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Abstract The aim of this paper is to recast the heat equation with boundary control and
observation in the port-Hamiltonian formalism. The anisotropic and heteregenous case in an
n-D geometrical domain is systematically developped. Three different points of view are
presented. The first two are thermodynamically founded, taking either entropy or energy as
Hamiltonian functional. With the choice of entropy, the second principle can be recovered.
With the choice of energy, following Zhou et al. (2017), extra physical variables are introduced
allowing to recover the first principle. The third formulation is classical from a mathematical
perspective, although less meaningful physically speaking; however the Hamiltonian proves to
be a Lyapunov functional, which is useful for boundary control purposes. Moreover, all these
three formulations can be discretized with a structure-preserving scheme, as presented in the
companion paper Serhani et al. (2019a).

Keywords: Port-Hamiltonian System, Heat Equation, Thermodynamics, Boundary Control

1. INTRODUCTION

Port-Hamiltonian systems (pHs) have proved very efficient
for the modeling and control of complex multiphysics
systems (Maschke and van der Schaft (1992); Duindam
et al. (2009)). It allows in particular to tackle the problem
of model-based controllers design. The approach relies
on a functional, namely the Hamiltonian, which encodes
physical information about the system; a geometrical in-
terconnection stucture is another key ingredient of the
approach. This leads to a useful power balance, and in
particular to the relevant ways to control and observe
the system (w.r.t. this choice of Hamiltonian). Modularity
is a salient feature of pHs: interconnecting two of them
through their ports (boundary input/control and bound-
ary output/observation for instance) leads to a new pHs.
A Hamiltonian for the obtained pHs is easily computed
from the Hamiltonians of the subsystems. Hence the power
balance of complex systems can be obtained from the
power balances of the simpler subsystems. Furthermore,
the pHs formalism allows to tackle non-linear systems
(van der Schaft and Jeltsema (2014)).

It has to be noted that this formalism lies half-way
between physics and mathematics. It aims at taking into
account the geometrical structure of the system under
consideration, together with the physical meaning of the
variables or fields used for its description. In particular, it
put aparts physical laws (such as conservation law, balance

? This work has been performed in the frame of the Collaborative
Research DFG and ANR project INFIDHEM n◦ ANR-16-CE92-0028
(http://websites.isae.fr/infidhem).

equation, etc.), parameters (such as diffusivity coefficient,
mass density, etc.), and constitutive relations (such as
Ohm’s law, Fourier’s law, etc.).

The terminology pHs comes from dynamical systems
driven by Hamilton’s equation in finite dimension. The
energy variables are the generalized momenta and posi-
tions, and the flows are their time derivatives. Taking
the mechanical energy as Hamiltonian, one can derive the
efforts through its gradient and obtain a system of the
form (1) below: see e.g. van der Schaft and Jeltsema (2014)
for an introduction to this formalism.

In the last two decades, a wide literature has grown
around pHs formalism. It has been generalized to infinite-
dimensional systems (van der Schaft and Maschke (2002);
Duindam et al. (2009); Jacob and Zwart (2012)), to
tackle space-time dynamics. Other types of Hamiltoni-
ans than the physical energy have been used (see for
instance van der Schaft and Maschke (2018)), leading to
different kinds of information about the system under
study. We can note that the description we use here is
not the more general framework of pHs, but it is sufficient
for our purpose. A more recent topic is to provide accu-
rate discretization methods (both in time and space) to
preserve this powerful formalism. Several strategies have
been tested to this aim, as the finite difference method
(Kotyczka (2018)), the finite volume method (Kotyczka
et al. (2018)) and the finite element method (Cardoso-
Ribeiro et al. (2018)) for instance. The latter is both an
easy to implement and accurate way to proceed in so far
as it can be structure-preserving when making use of the
Partitioned Finite Element Method (PFEM), as will be



proved in the companion paper Serhani et al. (2019a); this
method is fully detailed in Cardoso-Ribeiro et al. (2019)
for conservative systems, and has recently been extended
to dissipative systems in Serhani et al. (2019c).

In this work, we aim to apply the pHs formalism to the
heat equation in the anisotropic and heteregenous case, in
an n-D geometrical domain; the choice of three different
Hamiltonian functionals leads to three different points
of view, which prove complementary. The first two are
thermodynamically founded: the entropy and the internal
energy, while the third one is less meaningful physically
speaking, but enjoys an interesting behavior on a mathe-
matical level. The latter should be rather considered as
a candidate Lyapunov functional for boundary control
purposes. In the three cases, thermodynamical laws (i.e.
constitutive relations) are needed to close the system; they
strongly rely on the context (we can think for instance
of Dulong-Petit, Einstein or Debye models, linking the
internal energy to the temperature, and to Fourier’s law or
Cattaneo’s law linking the heat flux to the temperature).
In other words, relevant constitutive relations are needed
for the physical case under study. However, with the pHs
formalism, since constitutive relations are put apart, this
need can happily be postponed. As will be seen in Serhani
et al. (2019a), an interesting consequence at the numerical
level is that the work on the discretization of the physical
laws comes first, while the discretization of the constituve
relations comes at the end of the strategy.

Mathematically, the Hamiltonian H depends on what are
called energy variables, typically extensive variables for the
problem under study. Taking the variational derivatives
(an analogue of the gradient in finite dimension) of H with
respect to the energy variables gives the co-energy vari-
ables, typically intensive variables. Using physical laws,
these variables allow to write a system into the following
form (which can be called boundary pHs)

−→
f = J−→e , v∂ = B−→e , y∂ = C−→e , (1)

where

•
−→
f are the flows,

• −→e are the efforts,
• J is a formally skew-symmetric operator,
• B is a control operator,
• C is an observation operator,
• v∂ is the control (or input, or actuation),
• y∂ is the observation (or output, or measurement).

All vector fields and related quantities will be denoted in
bold with an arrow.

Parameters are contained in the definitions of
−→
f and−→e , while J is a structure operator which can involve

spatial derivatives but does not contain any parameter.
Moreover, some extra constitutive relations between

−→
f

and−→e are needed to close the system (possibly introducing
new physical parameters) in order to be able to solve it.

The operators B and C are typically boundary opera-
tors, such as boundary trace operators (hence the name
boundary pHs and the ∂ index for v∂ and y∂). In suitable
functional spaces, B and C have to satisfy a relation with
respect to the operator J ; roughly speaking this relation
corresponds to the default of skew-adjointness. We do not

enter in these mathematical considerations further, since
this is not the topic of this paper (see for instance Kurula
and Zwart (2015)). Keep in mind that this is closely related
to the following Green formula in our case of interest:∫

Ω

f div(−→g ) +

∫
Ω

−−−→
grad(f) · −→g =

∫
∂Ω

f −→g · −→n ,

where Ω ⊂ Rn is an open connected set and −→n its outward
unit normal.

The paper is organized as follows. In Section 2, the ther-
modynamical setting is presented and the useful notations
are introduced. Then, the three continuous models, based
on physical laws, are rewritten in the pHs formalism. In
Section 3, the choice of entropy as Hamiltonian leads to
an anti-dissipative closed system, or an accrescent open
system. In Section 4, the choice of internal energy as
Hamiltonian leads to a conservative closed system, or a
lossless open system. In Section 5, the choice of a weighted
L2 functional of the internal energy density leads to a
dissipative closed system, or a lossy open system. We
conclude in Section 6 with a discussion on the comparison
of the three points of view, and propose some interesting
perspectives.

2. THERMODYNAMICAL HYPOTHESES AND
NOTATIONS

All the thermodynamical material listed in this section can
be found in e.g. Bird et al. (2002).

Let Ω ⊂ Rn be a bounded open connected set, n ≥ 1,
with mass density ρ(x), for all x ∈ Ω; and −→n denotes the
outward unit normal on the boundary ∂Ω. We suppose
that this domain does not change over time, i.e. we work
at constant volume. No chemical reactions are to be found
in the domain.

Let us denote

• u the internal energy density,
•
−→
J Q the heat flux,

• T the local temperature,

• β :=
1

T
the reciprocal temperature,

• s the entropy density,
•
−→
J S := β

−→
J Q the entropy flux,

• CV :=

(
du
dT

)
V

the isochoric heat capacity.

The first law of thermodynamics reads

ρ(x)∂tu(t,x) = − div
(−→
J Q(t,x)

)
, ∀t ≥ 0, x ∈ Ω. (2)

Under our hypothesis, Gibbs formula reads dU = T dS,
i.e.

∂tu(t,x) = T (t,x) ∂ts(t,x), ∀t ≥ 0, x ∈ Ω. (3)

Considering u as a function of the entropy s, and using
Gibbs formula (3), we get for all t ≥ 0 and all x ∈ Ω

ρ(x) ∂ts(t,x) = − div
(−→
J S(t,x)

)
+ σ(t,x) , (4)

where σ :=
−−−→
grad (β) ·

−→
J Q is the irreversible entropy

production.



In the sequel, we will often take a look at what is obtained
when using Fourier’s law as constitutive relation:
−→
J Q(t,x) = −λ(x) ·

−−−→
grad (T (t,x)) , ∀t ≥ 0,x ∈ Ω, (5)

where λ is a tensor representing the thermal conductivity;
it is a positive symmetric tensor thanks to Onsager’s recip-
rocal relations. Note that the use of a tensor enables deal-
ing with anisotropic media. Usual (i.e. isotropic) Fourier’s
law can be recovered with λ = λ0I, where I is the identity
tensor.

With the above material, and in particular assuming (5),
the classical PDE for the temperature T can be easily
recovered: for all t ≥ 0 and all x ∈ Ω,

ρ(x)CV (t,x) ∂tT (t,x) = div
(
λ(x) ·

−−−→
grad (T (t,x))

)
. (6)

This equation will serve later as a reference for the numer-
ical simulations, since it is classical and easy to discretize
with the finite element method (at least when CV is time-
invariant, as supposed in the Dulong-Petit model).

3. ENTROPY FORMULATION

Let us see the entropy density s as a function of the internal
energy density u, and define the entropy of the system as
Hamiltonian functional, i.e.

S(t) :=

∫
Ω

ρ(x) s(u(t,x)) dx , (7)

for all t ≥ 0, with u as energy variable. By definition, the
co-energy variable is given by the variational derivative of
S w.r.t. u in the weighted L2

ρ(Ω) space (i.e. with measure
ρ(x) dx, an important point to take in account when
making use of Riesz representation theorem); by Gibbs
formula (3), we get:

δuS =
ds
du

= β .

Thus, thanks to (3) and (4), one computes

dtS(t) =

∫
Ω

ρ(x)∂tu(t,x)β(t,x) dx,

=

∫
Ω

ρ(x)∂ts(t,x) dx,

= −
∫

Ω

div
(−→
J S(t,x)

)
dx +

∫
Ω

σ(t,x) dx,

= −
∫
∂Ω

−→
J S(t, γ) · −→n (γ) dγ +

∫
Ω

σ(t,x) dx,

= −
∫
∂Ω

β(t, γ)
−→
J Q(t, γ) · −→n (γ) dγ

+

∫
Ω

σ(t,x) dx .

The last equality comes from the definition of
−→
J S . This

relation expresses the power balance associated to the
entropy as Hamiltonian. In particular, by the second law of
thermodynamics, we can see that

∫
Ω
σ has to be positive.

However, this requires a constitutive relation, for instance
between

−−−→
grad(β) and

−→
J Q (in view of the definition of σ),

to conclude.

With Fourier’s law (5) as constitutive relation, we obtain

dtS(t) =

∫
∂Ω

β(t, γ)
(
λ(γ) ·

−−−→
grad (T (t, γ))

)
· −→n (γ) dγ

+

∫
Ω

β(t,x)2−−−→grad (T (t,x)) · λ(x) ·
−−−→
grad (T (t,x)) dx.

So that
∫

Ω
σ is indeed positive, since λ is a positive

symmetric tensor.

Moreover, the latter power balance suggests one possible
definition for the boundary ports of the pHs in terms of
the Dirichlet trace of the reciprocal temperature β, and
the normal trace of the heat flux

−→
J Q at the boundary ∂Ω

of the domain.

Define fu := ∂tu as the first flow, associated to the energy
variable u. By definition of the co-energy variable, the dual
effort is eu := β. Since the relation ρfu = − div

−→
J Q must

be fulfilled, we also define the effort −→e Q :=
−→
J Q. Thus,

with the following definition
−→
f Q := −

−−−→
grad (β), this leads

to (
ρfu−→
f Q

)
=

(
0 − div

−
−−−→
grad 0

)(
eu−→e Q

)
. (8)

Remark that no additional hypothesis is needed at this
stage. Flows and efforts are defined in order to make
a link between the quantities through a skew-symmetric
operator. In particular, the equality

−→
f Q = −

−−−→
grad(eu)

(which in turn is only algebraic and not dynamic) will
not help solve the system without resorting to an extra
constitutive relation linking

−→
f Q and−→e Q (such as Fourier’s

law (5) for instance). At first glance, this could seem a bit
redundant, even unnecessarily complicated, but it leads to
the powerful structure (1) described in the introduction.

A technical point to discuss is why fu is defined by fu :=
∂tu, and not by fu := ρ∂tu? Indeed, the latter definition
seems more straightforward, in view of (1). However, we
work in L2

ρ to define eu. Thus fu := ∂tu indeed, but in
L2
ρ(Ω), roughly speaking, and so (1) is true in appropriate

functional spaces. The multiplication of the flow fu by ρ
is then done, so as to work back in the L2(Ω) space, which
will be more practical in the discretization process.

Concerning the choice of boundary ports, we refer to
Le Gorrec et al. (2005) for a full caracterization of all
the possible boundary ports for 1D linear systems. Here
in n-D, there are at least two straightforward choices,
although more general ones could be investigated. For the
first choice, B−→e := eu|∂Ω

, and C−→e := −(−→e Q · −→n )|∂Ω
, i.e.

the boundary control is the reciprocal temperature, and
the boundary observation is the heat flux. For the second
choice, B−→e := −(−→e Q · −→n )|∂Ω

, and C−→e := eu|∂Ω
, i.e.

the boundary control is the heat flux, and the boundary
observation is the reciprocal temperature. Note that the
choice of the signs is a convention (control or observe the
inward flux).

With these notations at hand, we get the power balance
in terms of the pHs variables

dtS(t) =

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ

−
∫

Ω

−→
f Q(t,x) · −→e Q(t,x) dx. (9)



With −
∫

Ω

−→
f Q(t,x) · −→e Q(t,x) dx =

∫
Ω
σ ≥ 0, the closed

system is anti-dissipative, i.e. dtS(t) ≥ 0, and the open
system is accrescent, i.e. dtS(t) ≥ (v∂(t), y∂(t))L2(∂Ω) =

−
∫
∂Ω
eu|∂Ω

(−→e Q · −→n )|∂Ω
dγ.

4. ENERGY FORMULATION

Now, let us see the internal energy density u as a function
of the entropy density s, and define the internal energy of
the system as Hamiltonian functional, i.e.

U(t) :=

∫
Ω

ρ(x)u(s(t,x)) dx , (10)

for all t ≥ 0, with s as energy variable. The same strategy
as in the previous section is now being applied.

The co-energy variable is given by the variational deriva-
tive of U w.r.t. s:

δsU =
du
ds

= T .

Hence, from Gibbs formula (3) and (2), one computes

dtU(t) =

∫
Ω

ρ(x)∂ts(t,x)T (t,x) dx,

=

∫
Ω

ρ(x)∂tu(t,x) dx,

= −
∫

Ω

div
(−→
J Q(t,x)

)
dx,

= −
∫
∂Ω

−→
J Q(t, γ) · −→n (γ) dγ,

= −
∫
∂Ω

T (t, γ)
−→
J S(t, γ) · −→n (γ) dγ.

This latter power balance suggests to define the boundary
ports of the pHs in terms of the Dirichlet trace of the
temperature T , and the normal trace of the entropy flux−→
J S at the boundary ∂Ω of the domain.

Define fs := ∂ts as the first flow, associated to the energy
variable s. By definition of the co-energy variable, the
dual effort is es := T . Since ρfs = − div

−→
J S + σ must

be fulfilled, we also define the effort −→e S :=
−→
J S . Now,

defining
−→
f S := −

−−−→
grad (T ) leads to:(

ρfs−→
f S

)
=

(
0 − div

−
−−−→
grad 0

)(
es−→e S

)
+

(
σ
0

)
.

In this formulation though, σ appears as a right-hand side,
and seems to be disconnected from the physical system
itself, whereas it should be intimately linked to it, since
σ :=

−−−→
grad (β) ·

−→
J Q. Hence, following Zhou et al. (2017);

Zhou (2015), the system can be extended by introducing a
new effort variable eσ := −σ and its related flow fσ := T ,
in order to obtainρfs−→f S

fσ

 =

 0 − div −1

−
−−−→
grad 0 0
1 0 0

 es−→e S
eσ

 . (11)

Note again that no additional hypothesis is needed at
this stage, but only the definition of flows and efforts
fitting into the pHs framework. Obviously, the J operator
obtained in (11) is formally skew-symmetric.

Concerning the possible definition of the boundary ports,
here again there are at least two choices, even though more

general ones could be investigated. Either B−→e := es|∂Ω
,

and C−→e := −(−→e S · −→n )|∂Ω
, i.e. we control the temperature

and observe the entropy flux. Or B−→e := −(−→e S · −→n )|∂Ω
,

and C−→e := es|∂Ω
, i.e. we control the entropy flux and

observe the temperature.
Proposition 1. Extended system (11) with the boundary
ports v∂ = B−→e and y∂ = C−→e in the above definitions
gives rise to a Stokes-Dirac structure.

The proof is quite lengthy, but it closely follows (Zhou
et al., 2017, Prop. 4.2), so it is not being reproduced here.

Proposition 1 implies that∫
Ω

ρfses +
−→
f S · −→e S + fσeσ dx =

∫
∂Ω

v∂ y∂ dγ .

System (11) has one dynamical equation, and two alge-
braic equations. In order to solve them, one initial con-
dition and two closure equations are needed. Indeed, the
definition of σ translates into the first closure equation:

−→
f S · −→e S + fσeσ = 0 . (12)

Moreover, Fourier’s law gives a second closure equation:

es
−→e S = λ ·

−→
f S .

For a thorough thermodynamically oriented interpretation
of these two closure equations, see the enlightening re-
mark (Zhou et al., 2017, Rem. 1), which does also apply
to our context.

With these notations at hand, we get the following power
balance in terms of the pHs variables:

dtU(t) =

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ. (13)

Note that, according to the first law of thermodynamics,
the internal energy of the isolated system is constant, the
closed system is conservative, i.e. dtU(t) = 0, while the
open system is lossless, i.e. dtU(t) = (v∂(t), y∂(t))L2(∂Ω) =

−
∫
∂Ω
es|∂Ω

(−→e S · −→n )|∂Ω
dγ.

5. LYAPUNOV FORMULATION

This last section is certainly less accurate from a ther-
modynamical point of view. But still, it does give some
interesting features, widely used and known in the applied
mathematics community. It has already been used, e.g.
in Macchelli et al. (2004), for the heat equation in the
pHs formalism, though in the restrictive case of constant
coefficients and 1D geometry. The more general n-D case
with space varying coefficients is presented here, allowing
to recover easily (6). This third formulation deserves some
interest in its own right, and will be most useful at the
numerical stage also.

Let H(t) := 1
2

∫
Ω
ρ(x) (u(t,x))2

CV (t,x) dx be the Hamiltonian and
u the energy variable. The co-energy variable is δuH = u

CV
.

One easily computes from (2)



dtH(t) =

∫
Ω

ρ(x)∂tu(t,x)
u(t,x)

CV (t,x)
dx,

−1

2

∫
Ω

ρ(x)∂tCV (t,x)
(u(t,x))2

(CV (t,x))2
dx,

= −
∫

Ω

div
(−→
J Q(t,x)

) u(t,x)

CV (t,x)
dx,

−1

2

∫
Ω

ρ(x)∂tCV (t,x)
(u(t,x))2

(CV (t,x))2
dx,

=

∫
Ω

−→
J Q(t,x) ·

−−−→
grad

(
u(t,x)

CV (t,x)

)
dx

−
∫
∂Ω

u(t, γ)

CV (t, γ)

−→
J Q(t, γ) · −→n (γ) dγ

−1

2

∫
Ω

ρ(x)∂tCV (t,x)
(u(t,x))2

(CV (t,x))2
dx.

Now let us define fu := ∂tu, eu := u
CV

and −→e Q :=
−→
J Q. Then, using the same strategy as for the first two
formulations, we also define

−→
f Q := −

−−−→
grad

(
u
CV

)
. As in

the entropy formulation, we get:(
ρfu−→
f Q

)
=

(
0 − div

−
−−−→
grad 0

)(
eu−→e Q

)
. (14)

For the boundary ports, either B−→e := eu|∂Ω
and C−→e :=

−(−→e Q · −→n )|∂Ω
, or B−→e := −(−→e Q · −→n )|∂Ω

and C−→e := eu|∂Ω
.

Hence, the power balance is

dtH(t) = −
∫

Ω

−→e Q(t,x) ·
−→
f Q(t,x) dx

+

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ

− 1

2

∫
Ω

ρ(x)∂tCV (t,x)(eu(t,x))2 dx. (15)

At this stage however, to the best of our knowledge, we do
not know any dynamic for CV , and the boundary value of
u
CV

is of no use in practice.

With Dulong-Petit model, i.e. assuming that u(t,x) =
CV (x)T (t,x), one immediately gets from (15)

dtH(t) =

∫
Ω

−→
J Q(t,x) ·

−−−→
grad (T (t,x)) dx

−
∫
∂Ω

T (t, γ)
−→
J Q(t, γ) · −→n (γ) dγ.

Here, the control and the observation can be chosen to be
the boundary temperature and the boundary flux (or the
other way), giving useful physical meanings to both these
boundary ports for control purpose.

Finally, adding Fourier’s law (5) as one needed constitutive
relation, the power balance becomes in terms of the pHs
variables

dtH(t) = −
∫

Ω

−→
f Q(t,x) · λ(x) ·

−→
f Q(t,x) dx

+

∫
∂Ω

v∂(t, γ) y∂(t, γ) dγ . (16)

Since λ is a positive symmetric tensor, the closed sys-
tem is dissipative, i.e. dtH(t) ≤ 0, while the open
system is lossy, i.e. dtH(t) ≤ (v∂(t), y∂(t))L2(∂Ω) =

−
∫
∂Ω
eu|∂Ω

(−→e Q · −→n )|∂Ω
dγ.

6. CONCLUSION AND PERSPECTIVES

We saw three ways to describe the heat equation through
the pHs formalism. We intend now to draw the pros and
cons about these formulations.

This first important point to note is that the Lyapunov
approach is theoretic, and not thermodynamically founded
since the physical units of this Hamiltonian are J · K,
which is not meaningful. Furthermore, it requires a de-
manding and restrictive constitutive relation – the Dulong-
Petit model – to achieve its main purpose: obtaining the
temperature and the heat flux as boundary control and
observation. But still, this kind of boundary control and
observation seems to be more accurate in practice, and this
justifies to some extent the presentation of this formulation
in this work.

The other two choices of Hamiltonians, thermodynami-
cally founded, lead to a practical drawback: one of the
boundary port seems, to the best of our knowledge, more
difficult to realize in the experiments. More precisely, we
do not know if there exist actuators and sensors to deal
with the boundary reciprocal temperature or the boundary
entropy flux.

Finally, we would point out that with the energy formula-
tion, since we introduced a new flux/effort couple related
to the irreversible entropy production σ, one could think of
the need for an additional constitutive relation to solve the
system. However, this closure equation is directly obtained
by definition of σ, which leads to (12). Consequently, this
leads to two algebraic equations for the final system. This
is indeed another difficulty, but still this formulation has
its own advantages: the Hamiltonian is an energy, and we
compute directly one more variable, namely σ, not reach-
able without extra efforts in the other two formulations.

The immediate perspective of this theoretical work is to
present a structure-preserving numerical method adapted
to the three formulations of the heat equation, which is the
main topic of the companion paper Serhani et al. (2019a).
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