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A B S T R A C T

There is myriad evidence that global warming is exerting a profoundly disruptive influence on the lifeways of
modern native (Yup'ik) communities living in the Yukon-Kuskokwim (Y-K) delta of southwestern Alaska. Yup'ik
subsistence is intimately tied to seasonal change and the ability to accurately predict the availability of plant and
animal resources. It therefore seems reasonable to suggest that periods of climatic instability such as the Little Ice
Age (LIA) may have had a deleterious effect on Yup'ik communities in the past. However, at present there are no
palaeotemperature records that document the localised climatic changes of the last millennium in the Y-K Delta
region. This lack of data hinders our understanding of the archaeological record from the site of Nunalleq, which
is situated at the heart of the delta and was occupied during the LIA. To address this oversight, this paper
presents the results of a Coleoptera (beetle) based climate reconstruction from a peat profile in the vicinity of
Nunalleq to investigate the magnitude of Late Holocene climatic changes. Using the Mutual Climatic Range
(MCR) method, we reconstruct mean summer and winter temperatures from the mid-15th to late-19th centuries.
The results indicate that the past environments of Nunalleq were characterised by a climate significantly cooler
than the present. The earliest definitive evidence for Little Ice Age cooling dates from the late 16th century,
when mean summer temperatures were at least 1.2ᵒC below the modern mean. Temperatures appear to have
remained lower than modern until the early 19th century. The coolest Nunalleq record – 1.3ᵒC below the modern
mean summer temperatures – is centred on AD 1815, after which there is evidence for climatic amelioration.
These data present differences with observations from other regions of Alaska and underline the importance of
more local palaeoclimate reconstructions, particularly when interrogating the relationships between past cli-
matic and social change.

1. Introduction

Arguments for the influence of climate on the successes and failures
of past human societies are well rehearsed (Diamond, 2005; Van de
Noort, 2013). Understanding the weather and climate of a locality is
essential in planning for both short- and long-term eventualities. The
ability to accurately predict the beginning and duration of seasons was
essential for agriculturalists and hunter-gatherers alike. Indeed, there
are myriad examples across the world that are posited as attempts by
past societies towards predicting and influencing the arrival of seasons
(Chamberlain, 2000; Robbins, 2000; Burroughs, 2005). Similarly, there
are many archaeological examples of the consequences for human so-
cieties when such knowledge is absent (e.g. early European settlers in

the New World [Rockman, 2010; Stahle et al., 1998]) or breaks down
(e.g. Dugmore et al., 2007a, 2012; Carleton et al., 2017).

Nowhere are such considerations more relevant than in the cir-
cumpolar regions of the globe, where lifeways rely on the ability to
predict the seasons and weather (Ford and Smit, 2004) and climatic
changes are more rapid and pronounced than at temperate latitudes
(IPCC, 2013). Ever since the first high-resolution climatic records from
the Greenland Ice Sheet became available (Dansgaard et al., 1975),
there has been the temptation to view human endeavours in the Arctic
through the lens of climate. For instance, the Norse colonisation of
Greenland (Barlow et al., 1997; Diamond, 2005) and the Thule mi-
gration (McGhee, 2001, 2009) have often been explained in terms of
climatic changes associated with anomalies such as the Medieval
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Climate Anomaly (MCA) and Little Ice Age (LIA). There are problems
with this approach, however, as climate change is both spatially and
temporally variable. For example, the intensity and spatial expression
of climate anomalies such as the MCA and LIA as experienced in
northern Europe was not the same as that in the western Arctic (IPCC,
2013). Therefore, to accurately reconstruct the influence of climate
change on human communities, local or regionally specific records of
climate change are required. This is being increasingly recognised, and
climatic explanations have become nuanced beyond the simplistic in-
terpretations of warmer temperatures promoting migration and colder
temperatures leading to extinction (e.g. Dugmore et al., 2012). Climate
change is now more often viewed as a factor that initiates changes in
the environment, technology, or cultural attitudes, which ultimately
influence the trajectories of human society.

Nunalleq, an archaeological site located in the Yup'ik territories of
the Yukon-Kuskokwim (Y-K) delta of southwestern Alaska (Fig. 1),
serves as a good example of the interactions between climate change
and human societies. Late Yup'ik prehistory (15th to 18th century) was
characterised by a period of intense warfare known as the ‘Bow and
Arrow Wars’ (Funk, 2010; Pratt, 2013; Fienup-Riordan and Rearden,
2016). This period of conflict was coincident with the LIA, the nadir of
which was centred on the late 16th to mid-17th centuries, with mean
summer temperatures of between 0.6 °C and 1.7 °C below the modern
mean (Overpeck et al., 1997; Hu et al., 2001; Bird et al., 2009). The
coincidence of this cooling trend and evidence for conflict, both at
Nunalleq and more widely in the Y-K delta, may be suggestive of a link
between the two events. However, there is a lack of suitable climatic
data to evaluate this possibility, as the nearest quantitative climate
reconstruction record is sourced from Farewell Lake (Hu et al., 2001), a
montane lake in the foothills of the Alaska Range c. 500 km northeast.
Temperature reconstructions from this site cannot be assumed to ac-
curately reflect changes in the lowland delta region. Today, Alaska, in
common with elsewhere in the Arctic, is experiencing a period of rapid
climate change (Serreze et al., 2000). In the Y-K delta this has been
characterised by mean summer temperatures consistently rising since
the 1980s (Fig. 2) and an increase in the number and severity of winter
storms (Terenzi et al., 2014). The rapid and unprecedented nature of
these changes is already beginning to appreciably affect the semi-sub-
sistence economy of native Yup'ik communities in the region, as the
past can no longer be used to accurately predict the future (Fienup-

Riordan and Rearden, 2012; Chapin et al., 2014).
To date, there are no palaeo-temperature reconstructions from the

vast expanse of the Y-K delta. Therefore, in order to facilitate an ex-
ploration of how past climatic change affected late prehistoric Yup'ik
society at the Nunalleq site, and to provide a contextual baseline to
modern climate change, local palaeoclimatic data is essential. To this
end, this paper presents the results of a high-resolution palaeoclimate
reconstruction from a sediment profile closely associated with this late
prehistoric Yup'ik archaeological site. By applying the Mutual Climate
Range method (Atkinson et al., 1986) this paper aims to: (i) reconstruct
past summer and winter temperature variation in the vicinity of Nu-
nalleq; (ii) compare these data to modern long term meteorological
observations from Bethel Airport, and; (iii) explore how this record
compares to other regional data.

2. Background

2.1. Physical geography

The study site is located on the coast of the Bering Sea in south-
western Alaska, approximately 5 km south of the village of Quinhagak,
in the vast Yukon-Kuskokwim delta (Fig. 1). The relief of this deltaic
wetland is relatively flat, and elevations in the vicinity of the study
location range from 2 to 3m above mean sea level. The region is
characterised by numerous small lakes/ponds and meandering rivers
and sloughs (Jorgenson, 2000) and is underlain by discontinuous per-
mafrost (Jorgenson et al., 2008). Local geology is uncomplicated and
comprises recent alluvial deposits of sands, silts and clays of Quaternary
age capped by a thin layer of peat (Wilson et al., 2015). Vegetation is
dominated by tundra communities (Babcock and Ely, 1994) char-
acterised by a mixture of graminoid-rich meadows and dwarf shrub
tussock tundra of Betula nana, Rubus chamaemorus and Empetrum ni-
grum.

2.2. Observed climatic data

Climatically, the region is located in the sub-arctic and the west
coast climate division of Bienek et al. (2012). The nearest long-term
observational climatic data comes from Bethel airport, located 120 km
northeast of Nunalleq (NOAA, 2017). Continuous observation of

Fig. 1. The Yukon-Kuskokwim Delta, illustrating
the location of Nunalleq and other locations dis-
cussed within the text, including sites for which
published palaeoclimatic data exists: [1] Ongoke
Lake; [2] Akhlun Mountains; [3] Farewell Lake; [4]
Western Prince William Sound; [5] Mica Lake; [6]
Hallet and Greyling Lakes; [7] Site 412; [8]
Arrigetch Peaks; [9] Blue Lake; [10] Sheenjek; [11]
Iceberg Lake.
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summer (July) temperatures at this station date from 1923, while
winter (January) temperature observations date from 1929. The early
part of this instrumental record, until the 1980s, is characterised by a
summer climate approximately 1ᵒC cooler than the modern summer
mean of 13.4ᵒC (Table 1). Although the period from the mid-1980s is
characterised by sustained summer warming (Fig. 2), it is also notable
for a sharp increase in mean summer temperature variability. Mean
winter temperatures are more variable than those from the summer and
record a marked increase in the winter mean from −14.7ᵒC
(1929–1958) to −13.7 (1959–1988) in the mid-20th century, which
falls again towards the modern day (Table 1).

2.3. Archaeology

Archaeological excavations at Nunalleq began in 2009 and since
then have uncovered the deeply stratified remains of a prehistoric
Yup'ik village. Preservation conditions at the site are superb and have

permitted the recovery of a diverse assemblage of over 60,000 artefacts
constructed from a variety of materials including wood, pottery, grass
and stone (Knecht, 2014). Activity at the site is sub-divided into a
number of phases and occupation likely began between c. AD
1570–1630. It ended with the destruction of the village c. AD
1650–1670 (Ledger et al., 2018) during the Bow and Arrow Wars, a
conflict episode that opposed different Yup'ik and neighbouring villages
and ended as a result of contact with Russians in the 19th century
(Fienup-Riordan and Rearden, 2016).

3. Methods

3.1. Sampling

In July 2015, a 60 cm deep trench was excavated approximately
30m east of the archaeological site and sampled from the surface to a
depth of 50 cm, using a series of large monolith tins (Fig. 3). Further

Fig. 2. Modern climate data from Bethel illustrating
the summer (July) mean (red line) with error bars
illustrating mean summer minima and maxima re-
corded in each year. The green line tracks the cu-
mulative mean summer temperature departures (cf.
Dugmore et al., 2007b) from the early 20th century
mean (1923–1952). For each year the deviation
from the long term mean is calculated, then, starting
at the oldest data point, Year 1 (1923) represents
the deviation from the mean, Year 2 (1924) is the
deviation of that year plus the deviation from Year 1
(1923), Year 3 (1925) is that year's deviation in
addition to the deviations from both Year 1 and
Year 2, and so on. This neatly illustrates the general
trend of increasing summer temperatures since the
early 1980s. (For interpretation of the references to
colour in this figure legend, the reader is referred to
the Web version of this article.)

Table 1
The mean winter (January) and summer (July) climate as recorded at the Bethel Airport Meteorological Station.

Location Early to mid- 20th Century Mid to late 20th Century Modern

Winter (1929–1958) Summer (1923–1952) Winter (1959–1988) Summer (1953–1982) Winter (1989–2016) Summer (1983–2016)

Bethel Airport −14.7 ᵒC 12.5ᵒC −13.7ᵒC 12.6ᵒC −14.4ᵒC 13.4ᵒC

Fig. 3. Schematic of the sampled profile illustrating the location of samples and general lithostratigraphy.
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details of field sampling are outlined in Ledger (2018). Contiguous sub-
sampling of 2 cm-thick samples (approximately 2 L volume) for Co-
leoptera analysis was undertaken in Quinhagak, in order to attain sub-
centennial chronological resolution. Samples were placed into large
reinforced plastic bags and subsequently transported to the palaeoe-
cology laboratory at the University of Aberdeen where they were stored
at 4 °C.

The density of Coleoptera subfossils in any substrate will vary ac-
cording to the nature of that substrate. Palaeoentomologists typically
collect samples varying between 2 and 5 l (or 1 and 5 kg) volumes (e.g.
Bain, 2001; Kenward, 2009; Panagiotakopulu and Buckland, 2013;
Vickers et al., 2011) but there has not been an investigation of the in-
fluence of sample size on the representativity of beetle subfossil as-
semblages. Generally, less organic substrates produce fewer beetle
fossils than more organic ones (Elias, 2010) and due to the accumula-
tion of organic matter and nutrient enrichment in and close to human
settlements, anthropogenic sediments also tend to harbour higher
densities of beetle (and other arthropods) than naturally accumulated
deposits located further away from human occupation sites. Following
preliminary analysis of samples from archaeological floors at Nunalleq
(Forbes et al., 2015), our approach has been to privilege increased
temporal resolution over higher counts for single samples. Despite the
smaller volume of samples analysed in the present study, our MNIs are
consistently equal to, or higher than, those obtained from other studies
of Coleoptera subfossils extracted from peat bogs (e.g. Buckland et al.,
2009; Khorasani et al., 2015; Panagiotakopulu and Buckland, 2013;
Vickers et al., 2011).

3.2. Coleoptera analysis

In total, twelve contiguous 2-cm thick samples, from a depth of 39
to 15 cm, and a further sample from 13 to 11 cm, were processed and
analysed for Coleoptera. In the first instance samples were placed into
large buckets and soaked in a cold solution of weak (< 2%) NaOH for a
period of up to one week to promote disaggregation of the sediment
matrix. Samples were then processed though paraffin floatation (Coope
and Osborne, 1967; Kenward et al., 1980) to separate the Coleoptera
from the bulk of the plant macrofossil content. The flotants were hand-
sorted under a binocular microscope to allow the collection of beetle
sclerites. Insect fossils were stored in vials of ethanol prior to identifi-
cation.

Identifications were undertaken through direct morphological
comparison with specimens from the first author's reference collection
and from the Canadian National Collection of Insects, Arachnids and
Nematodes in Ottawa. These were aided by consultation of en-
tomological publications (Campbell, 1978, 1982; 1983a, 1983b; 1991;
Goulet, 1983; Klimaszewski, 1979; Lindroth, 1961, 1963; 1966, 1968;
1969a, 1969b; Shavrin, 2016). Although most identified taxa are re-
presented by head, pronota, and elytra, the genitalia and terminal ab-
dominal segments of certain taxa were also recovered and identified
(Fig. 4). Taxa identifications were undertaken by the first author and
some specimens were identified or had their identification confirmed
by taxonomic specialists. A full list of identified Coleoptera, along with
the minimum number of individuals (MNI) for each insect taxon cal-
culated from the most abundant anatomical part, is provided in the
Supplementary Information (SI1). Taxonomy and nomenclature follows
Bousquet et al. (2013).

3.3. Chronology

The profile chronology was constructed on the basis of a series of 12
AMS radiocarbon dates, a 14-sample 137Cs profile and 210Pb measure-
ments, processed with a constant rate of supply model (Appleby and
Oldfield, 1978). Radiocarbon dating was undertaken at the Oxford
Radiocarbon Accelerator Unit (ORAU) and calibrated using the In-
tCal13 calibration curve (Reimer et al., 2009). Bayesian age-depth

modelling of the profile accumulation combined short-lived radio-
nuclide measurements and radiocarbon dates using Bacon (Blaauw and
Christen, 2011). A detailed description of the chronology and data is
presented in Ledger (2018). The age-depth model indicates that each of
the samples analysed in the present study represent between 20 and 50
years of deposition.

3.4. Palaeoenvironments

Information regarding the ecology of individual taxa was compiled
from habitat records and descriptions in the literature (Anderson, 1989;
Arnett and Thomas, 2001; Ball, 1966; Betz et al., 2018; Bousquet, 1991;
Bousquet et al., 2013; Campbell, 1973, 1978; 1982, 1983; 1984, 1991;
Chernov et al., 2014; Clark et al., 2008; Erwin, 2007; Forbes and Sikes,
2018; Hieke, 2002; Hinton, 1941; Keen, 1958; Klimaszewski, 1979;
Klimaszewski et al., 2013; Larochelle and Larivière, 2003; Larson et al.,
2000; Lindroth, 1961, 1966; 1968; Majka and Langor, 2011; Majka and
Sörensson, 2010; Majka et al., 2010; Puthz, 2014; Robinson, 2005;
Ryvkin, 2007; Shavrin, 2016; Smetana, 1971; Ullrich and Campbell,
1974; Watrous, 1980; Webster et al., 2012). The results of the literature
review (SI1) was used to classify taxa into broad habitat categories
(Fig. 5).

The classification used here slightly differs from that used in Forbes
and Sikes (2018): it focuses on macro-habitats only, so that the original
categories ‘in decomposing matter’ and ‘plant-associated’ were
dropped. Instead, taxa that are known to occur in microhabitats pro-
vided by decomposing organic matter have been highlighted in red
font. A new category, ‘Eurytopic’, was created to include taxa that can
be found in a wide variety of environmental settings.

Based on this classification, three different percentage diagrams
were generated to allow an appreciation of changes in local pa-
laeoenviromental conditions through time (Fig. 6). The first (Fig. 6a)
was produced using all five ecological groups, the second (Fig. 6b)
excluding the ‘Eurytopic’ group in order to better display patterns ob-
scured by the presence of wide-tolerance taxa, and the third (Fig. 6c)
displaying the proportion of taxa associated with microhabitats avail-
able in organic matter.

3.5. Mutual climatic range method

We used the Mutual Climatic Range (MCR) method to reconstruct
air temperature variations based on coleopteran subfossil data
(Atkinson et al., 1986). The basic principle of the method is to establish
the range of climatic conditions within which predator and scavenger
beetle taxa identified in a subfossil assemblage can live (the Mutual
Climatic Range, or MCR). Only predator and scavenger beetle taxa are
utilised as these groups are not bound to particular plant species or
communities and respond rapidly to climatic change (Elias, 2010). We
employed continent-wide climate envelopes based on North American
species records and associated climatic data (Elias, 1996; Elias et al.,
1996). In order to incorporate taxa that could only be identified to the
level of genus, subgenus or group, we also constructed a series of
‘grouped envelopes’. Here, the principle was to account for the max-
imum climatic range of species occurring within the same taxonomic
group, allowing us to include taxon such as for example Pterostichus
brevicornis group (sensu Ball, 1966), Eucnecosum spp. and Pycnoglypta
spp., which are particularly difficult to identify to species. This was
achieved by combining all established climate envelopes for species of a
given taxonomic group recorded in Alaska into an expanded climate
envelope. Not all scavenger and predacious taxa were included in the
climate reconstruction, as a number of species do not have established
climatic envelopes.

MCR envelopes were generated for each of the samples analysed
and these are available as Supplementary Information (SI2). This was
achieved by superimposing the climate envelopes of each taxa present
in a given assemblage and identifying the area of overlap between
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them. TMAX (mean temperature of the warmest month) and TRANGE

(difference between the mean temperature of the warmest and coldest
months) were calculated from the extreme values of these MCR

envelopes. TMIN (mean temperature of the coldest month) was calcu-
lated by subtracting reconstructed TRANGE from TMAX values (Table 2).

Fig. 4. Photographs of some of the subfossil
specimens: (a) Pronotum of Pelophila borealis
[23–25 cm] (with damaged right shoulder); (b)
Abdomen of Stenus noctivagus [25–27 cm]; (c)
Head of Quedius fellmani [25–27 cm]; (d) Head
and pronotum of Boreaphilus henningianus
[27–29 cm]; (e) Right elytron of Elaphrus
(Elaphrus) americanus/trossulus [27–29 cm]; (f)
male abdominal sternite VIII of Pycnoglypta
lurida group [29–31 cm]; (g) Head, pronotum
and elytra of Eucnecosum sp. [31–33 cm]; (h)
Aedeagus of Pterostichus nivalis [37–39 cm].

Fig. 5. Grouping of identified taxa according to their habitat/ecology. In red font are those taxa that are eurytopic or belong to mesic, hygrophilous and riparian
environments, but that are known to be associated with microhabitats available in decaying organic matter (e.g. rotting wood, leaf litter, floor debris, dung, carrion).
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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4. Results

4.1. Insect assemblage

A total of 88 different beetle taxa were found in the samples from
the Nunalleq peat profile. This includes 39 taxa identified to species
plus 49 other taxa identified to lower taxonomic levels (e.g. tribe, fa-
mily, genus, subgenus or group). Rove beetles (Staphylinidae) and
ground beetles (Carabidae) dominate the assemblage, which also con-
tains Dytiscidae, Ptiliidae, Latridiidae, Byrrhidae, Chrysomelidae,
Brachyceridae and Curculionidae. Two lice (order Phthiraptera) species
were also recovered: the human louse, Pediculus humanus L., and the
dog-biting louse, Trichodectes canis (De Geer), which are parasitic on
humans and canids, respectively.

The majority of the beetle taxa (72%) are Holarctic, the remaining
being of worldwide or Nearctic distribution. Notably, this dataset in-
cludes the first record of the pill beetle Simplocaria elongata J.R.
Sahlberg for the state of Alaska. Forty-two of the 88 taxa identified in
the profile have been documented to occur in the modern environment
surrounding the archaeological site of Nunalleq (SI1, also see Forbes
and Sikes, 2018).

Although there are variations in the taxa represented in the different
parts of the section, each assemblage is generally indicative of subpolar

tundra environments. Two taxa, Notiophilus borealis Harris and N.
aquaticus (L.)/borealis, are predacious on rather dry substrates with
little to no vegetation cover (Lindroth, 1961) and therefore have been
placed the group ‘Xeric’ (Fig. 5). Taxa that are typical of mesic habitats,
such as the shrub tundra and moderately moist areas of the open
tundra, have been attributed to the ‘Mesic’ group. This includes Pter-
ostichus taxa belonging to the subgenus Cryobius, typical inhabitants of
the boreo-arctic tundra, where they can be found in moss and decaying
organic matter (Chernov et al., 2014; Lindroth, 1966). Several rove
beetle taxa that are commonly found in willow and alder litter or si-
milar decaying vegetal material in moist situations (e.g. Eucnecosum
spp., Holoboreaphilus nordenskioldi (Mäklin), Pycnoglypta spp., Tachinus
apterusMäklin and T. apterus/brevipennis J.R. Sahlberg, Campbell, 1973,
1978, 1984, 1988; Shavrin, 2016; Webster et al., 2012) have been in-
cluded in this group as well. The ‘Hygro-riparian’ group comprises
beetles living in waterside or wet habitats. This includes predators such
as Elaphrus spp., which hunt insects near the border of standing and
running waters, and can occur by the seashore (Lindroth, 1961), as well
as on bogs, swamps and meadows. Some of these taxa, including Olo-
phrum spp. and Boreaphilus henningianus C.R. Sahlberg, are associated
with moss and emergent subaquatic vegetation in such settings
(Campbell, 1978, 1983b). Others, such as Acidota crenata (Fabricius)
and A. quadrata (Zetterstedt), are also common in organic materials
such as leaf litter, carrion and dung (Campbell, 1982). All members of
the ‘Aquatic’ group belong to the order Dytiscidae, predaceous beetles
that spend most of their lifecycle submerged in water (Larson et al.,
2000) but are also good flyers. The dytiscid taxa identified in this as-
semblage occur in small bog and tundra pools, and some can also be
found in slow-flowing streams (Larson et al., 2000). The remaining
group, ‘Eurytopic’, includes a series of taxa that are found in a wide
variety of habitats.

In the context of a palaeoecological reconstruction, where the aim is
to evaluate local ecological conditions, it is important to pay special
attention to species micro-habitat preferences (cf. Forbes and Sikes,
2018). Obligate synanthropes such as those infesting stored food pro-
ducts in northern and continental Europe are typically absent from
northern indigenous foragers sites (Forbes et al., 2015, 2017), where
they appear to be replaced by indigenous species living in nutrient-rich
microhabitats. Hence, those taxa from the Nunalleq palaeoentomolo-
gical assemblage that are known to be associated specifically to niches
provided by decomposing organic matter (e.g. decaying vegetation, leaf
litter, rotting fungi, carrion, dung) have been highlighted in red font

Fig. 6. Percentage diagrams comparing the
proportion of each ecological group (as defined
in Fig. 5) throughout the Nunalleq profile: (a)
including all five ecological groups, (b) ex-
cluding eurytopes and (c) showing the propor-
tion of taxa associated with microhabitats
available in decaying organic matter (in red, as
in Fig. 5). (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the Web version of this article.)

Table 2
Results of the MCR climatic reconstruction for each sample analysed from the
profile.

Sample depth
(cm)

Age of sample
(cal. AD)

TMAX (ᵒC) TRANGE (ᵒC) TMIN (ᵒC)

Min Max Min Max Min Max

11–13 1905 10.9 15.5 26.8 43.2 −32.3 −11.3
15–17 1850 10.9 15.1 267 42.2 −31.3 −11.6
17–19 1815 9.4 12.1 29.2 36.5 −27.1 −17.1
19–21 1785 9.5 14.3 29.2 42.2 −32.7 −14.9
21–23 1735 9.5 12.8 29.2 42.2 −32.7 −16.4
23–25 1680 9.0 14.2 29.2 43.0 −34.0 −15.0
25–27 1640 10.4 14.4 29.6 41.2 −30.8 −15.2
27–29 1605 12.2 14.2 30.2 42.2 −30.2 −16.0
29–31 1570 11.8 12.2 35.5 37.8 −26.0 −23.3
31–33 1540 11.5 13.3 30.0 36.8 −25.3 −16.7
33–35 1510 8.8 14.3 29.0 43.0 −34.2 −14.7
35–37 1490 8.8 14.3 29.1 43.2 −34.4 −14.8
37–39 1465 9.2 14.5 29.5 42.2 −32.9 −15.0
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(Fig. 5). Most of the taxa included in the ‘Mesic’ group and close to half
of those in the ‘Hygro-riparian’ group are thus considered members of
the decomposer fauna. A large proportion of taxa in the ‘Eurytopic’
group may also be considered decomposers.

4.2. Palaeoenvironmental reconstruction

Our dataset encompasses the mid-15th to the early 20th century,
and ends just prior to the beginning of instrumental records in the Y-K
delta from the weather station at Bethel Airport (Fig. 2). Palynological
analysis of the Nunalleq peat profile identifies evidence for human
activity and occupation of the archaeological site from a depth of
33 cm, dating to c. AD 1490–1660. The end of occupation is difficult to
ascertain from the palynological record, however, it likely occurs at
21 cm, between AD 1725 and 1815 (Ledger, 2018). These age ranges
are in agreement with the findings of radiocarbon dating from the ar-
chaeological site (Ledger et al., 2018). The sedimentary profile there-
fore encapsulates the entirety of the Nunalleq occupation and provides
both pre- and post-occupational palaeoenvironmental and climatic
baselines to human activity at the site.

Insect assemblages from the lower part of the peat profile suggest
that local ecological conditions were wetter prior to the occupation of
the site (pre- AD 1490–1660), with dytiscids forming about 5% of these
assemblages (Fig. 6). From the time of the site's occupation to the end of
the sequence, assemblages are dominated by the ‘Mesic’ group and
‘Hygro-riparian’ groups, which suggest moist to humid conditions, such
as occurs in the area at the present-day, which is characterised by wet
tundra. The proportion of beetles associated with decomposing organic
matter microhabitats is high throughout the profile, but it is remarkably
higher (reaching more than 80% of the assemblage) in the interval
between 20 and 32 cm, which correspond to the period of occupation of
the site. We interpret this as evidence for nutrient-enrichment of the
bog in the vicinity of the occupation site, likely derived from trampling,
disturbance and the transport, processing and deposition of organic
materials (e.g. hunted animals, sod, grass, dog and human faeces) on
the ground. The detailed palaeoecological implications of this dataset
will be the object of a forthcoming paper, which will compare faunas
from the peat profile with those extracted from occupation floors layers
from the sod dwelling's interior at Nunalleq.

4.3. Climatic reconstruction

Thirty-seven of the identified taxa, all of which represent scavengers
and/or predators, were included in the climate reconstruction (see SI1).
On the basis of the MCR envelopes (SI2), mean summer (TMAX) and
winter (TMIN) temperature variation was reconstructed (Table 2, Figs. 7
and 8).

4.3.1. Summer temperatures
For the most part, the reconstructed mean summer temperatures

throughout the sequence were marked by wide MCRs. A majority of
samples produced TMAX estimates with ranges of between 3.0 °C and
6.5 °C and results that encompassed both the early 20th century and
modern summer means (Fig. 7). Nevertheless, there are three samples
from which the Coleoptera assemblages permitted reconstructions of
TMAX with MCRs of between 0.4 °C to 2.7 °C.

The temperature reconstruction can be sub-divided into three main
parts: the pre-occupation baseline, the occupation period and the post-
occupational period. The results from the pre-occupation period pro-
duce very similar TMAX values, estimating mean summer temperatures
at somewhere between 8.8 °C and 14.5 °C for the period from cal. AD
1465–1510. The TMAX values for the first few decades of settlement
from cal. AD 1540 are more precise. The first sample from the occu-
pation period (31–33 cm) indicates mean summer temperatures some-
where between 11.5 °C and 13.3 °C during the early years of occupation
at Nunalleq. The TMAX value from 29 to 31 cm (cal. AD 1570) indicates

mean summer temperatures were somewhere between 11.8 °C and
12.2 °C. From this point onwards TMAX estimates become less con-
strained. Despite this, it is possible to deduce that the latter part of the
late 16th century and early 17th century were characterised by stabi-
lity, or potentially a slight warming. Sample 27–29 cm (cal. AD 1605)
provides a TMAX estimate of between 12.2 °C and 14.5 °C and the lower
end of this estimate equals the maximum value from the preceding
sample. For the remainder of the occupation period, the data is less
constrained, with TMAX values varying from 9.0 °C to 14.4 °C.

There is little change for the period immediately following site
abandonment. However, there is potential evidence for cooling at the
turn of the 19th century. The sample from 17 to 19 cm (cal. AD 1815)
indicates mean summer temperatures at somewhere between 9.4 °C and
12.1 °C. The latter 19th century and early 20th century is then notable
for a possible warming trend with TMAX estimates of between 10.9 °C
and 15.5 °C. Indeed, the TMAX value obtained from the last sample of the
profile (cal. AD 1920) is remarkably consistent with temperature
measurements for the period 1923–1980.

Fig. 7. Summer climate variation in the Y-K delta during the period AD
1465–2016. Square markers indicate the samples analysed is this study with the
shaded red envelope between these points indicating the mutual climatic range
of the Coleoptera in each sample. The red line tracks the mean July temperature
at the Bethel Airport Weather Station between AD 1923 and 2016. The dashed
and dotted lines respectively illustrate the early 20th century (AD 1923–1952)
and modern (1983–2016) July means. (For interpretation of the references to
colour in this figure legend, the reader is referred to the Web version of this
article.)

Fig. 8. Winter climate variation in the Y-K delta during the period AD
1465–2016. Square markers indicate the samples analysed is this study with the
shaded red envelope between these points indicating the mutual climatic range
of the Coleoptera in each sample. The blue line tracks the mean January tem-
perature at the Bethel Airport Weather Station between AD 1927 and 2017. The
dashed and dotted lines respectively illustrate the early 20th century (AD
1923–1952) and modern (1983–2016) July means. (For interpretation of the
references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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4.3.2. Winter temperatures
Caution must be exercised when interpreting TMIN values re-

constructed from beetle subfossil assemblage in coastal regions of the
boreo-arctic zones. MCR reconstructions of modern beetle assemblages
have been demonstrated to produce TMIN estimates that are much lower
than observational data. This is likely a result of beetles adapted to
living in the boreo-arctic zone being able to enter a phase of dormancy
and/or seek shelter from the cold during the winter (Elias, 2010; Elias
et al., 1999a). In addition, it has been shown that modern beetle faunas
from coastal regions in Alaska represent species that are able to with-
stand extreme cold weather events that occur for a few days or weeks of
the winter, rather than species that would normally be associated with
the relatively mild winter temperatures associated with oceanic climate
(Elias et al., 1999a). The reconstruction of mean winter temperatures
must therefore be viewed as a crude estimate of winter temperature
variation.

Our results suggests that from the mid-15th to the early 16th cen-
tury, prior to the human occupation at Nunalleq, January mean tem-
peratures varied from c. −14.7 °C to −34.2 °C. Data for the latter half
of the 16th century (Fig. 8; Table 2), which is contemporary with the
beginning of occupation at Nunalleq, indicate a cooling or ameliorating
climate. At around cal. AD 1540, TMIN is estimated at between−16.7 °C
and −25.3 °C and between −23.3 °C and −26.0 °C at cal. AD 1570.
The remainder of the record towards the beginning of the 19th century
is characterised by highly constrained estimates of TMIN with maxima
ranging from −14.9 °C to −17.1 °C and minima of between −27.1 °C
to −34.0 °C (Table 2). The final samples from the profile produce es-
timates for TMIN of between −11.3 °C and −32.3 °C that may equally
indicate warming or cooling winters.

5. Discussion

5.1. Comparing the modern and palaeoclimate of the Y-K delta

The earliest and longest instrumental temperature series for the Y-K
Delta is from Bethel Airport, with continuous recording of summer
(July) temperatures from 1923 and winter (January) temperatures from
1929 (Fig. 2). Summer means for the early 20th century (1923–1952)
and mid-20th century (1953–1982) indicate only minor evidence of
warming with respective July means of 12.5ᵒC and 12.6ᵒC. In contrast,
the modern period mean (1983 to present) is markedly higher at 13.4ᵒC
and is neatly illustrated in Fig. 2 as a sharp increase in the cumulative
summer temperature departures from the early 20th century mean. On
this basis, we calculated both the winter and summer departure of our
MCR-derived TMAX and TMIN values from the early 20th century
(1923–1952) and modern (1983–2016) means (Fig. 9).

The clearest trend from the dataset is that the summer climate of the
Y-K delta from the mid-15th to late 19th century was, in all likelihood,
cooler than that of the 20th century. There are no instances where the
minimum values of the reconstructed TMAX exceed either the early 20th
century or modern means. Indeed, in all instances (with exception of
the late 19th/early 20th century), the majority of the range of TMAX is
lower than both 20th century reference periods (Fig. 9a, c). There are
two points when mean summer temperatures in the Y-K delta were
definitively cooler than in the early 20th century. The first of these
occurs at the onset of the occupation of the Nunalleq site (c. cal. AD
1570), when TMAX was ≥0.3ᵒC below the early 20th century mean.
Similarly, summer temperatures for the early 19th century (cal. AD
1815) were ≥0.4ᵒC cooler than the early 20th century (Fig. 9a). A
comparison of the same data with the modern mean (Fig. 9c) highlights
a further two periods in which past mean summer temperatures were
cooler than the present. The earliest occupation at Nunalleq was
characterised by a summer climate of ≥0.1ᵒC cooler at cal. AD 1540,
which deteriorated further to ≥1.2ᵒC cooler by cal. AD 1570. The
period immediately prior to abandonment of the site (cal. AD 1735) was
also significantly colder (≥0.6 °C) than the modern mean. Although the

majority of the palaeoclimate reconstruction is strongly suggestive of
temperatures cooler than those of the 20th century, there is also a hint
of climatic warming from the mid-19th century. The TMAX of the final
two samples from the profile, dating from cal. AD 1850 and cal. AD
1910, indicate summer temperatures in the respective range of 10.9 °C
to 15.1 °C and 15.5 °C (Table 2). These values generally encompass the
respective minimal and maximal 20th century summer means (Figs. 2
and 9a, c) of 10.3 °C (July 1928) and 16.2 °C (July 2004).

Our reconstructed TMIN estimates suggest that the January mean at
Nunalleq was consistently lower than both the early 20th century and
modern mean July temperatures (Fig. 9b and d), but this is likely to be
an artefact of the systematic underestimation of reconstructed TMIN

values from beetle subfossil assemblages from coastal Alaska (cf. Elias
et al., 1999a). Nevertheless, these data also suggest that there are three
periods during which winter temperatures may have been significantly
colder than during the rest of the sequence. These periods of possible
extreme cold are centred on the onset of occupation (cal. AD 1570),
immediately following abandonment (cal. AD 1735) and approximately
a century later (cal. AD 1815).

5.2. How does the Nunalleq palaeoclimate compare with elsewhere in
Alaska?

Climate changes of the past millennium in Arctic and sub-Arctic
Alaska have been examined across a range of geographic locations
through lake sediments studies (using a variety of proxy data), den-
drochronology and glacial geomorphology (Overpeck et al., 1997;
Mann et al., 1998; Hinzman et al., 2005; Wiles et al., 2008). Compar-
able to elsewhere in the Northern Hemisphere, these studies identify
climatic trends of the past 1000 years that can be broadly divided into
three periods. First is the relatively warm climate of the MCA (AD
900–1350), which is followed by LIA cooling centred on AD
1350–1900. Recent anthropogenic- driven warming is then traced to
the late 19th century, a process which in most places accelerated from
the 1970s onwards (Hinzman et al., 2005). This is a simplified picture
however, as palaeoclimate records present regional and local responses
to global changes in atmospheric and oceanic conditions. The Nunalleq
palaeoclimate reconstruction (cal. AD 1460–1910) covers the latter of
these two periods: LIA cooling and recent anthropogenic warming,
while the occupation of Nunalleq (cal. AD 1570–1670) was centred on
the LIA.

Despite an abundance of palaeoclimatic records available from
across Alaska, many focus on earlier periods such as the Pleistocene and
early Holocene (e.g. Kuzmina et al., 2008; Elias et al., 1999b), or are
poorly resolved for the modern period (e.g. Brubaker et al., 2001). Few
studies of the past millennium present palaeo-temperature reconstruc-
tions – instead the majority make palaeoclimate inferences on the basis
of departures from long-term trends within datasets. Examples from a
similar latitude to Nunalleq include changes in the diatom flora of
Ongoke Lake (c. 150 km east of Nunalleq), which imply LIA cooling
between AD 1530 and 1740 (Chipman et al., 2009), and low δ18O
within diatoms from Mica Lake (c. 750 m east) at AD 1700–1900 (Schiff
et al., 2009). Palaeoclimatic inferences derived from geomorphological
mapping of moraines are also common, such as in the Akhlun Moun-
tains (c. 150 km east of Nunalleq) where the LIA is placed at AD
1300–1750 (Levy et al., 2004). Further east, around Western Prince
William Sound, the LIA is dated to AD 1600–1750 (Wiles et al., 1999),
while in south-central Alaska glacial advance linked to the LIA is noted
in two phases at AD 1420–1520 and AD 1650–1750 (Wiles et al., 2008).
These data are broadly in agreement with the findings from Nunalleq,
which identifies three periods, centred on AD 1540–1570, AD 1740 and
AD 1810, when summer temperatures were colder than the modern
mean. Indeed, it is worthwhile highlighting that the Nunalleq data
identify similar trends to those observed at nearby Ongoke Lake by
Chipman et al. (2009).

The nearest available palaeo-temperature reconstruction is from
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Farewell Lake, approximately 540 km northeast of Nunalleq (Fig. 1). Hu
et al. (2001) present evidence for significant temperature change from
c. AD 1550 that culminated at AD 1700 with temperatures 1.7 °C lower
than present. Whilst the beginning of LIA cold at Farewell Lake is
comparable from observations from Nunalleq, the deepest cold of our
record, 1.3 °C below the modern mean, is significantly warmer and
occurs over a century later at c. AD 1815 (Fig. 9, Table 2). This is
perhaps unsurprising given the coastal aspect of Nunalleq relative to
the montane continental Farewell Lake. Approximately 1100 km east,
varve-based temperature reconstructions from Blue Lake identify the
LIA around AD 1620–1720 with mean annual temperatures of 1.0 °C
below the 1950–2005 annual mean (Bird et al., 2009). Similarly, ob-
servations from nearby Iceberg Lake place the coldest part of the LIA
around AD 1650 (Loso, 2009). The LIA, as manifested in eastern Alaska,
therefore appears to have been shorter and moderately less intense than
at Nunalleq. At more northerly latitudes (c. 66–68°N), a series of studies
(including tree ring record and isotopic studies) present a different story
to Nunalleq. At Site 412, Arrigetch Peaks and Dune Lake (Fig. 1), LIA
cooling does not really begin until the mid-17th century and persists
well into the late 19th century (D'Arrigo and Jacoby, 1989; Overpeck
et al., 1997). Conversely at Sheenjek, the period between AD 1675 and
1800 was notable for surface air temperatures of up to 1 standard de-
viation greater than the early 20th century mean. Evidence for the LIA
at this site is not apparent until the beginning of the 19th century
(D'Arrigo and Jacoby, 1989).

6. Conclusions

Climatic change associated with the LIA is frequently implicated in

interpretative paradigms of the archaeological record of Arctic and sub-
Arctic regions. Yet despite evidence showing that the intensity and
occurrence of the LIA is both temporally and spatially transgressive,
site-based palaeoclimate data are rare. Typically, palaeoclimatic pat-
terns established at a geographically proximate location are extra-
polated to the archaeological site in question to form an interpretative
canvas. In instances where the geography (i.e. elevation, latitude,
ecology) of an archaeological site is comparable with the source of the
extrapolated data, or the site occurs within a region with a dense net-
work of internally coherent palaeoclimate data, this approach is de-
fensible. However, where local, or geographically similar studies are
absent, and notwithstanding the chronological uncertainties of trans-
posing datasets, such an approach is problematic. In the case of
Nunalleq, the nearest available palaeoclimate data are from a series of
interior montane lakes, making local palaeoclimatic data essential.

To this end we undertook a high (contiguous 2 cm) resolution study
of the Coleoptera fauna of a peat profile within the immediate vicinity
of the archaeological site of Nunalleq. Through the MCR method, we
reconstructed palaeo-temperature change at approximately 20–50 year
intervals, spanning the period of prehistoric Yup'ik occupation. Precise
MCR climate reconstructions rely on the preservation and recovery of
the diversity of past beetle faunas in a geographic location. Typically,
this is achieved by means of large sample volumes collected using a
coarse vertical sampling resolution of c. 4–5 cm, an approach which
results in low (> 50 yr) chronological resolution and smooths variation
within a dataset. The occupation of Nunalleq likely spanned a century,
thus we aimed to maximise chronological resolution through the col-
lection of smaller-volume samples, accepting the potentially reduced
precision of the palaeoclimatic reconstruction. Summer temperature

Fig. 9. (a) Summer and (b) winter temperature departures from the early 20th century (1923–1952) July mean. (c) Summer and (d) winter temperature departures
from the modern (1983–2016) July mean. The shaded envelopes indicate the mutual climatic range departures from the respective means. Red and blue lines present
climatic data from Bethel Weather Station and respectively track July and January departures from the means. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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estimates for the beginning and end of occupation at Nunalleq, in the
late 16th and early 18th centuries, are relatively well constrained and
reconstructed to have been up to 1.3ᵒC cooler than that of the present.
The palaeoclimate of the intervening period is less clearly resolved, but
in all likelihood was cooler than that of the present. A comparison of
these findings with those from elsewhere in Alaska underline the im-
portance of localised palaeoclimate data. In the nearby Akhlun
Mountains, the beginning of the LIA is suggested from as early as 14th
century, while in parts of eastern and northern Alaska, a mid-18th
century date is possible.

Many questions remain regarding the influence of LIA climate
change on the human occupational history of the Y-K Delta. Although a
deteriorating LIA climate has traditionally been implicated as a causal
factor in the Yup'ik Bow and Arrow Wars of the late prehistoric period,
the evidence presented here neither supports nor contradicts this con-
clusion. The beginning of occupation and destruction of Nunalleq were
characterised by a similarly cooler summer climate than the present.
Therefore, it remains unclear whether the changes in architecture and
material culture observed at the site were influenced by colder climatic
conditions or not. Similarly, palaeo-temperature may not have been the
most limiting climate factor influencing lifeways. For instance, changes
in sea ice and/or storm regimes may well have been the true palaeo-
climatic drivers at Nunalleq. Therefore, the temperature reconstruc-
tions presented here provide the first steps towards a higher resolution
understanding of the relationship between LIA climate and human oc-
cupational history of Nunalleq and the surrounding Y-K Delta region.
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