355.8

TFC 0.16 − 47.0 0.15 − 43.7

R0 − 0.39 44.3 − 0.44 49.5

FY 0.29 21.7 0.32 24.2

DGY 0.30 0.33

FilletFat − 0.92 − 1.02

ViscFat 0.35 0.39

Total 351 386
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and genotyped full-sibs per family was equal to 17 in the 
challenge test ( n∗1 and n∗3 ) and 16 in the slaughter test ( n∗2 
and n∗4 ), so that n∗′ = [17 16 17 16] . �H∗ was €386/ton, 
corresponding to €104/ton per year for a 3.7 year genera-
tion interval, which represents an increase of 10% com-
pared to pedigree-based selection, mostly due to extra 
gain in TGC. The shadow value of the budget constraint 
was €3.1 × 10–5/ton per euro costs when estimated from 
a one unit increase in n∗1 and n∗3 , and €3.4 × 10–5/ton per 
euro costs when estimated from a one unit increase in n∗2 
and n∗4.

Figure 3 gives the maximum �H for varying numbers 
of full-sibs per family for each of the four activities. At all 
maxima, the number of full-sibs per family in the other 
three activities was optimum for the given value of the 
activity. As in the case of pedigree-based selection, the 
curve is relatively flat around the maximum value of �H , 
which means that �H was rather robust to changes in 
budget allocation among n around the optimum.

Sensitivity analyses
When the accuracy of genomic prediction decreased by 
20%, �H∗ decreased by 3.3% (Table  5). �H∗ was rather 
insensitive to the cost of phenotyping in the challenge 
test, the cost of phenotyping in the slaughter test, and 
the cost of genotyping, i.e. it decreased only marginally 
as these costs increased. When the budget for the per-
formance tests was zero, i.e. there were no performance 

tests, �H was €237/ton, corresponding to 62% of �H∗ at 
a budget of €444,000 (Fig.  4a). �H∗ increased when the 
size of the budget increased but at a declining rate. The 
slope of the relationship between �H∗ and size of the 
budget, at a budget of €444,000, equalled the average 
shadow value of the budget constraint. Furthermore, �H∗ 
itself became more sensitive to changes in budget allo-
cation among n around the optimum when the budget 
decreased, and more robust when the budget increased. 
When the economic value of R0 increased and allocation 
of the budget among activities remained constant, �H 
increased at an increasing rate. This trend was somewhat 
more pronounced for �H∗ (Fig. 4b), because an increas-
ing proportion of the budget was allocated to the chal-
lenge test (Fig. 5f ). Note that if the actual economic value 
would remain constant while only the emphasis on R0 is 
increased, �H∗ would decrease instead.

The relative allocation of the budget among activities 
at n∗ was unaffected by a 20% reduction in the accuracy 
of genomic prediction (Table 5). Figure 5 shows the rela-
tionship of the relative allocation of the budget among 
activities at n∗ with the other parameters evaluated in 
the sensitivity analysis. When the cost of phenotyping in 
the challenge test increased, an increasing proportion of 
the budget was spent on n∗1 (Fig.  5a). When the cost of 
phenotyping in the slaughter test increased, an increasing 
proportion of the budget was spent on n∗2 (Fig. 5b). When 
the cost of genotyping increased, an increasing propor-
tion of the budget was spent on n∗3 and n∗4 (Fig. 5c). For a 
fourfold change in costs of genotyping, the reduction in 
n∗3 and n∗4 was relatively small (Table 5). When the size of 
the budget increased, the relative allocation of the budget 
among activities remained fairly constant (Fig. 5d). When 
the economic value of R0 increased, the proportion of 
budget spent on the challenge test ( n∗1 and n∗3 ) increased, 
at the expense of the slaughter test ( n∗2 and n∗4 ) (Fig. 5e).

For the desired gains index, the weight given to FilletFat 
was €170/%/ton production, which resulted in a negligi-
ble change in FilletFat, but TFC increased more than in 
the baseline where FilletFat had zero weight in the breed-
ing goal. As a result, �H∗ was €242/ton for the desired 
gains index, which represented a decrease of 37% rela-
tive to the baseline. For the desired gains index, relative 
contributions of TGC and TFC to �H∗ decreased to 50% 
compared to 81% in the baseline, whereas relative contri-
butions of R0 and FY increased. At the maximum �H for 
the desired gains index, more budget was allocated to the 
challenge test, at the expense of the slaughter test, such 
that n∗′ = [29 12 28 12].Full-sibs per family in challenge test (n1)

∆H
 (€

/to
n)

Full-sibs per family in slaughter test (n2)

0 22 40 60 80 98

25
0

28
0

31
0

34
0

37
0 24 19 12 6 019

Fig. 2 Gain in the aggregate genotype ( �H ) for varying numbers 
of phenotyped full-sibs per family used in performance tests. The 
vertical dashed line indicates the optimum and the red point is at 
�H∗
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Discussion
Results for optimization of the breeding program showed 
that there is an optimum allocation of the budget to phe-
notyping and genotyping effort in performance tests that 
maximizes gain in the aggregate genotype. The curves 
of � H were rather flat around the optima for the sce-
narios evaluated, hence gains in the aggregate genotype 
were relatively robust to changes in budget allocation 
among activities around the optimum value. However, at 
the extremes, i.e. when the number of full-sibs per fam-
ily in one of the activities was very small or very large, 
gains were substantially lower. Although potential gains 

from optimizing phenotyping and genotyping efforts for 
a fixed budget may be small, they come at no extra cost 
(except for the optimization itself ). Sensitivity analyses 
showed that maximum gain in the aggregate genotype 
was sensitive to the size of the budget (Fig. 4a) and to the 
relative emphasis on breeding goal traits (Fig.  4b), but 
was less sensitive to the accuracy of genomic prediction 
and the costs of phenotyping and genotyping (Table  5). 
The relative allocation of budget among activities at the 
optimum was sensitive to the costs of phenotyping and 
genotyping (Fig.  5a–c) and the relative emphasis on 
breeding goal traits (Fig. 5e), but was less sensitive to the 

n1

∆H
 (€

/to
n)

0 17 40 60 80 98

27
0

31
0

35
0

39
0

n2

∆H
 (€

/to
n)

0 6 12 16 24

27
0

31
0

35
0

39
0

n3

∆H
 (€

/to
n)

0 17 32 48 64

27
0

31
0

35
0

39
0

n4

∆H
 (€

/to
n)

0 5 10 16 21

27
0

31
0

35
0

39
0

a b

c d

Fig. 3 Maximum gain in the aggregate genotype ( �H ) for varying numbers of a phenotyped full-sibs per family in the challenge test ( n1 ), b 
phenotyped full-sibs per family in the slaughter test ( n2 ), c genotyped full-sibs per family in the challenge test ( n3 ), d genotyped full-sibs per family 
in the slaughter test ( n4 ). The vertical dashed lines and red points indicate the optimum
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accuracy of genomic prediction (Table  5) and the size 
of the budget (Fig. 5d). At the optimum, the numbers of 
phenotyped and genotyped full-sibs were similar for both 
performance tests, but due to different costs of pheno-
typing, most of the budget was allocated to the slaughter 
test. For both performance tests, the optimum number 
of full-sibs that was genotyped was equal to the number 
that was phenotyped.

The results of this study can be better understood 
when considering the underlying mechanism of the four 
activities. Accuracy of selection increases at a declining 
rate with number of individuals allocated to each of the 
four activities. Any increase in accuracy increases gain 
in the aggregate genotype. Thus, gain in the aggregate 

genotype is maximum at some point where the budget 
is exhausted. When the budget is exhausted, a further 
increase in one of the activities should coincide with a 
decrease in other activities to meet the budget constraint. 
At the optimum, marginal gains in the aggregate geno-
type per unit cost are approximately equal for all activi-
ties that are bounded by the same constraints, and any 
deviation thereof is due to the non-continuous nature of 
the objective function. Since for both performance tests 
marginal gains per unit cost of genotyping were higher 
than those per unit cost of phenotyping but the number 
of genotyped full-sibs was bounded by the number of 
phenotyped full-sibs, the optimum number of genotyped 
full-sibs per family equalled the optimum number of 
phenotyped full-sibs per family. With equal numbers of 
phenotyped and genotyped full-sibs per family per per-
formance test ( n1 = n3 and n2 = n4 ), gain in the aggre-
gate genotype is a function of only two variables, which 
are both only bounded by the budget constraint. At the 
optimum, marginal gains per unit costs of these two 
variables are approximately equal, as evidenced by the 
similar shadow values calculated from a simultaneous 
increase by one unit of either n∗1 and n∗3 (€3.1 × 10–5/ton), 
or n∗2 and n∗4 (€3.4 × 10–5/ton). When marginal gains per 
unit costs are equal, moving budget from one activity to 
another has no effect on gain in the aggregate genotype, 
i.e. what is lost by decreasing the budget for one activity 
is gained by increasing the budget for the other activity. 
Since marginal gains per unit cost converge for all activi-
ties (bounded by the same constraints) when approach-
ing the optimum, moving budget from one activity to the 
other has little effect on gain in the aggregate genotype 

Table 5 Effect of  parameters tested in  the  sensitivity 
analyses on �H

∗ and n∗′

Item Change �H∗ (€/ton) n∗′

Base None 386 [17 16 17 16]

Accuracy genomic prediction 
(Eq. 1)

− 10% 379 [17 16 17 16]

− 20% 373 [17 16 17 16]

Cost of challenge test sea lice − 50% 387 [24 17 18 17]

 + 50% 385 [13 16 12 16]

 + 100% 384 [12 15 12 15]

Cost of slaughter test − 50% 392 [18 28 18 28]

 + 50% 381 [13 12 13 12]

 + 100% 377 [14 9 14 9]

Cost of genotyping − 50% 387 [17 18 17 18]

 + 50% 384 [16 15 13 15]

 + 100% 383 [13 15 9 15]

Budget (in 1000€)

∆H
* (€

/to
n)

0 222 444 666 888

22
5

27
5

32
5

37
5

42
5

47
5

Fold change in economic value R0

∆H
* (€

/to
n)

0.5 1.0 1.5 2.0

22
5

27
5

32
5

37
5

42
5

47
5a b

Fig. 4 Sensitivity of gain in the aggregate genotype at the optimum ( �H∗ ) to a the budget, where the slope of the dashed line is equal to the 
shadow value of the budget constraint, b the economic value of R0
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Fig. 5 The proportion of budget allocated to activities ( n∗1 = black,  n∗2 = grey stripes,  n∗3 = grey, n∗4 =  white) when the allocation of budget has 
been optimized a for increasing costs of phenotyping in the challenge test, b for increasing costs of phenotyping in the slaughter test, c for 
increasing costs of genotyping, d for an increasing size of the budget, e for an increasing economic value of R0
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around the optimum. Thus, when costs of phenotyping 
or genotyping change, budget can be reallocated among 
activities (Fig.  5a–c), such that maximum gain in the 
aggregate genotype does not change much (Table  5). 
However, when costs of all activities change simulta-
neously in the same direction, which is equivalent to a 
change in size of the budget, the maximum gain in the 
aggregate genotype will change (Fig.  4a). The above 
mechanism explains why the curve for � H is rather flat 
around the optimum (Figs.  2 and 3). This result is con-
sistent with the few studies in the literature that focused 
on the economic optimization of test group sizes. Some 
of the older studies that dealt with optimization of cat-
tle and pig breeding programs were reviewed by Cun-
ningham [24] and Lindhé and Holmquist-Arbrandt [25], 
respectively. More recently, De Vries and Van Der Steen 
[26] evaluated the distribution of testing capacity across 
a sire and dam line in pig breeding for a fixed total test-
ing capacity. In their optimizations, they did not compute 
the full range of possible solutions, hence their solutions 
may have been somewhat off the optimum. However, dif-
ferences in the objective function (the selection response) 
between scenarios were small close to the optimum. 
Dekkers et  al. [2] optimized the size of progeny groups 
in a dairy cattle breeding program and computed several 
points on the response surface, which they interpolated. 
For a large range of options, such an approach may be 
more efficient than the grid search in our study. However, 
we managed to keep the feasible region of the solution 
relatively small by using previous results, such that the 
grid search was not so computation intensive. Similar to 
our study, De Vries and Van Der Steen [26] and Dekkers 
et al. [2] found that marginal gains in the objective func-
tion decreased with increasing group size, and that the 
curve of the objective function was relatively flat around 
the optimum.

The simulated breeding program used within-family 
genomic selection, for which the reference population 
was limited to sibs of selection candidates. Alternatively, 
a breeding program could use population-wide genomic 
selection, for which the reference population would 
include both sibs of selection candidates and largely 
unrelated individuals. In population-wide genomic selec-
tion, the reference population increases in size when 
additional animals are genotyped. The value of these 
additional animals depends strongly on their related-
ness to selection candidates [27], which decreases over 
time, such that older generations contribute relatively 
little to the overall accuracy. Furthermore, the related-
ness between individuals in the reference population 
and selection candidates is higher within than between 
year classes. Thus, sibs of selection candidates contrib-
ute most to the accuracy of genomic prediction. This 

is evidenced by similar accuracies of population-wide 
and within-family genomic prediction in salmon breed-
ing programs [28]. The accuracy of population-wide 
genomic prediction is difficult to estimate deterministi-
cally, whereas the accuracy of within-family genomic 
prediction can be estimated more precisely, as in our 
study (Eq.  1, [19]). Since accuracies of population-wide 
and within-family genomic prediction are similar but 
deterministic methods are preferable for optimization, 
within-family genomic prediction may be assumed here, 
even when population-wide genomic prediction is used 
in practice.

To predict genetic gain in R0 for sea lice, some assump-
tions were inevitable. We assumed that lice density is 
genetically the same trait as susceptibility in field con-
ditions, which is supported by a genetic correlation of 
0.88 between lice count in a challenge test and under 
field conditions [16]. We assumed that susceptibility and 
infectivity were genetically uncorrelated, although these 
traits might have the same genetic basis [9]. Susceptibil-
ity and infectivity have multiplicative effects on R0 , such 
that a genetic correlation of 1 between susceptibility 
and infectivity approximately doubles genetic progress 
in R0 [29]. For example, with a genetic correlation of 1, 
a 10% improvement in lice density reduces both sus-
ceptibility and infectivity by 10%, such that R0 reduces 
by 

(

1− 0.902
)

× 100% = 19% . The economic effect of 
a genetic correlation of 1 can thus be predicted by dou-
bling the economic value of R0 , which is covered by the 
conducted sensitivity analysis. If the genetic correlation 
between susceptibility and infectivity is equal to 1, more 
budget needs to be allocated to the challenge test (Fig. 5e) 
and �H∗ increases to €456/ton (Fig. 4b).

The objective of the optimization was to maximize 
gain in the aggregate genotype averaged over males and 
females, which maximizes the rate of genetic gain in the 
nucleus. Since nucleus males are also used in the multi-
plier tier, the strategy of genotyping males shortens the 
genetic lag between the nucleus and multiplier tier. Fur-
thermore, it allows the breeding company to create pro-
duction lines that are selected on quantitative trait loci 
for specific disease resistance. However, for the above 
objective, it would be relevant to test how much extra 
gain could be achieved by genotyping also female nucleus 
selection candidates. Similar to the selection of males, 
two-step selection could be used for females, with the 
second step based on within-family genomic selection. 
Such two-step selection would increase the genetic selec-
tion differential for females relative to pedigree-based 
selection, although somewhat less than for males due 
to the lower selection intensity in females. When prese-
lected females are taken from the same full-sib families as 
preselected males, the increase in costs could be limited 
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to the costs of genotyping preselected females, while 
making better use of genotyped full-sibs in performance 
tests. Such a strategy would, however, increase the rate of 
inbreeding, because the first selection step would force 
preselected females to belong to the same families as 
preselected males. The rate of inbreeding, however, can 
be controlled by other measures, such as optimum con-
tribution selection [30]. Thus, genotyping a preselected 
fraction of female selection candidates may be a cost-
effective option to further accelerate genetic gain in the 
nucleus.

When FilletFat was given zero weight in the breeding 
goal, records of fat content in the slaughter test served 
to explain variation in TFC that was not explained by 
variation in TGC. The consequence was that FilletFat 
decreased (Table  4) and FCR improved, which agrees 
with theory [31]. In the desired gains index, the positive 
genetic correlation between FilletFat and TFC was antag-
onistic, because weights on FilletFat and TFC had oppo-
site signs, whereas this correlation was not antagonistic 
when FilletFat had zero weight. Therefore, the propor-
tion of variation in the breeding goal explained by a given 
number of phenotyped or genotyped individuals in the 
slaughter test was lower in the desired gains index than 
when FilletFat had zero weight. As a result, the relative 
importance of the slaughter test decreased in the desired 
gains index and at the optimum, a larger proportion of 
the budget was allocated to the challenge test, at the 
expense of the slaughter test.

The optimization of full-sib test group size and geno-
typing effort is not restricted to breeding objectives 
based on economic values but can also be used for any 
desired gains index. In the desired gains index used 
here, the weight given to FilletFat may be perceived as 
its shadow price [32]. This shadow price indicates the 
maximum amount that producers can afford to pay 
for a marginal change in FilletFat, i.e. the value of a 1% 
increase with other traits held constant. In other words, 
the weight given to FilletFat implies that producers would 
expect the sale price of fish to decrease by €170/ton 
when FilletFat decreases by 1%. Underlying this shadow 
price is the assumption of a negative genetic correlation 
between TGC and FilletFat. This genetic correlation is 
negative when genetic improvement of TGC leads to a 
shorter time interval to reach a constant harvest weight, 
but it is positive when, instead, genetic improvement 
of TGC leads to a greater harvest weight in a constant 
growing period [17, 33, 34]. If a positive genetic correla-
tion was more appropriate, FilletFat would increase when 
its economic value is zero and a negative weight would 
be required to keep its level constant. Thus, the shadow 
price of FilletFat strongly depends on the genetic cor-
relation of FilletFat with TGC, which depends on an 

uncertain management response to improvement of 
TGC.

Based on our predictions, the transition from pedigree-
based to genomic selection increased the rate of genetic 
gain by 10% per generation. This increase is only moder-
ate, because TGC contributed most to gain in the aggre-
gate genotype and its accuracy was already high with 
pedigree-based selection. Still, most extra gains from 
genomic selection were due to extra gain in TGC. Thus, 
although genomic selection may be particularly useful for 
traits that cannot be recorded on selection candidates, 
most of the extra gain may come from a slightly higher 
accuracy on a trait that already dominates gain in the 
aggregate genotype in pedigree-based selection, such 
as TGC in this study. For the optimized genomic selec-
tion program, gain in the aggregate genotype was €386/
ton per generation. This is an optimistic estimate of the 
increase in benefits from genetic improvement, because 
it was computed as if economic values were used to bal-
ance the emphasis on breeding goal traits in an optimal 
way, which may not be the case in practice. In practice, 
for example, FilletFat is held constant using desired gains. 
For the optimized desired gains index that keeps Fillet-
Fat constant, gain in the aggregate genotype was €242/
ton per generation. For a generation interval of 3.7 years, 
as in the SalmoBreed breeding program, this would cor-
respond to an increase in benefits of about €66/ton per 
year. This estimate is only slightly higher than a previ-
ous estimate of €50/ton per year reported by Gjerde 
et al. [35], which was a crude estimate based on realized 
gains in growth and feed conversion ratio. If we assume 
a yield of 3.8 kg product per egg, the genetic value of an 
egg increases by about €0.25 per year. In contrast, the 
sale price of eggs is about €0.18/egg and has increased by 
only ~ €0.01 per year over the last couple of years. This 
suggests that only a minor proportion of the benefits of 
genetic improvement are accrued by the breeding com-
pany, while most of the benefits are passed on to fish pro-
ducers and consumers. In the short term, benefits from 
genetic improvement may be accrued by fish produc-
ers, when genetic improvement generates a competitive 
advantage. These benefits may be passed on to the con-
sumer in the long term when competition pushes profit 
margins downwards [36]. The uneven distribution of 
benefits from genetic improvement between the breed-
ing company and the fish producers causes underinvest-
ment in genetic improvement. If the breeding company 
received a premium of €0.01/egg for its annual sales 
of 120 million eggs, it would accrue an extra 1.2 mil-
lion euro. The shadow value of the budget constraint on 
performance tests was about €3.2 × 10–5/ton per euro 
costs. This means that if gain in the aggregate geno-
type increased linearly with size of the budget, it would 
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increase by €3.2/ton per €100,000 costs. Thus, assum-
ing linearity, with a premium of €0.01/egg, the use of 
the extra returns to increase the budget for performance 
tests could increase gain in the aggregate genotype by 
€1.2 million × €3.2 × 10–5/ton per euro costs, which 
equals €38/ton per generation. Using the same assump-
tions as before, a premium of €0.01/egg would increase 
the genetic potential of an egg by an extra (€0.038/kg per 
generation × 3.8 kg/egg)/(3.7 year per generation), which 
equals €0.039/egg per year. Such higher genetic gains 
would improve the competitive position of the breeding 
company, while at the same time increasing the benefits 
to producers. As long as discounted benefits from extra 
genetic gain exceed the discounted costs, such a pre-
mium on genetic superiority would be profitable for both 
the breeding company and producers.

Conclusions
An optimum allocation of a fixed budget to phenotyping 
and genotyping efforts in performance tests exists that 
maximizes gain in the aggregate genotype. Maximum 
gain in the aggregate genotype was sensitive to the size of 
the budget and to the relative emphasis on breeding goal 
traits, but was less sensitive to the accuracy of genomic 
prediction and the costs of phenotyping and genotyping. 
The relative allocation of budget among activities at the 
optimum was sensitive to the cost of phenotyping and 
genotyping and to the relative emphasis on breeding goal 
traits, but was less sensitive to the accuracy of genomic 
prediction and the size of the budget. Although poten-
tial gains from optimizing phenotyping and genotyping 

efforts may be small, under a fixed budget, they come at 
no extra cost.
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Appendix
See Table 6.

Table 6 Genetic correlations (below diagonal), phenotypic correlations (above diagonal), and  heritabilities (diagonal) 
of traits and their genomic selection counterparts for n*′ = [16 17 16 17]

TGC  thermal growth coefficient  (g1/3/(day degrees × 1000)), TFC thermal feed intake coefficient  (g0.317/(day degrees × 1000)), R0 for sea lice, FY fillet yield (%), DGY 
deheaded gutted yield (%), FilletFat fillet fat content (%), ViscFat visceral fat score (from 0 to 4), G_trait trait for which within-family genomic prediction was used to 
estimate breeding values

TGC TFC R0 FY DGY FilletFat ViscFat G_TGC G_R0 G_DGY G_FilletFat G_ViscFat

TGC 0.34 0.56 0 0 0 0.07 0.13 0.41 0 0 − 0.10 0.10

TFC 0.69 0.23 0 0 0 0.06 0.09 0.23 0 0 0.13 0.03

R0 0 0 0.26 0 0 0 0 0 0.31 0 0 0

FY 0 0 0 0.35 0.71 0 0 0 0 0.39 0 0

DGY 0 0 0 0.97 0.54 0 0 0 0 0.50 0 0

FilletFat − 0.26 0.41 0 0 0 0.42 0.01 − 0.12 0 0 0.42 0

ViscFat 0.29 0.09 0 0 0 0.01 0.23 0.10 0 0 0 0.28

G_TGC 0.71 0.49 0 0 0 − 0.18 0.21 0.999 0 0 − 0.12 0.12

G_R0 0 0 0.61 0 0 0 0 0 0.999 0 0 0

G_DGY 0 0 0 0.65 0.67 0 0 0 0 0.999 0 0

G_FilletFat − 0.17 0.27 0 0 0 0.65 0.01 − 0.12 0 0 0.999 0

G_ViscFat 0.17 0.05 0 0 0 0.01 0.59 0.12 0 0 0.00 0.999
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