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Abstract. We propose to simulate chemical reaction networks with the
deterministic semantics abstractly, without any precise knowledge on
the initial concentrations. For this, the concentrations of species are
abstracted to Booleans stating whether the species is present or absent,
and the derivatives of the concentrations are abstracted to signs saying
whether the concentration is increasing, decreasing, or unchanged. We
use abstract interpretation over the structure of signs for mapping the
ODEs of a reaction network to a Boolean network with nondeterministic
updates. The abstract state transition graph of such Boolean networks
can be computed by finite domain constraint programming over the
finite structure of signs. Constraints on the abstraction of the initial
concentrations can be added naturally, leading to an abstract simulation
algorithm that produces only the part of the abstract state transition
graph that is reachable from the abstraction of the initial state. We
prove the soundness of our abstract simulation algorithm, and show its
applicability to reaction networks in the SBML format from the BioModels
database.

Keywords: Systems Biology · Reaction Networks · SBML · Boolean
Networks · Abstract Interpretation · Logic · Constraint Programming.

1 Introduction

Reaction networks [12,6,14,10] are the most prominent formalism for modeling
the continuous dynamics of biological systems. Boolean networks [13,28,21,26]
are the most prominent formalism for modeling discrete abstractions of the
continuous dynamics. Hybrid automata [3] offer a framework for mixed continuous
and discrete modeling. How to discretize the continuous semantics of reaction
networks or of hybrid automata into Boolean networks is a long standing general
question [4,7,27,15,16,5].

Reaction networks can be given different semantics. The continuous dynam-
ics of a reaction network is given by its deterministic semantics: a system of



ordinary differential equations (ODEs), one per species, that is composed from
the kinetic expressions of the reactions producing or consuming the species.
The non-deterministic rewrite semantics [19], in contrast, ignores the kinetic
expressions, while the stochastic semantics uses them differently, for computing
the probability of a reaction to happen. Reaction networks also have a Boolean
semantics which abstracts from the rewrite semantics [11]. In the present paper,
we abstract the continuous semantics, which is notoriously difficult to compare
to the rewrite semantics and thus to the Boolean semantics.

Any solution of the ODEs from the deterministic semantics provides a deriv-
able function of type R+ → R per species, that is called the trajectory. At
any time point, the value of a trajectory must be positive, since it stands for
the concentration of the species. In contrast, the value of its derivative may be
negative, meaning that the concentration of the species is decreasing. The value
of the trajectory at time point 0 is called the initial concentration of the species.
It is well-known that for any fixed collection of initial concentrations per species,
there exists at most one solution of the ODEs. This solution can be approximated
numerically by using Euler’s deterministic simulation algorithm [9].

A concrete continuous state of a reaction network at a given time point is a
vector of positive real numbers, one for the concentration of each species. Any
concrete state can be abstracted to a vector of Booleans, stating for each species
whether its concentration is zero or not. The possible trajectories of a reaction
network can thus be abstracted to a state transition graph whose states are bit
vectors. The graph can be enriched, when not only considering the trajectories
but also their derivatives. Since these may become negative, the concrete states
now become vectors of real numbers that can be abstracted to vectors of signs:
increasing ↗ = 1, decreasing ↘ = −1, and no-change → = 0. In this way, we
obtain an enriched abstract state transition graph between sign vectors.

In the present paper, we study an instance of the general discretization
problem, which is whether one can compute the abstract state transition graph
from a given reaction network. Clearly, abstract state transition graphs are finite,
but may be large, since having Θ(2|S|) many states where |S| is the number
of species. Computing the abstract state transition graph completely quickly
becomes impossible, given that the size grows exponentially in the number of
species. Therefore, we propose to study the problem of abstract simulation, which
is to compute the part of the abstract state transition graph that is accessible from
the abstraction of the initial concentrations. This also has the advantage that the
concrete initial concentrations do not need to be known precisely. Nevertheless,
the problem remains non-trivial, given that trajectories are infinite objects, and
that there are infinitely many trajectories depending on the choice of the initial
concentrations.

Our idea for abstract simulation is based on the abstract interpretation of the
system of ODEs of the reaction network over the structure of signs S = {↗,→,↘}.
This abstraction introduces non-determinism, since ↗+S↘ may be evaluated to
any sign. It can be proven to provide a sound over-approximation based on John’s
soundness theorem for the abstract interpretation of logic formulas [1,24,17]. We
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show that the sign abstraction of the ODEs of a reaction network can be used to
define a Boolean network with non-deterministic updates [25]. It will have rules
stating that a species A is present in the next step, if A was already present at
the previous step, or if the derivative of A was positive at the previous step. Since
such rules can be defined by first-order (FO) formulas, we propose the notion of
first-order Boolean networks with non-deterministic semantics (FO-BNNs).

We provide a soundness theorem for abstraction of reaction networks to FO-
BNNs. It will rely on a causal next transition relation rather than on a temporal
next transition relation inferred from the trajectories, given that concrete simula-
tion algorithms too are based on causality. This may lead to approximation errors
for the concrete numerical simulation, so we have to take care of approximation
errors for abstract simulation too.

Given that FO-BNNs are first-order formulas that are to be interpreted over
the finite structure of signs, we use finite domain constraint programming to
compute the abstract state transition graphs of FO-BNNs. Constraints on the
abstraction of the initial concentrations can be added naturally, leading to an
algorithm for abstract simulation based on constraint programming. We have
implemented this algorithm based on the Minizinc constraint solver [23].

While abstract interpretation enables qualitative reasoning, we can still
support exact quantitative reasoning about thresholds. We show that whether
A ≤ ε for some threshold ε > 0 can be tested by introducing an artificial species
B so that Ḃ = A − ε. In this way, the sign of the derivative of B indicates,
whether the concentration of A is above, below or equal ε. One can then use exact
reasoning with linear equation systems [1] to improve the quality of our abstract
simulation algorithm, while taking thresholds into account. For instance, we can
show for the usual enzymatic reaction network that if the initial concentration
of the substrate is above of a given threshold ε, then (1) the concentration of
the product may eventually become bigger than ε, and (2) once this happens,
it can never become smaller than ε again. Most interestingly, the precise initial
concentration of the substrate does not matter for this argument, as long as it
is above ε. In this way, abstract simulation can sometimes show properties of
infinitely many concrete simulations.

We apply our abstract simulation algorithm to a reaction network repre-
sented in the Systems Biology Markup Language (SBML) [18] from the BioMod-
els database [20]. We consider the model https://www.ebi.ac.uk/biomodels/
BIOMD0000000448 that we will call B448 for short. This network describes the
insulin signalling in human adipocytes in normal conditions [8]. It has 27 species
and 34 reactions, and its graph covers one full page (see Fig. 13). The abstract
simulation algorithm successfully yields a very small subgraph of the abstract
state transition graph with more than 227 states.

Related Work on Exact Computation of State Transition Graphs.
Mover et al. [22] develop an efficient implicit method for the exact abstraction of
dynamical systems, whose abstract state space description and ODE dynamics
are restricted to be systems of polynomial equations. While polynomial equations
allow the exact description of abstract state spaces that are more general and
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fine-grained than the ones used for Boolean networks, they do not provide enough
expressiveness to describe the kinetic expressions frequently used for the modeling
of chemical reaction networks.

Outline . After a few preliminaries in Section 2, we discuss arithmetic expressions
with three different interpretations in Section 3. We recall the notion of reaction
networks and their deterministic semantics via ODEs in Section 4. In Section
5, we recall the first-order logic, which permits us to formally capture ODEs
in Section 6, enables their abstract interpretation in Section 7, and lays the
foundation of FO-BNNs in Section 8. We present our compiler from reaction
networks to FO-BNNs and prove its soundness in Section 9. The treatment of
thresholds is discussed in Section 10. It illustrates exact reasoning at the example
of the enzymatic reaction network. The application of abstract simulation to
reaction network B448 of the Biomodels database is shown in Section 11. The
conclusion and future work are given in Section 12.

2 Preliminaries

The Cartesian product of sets A1, . . . , An is denoted by A1 × . . . × An. The
domain of a partial function f ⊆ A×B is denoted by dom(f). The restriction of
f to a subset A′ ⊆ dom(f) is written as f|A′ . We write [a1/b1, . . . , an/bn] for the
finite function f with dom(f) = {a1, . . . , an} and f(ai) = bi for all 1 ≤ i ≤ n.
For any two sets A,B, the power set BA = A→ B = {f | f : A→ B} is the set
of total functions from A to B. A multiset M with elements in A is an element
M ∈ NA. For any a ∈ A, the multiplicity of a in M is M(a).

Let B = {0, 1} be the set of Booleans, S = {−1, 0, 1} the set of signs, N the set
of natural numbers including 0, Z the set of integers, R the set of real numbers,
and R+ the set of positive real numbers including 0. Note that B ⊆ N ⊆ R+ ⊆ R
and that S ⊆ Z ⊆ R. For signs, we use the symbols ↗ = 1 for increase, → = 0
for no-change and ↘ = −1 for decrease.

3 Arithmetic Expressions

We recall the syntax and semantics of arithmetic expressions while pointing out

three different interpretations and usages. Let V be a set of variables and Σ
(2)
arith

be the set of binary operators {+, ∗,−, /, exp}. The set of arithmetic expressions
e ∈ Earith(V) is the least set of terms that can be build from variables x ∈ V,

real numbers ρ ∈ R, and binary operators � ∈ Σ(2)
arith:

e1, e2 ∈ Earith(V) ::= ρ | x | e1 � e2

Definition 1. A relational structure with binary operators in Σ
(2)
arith and con-

stants in R is a tuple S = (dom(S), (�S)�∈Σ(2)
arith

, (ρS)ρ∈R) where D = dom(S)

is a set called the domain, �S : D2 ×D is the interpretation of �, and ρS ∈ D
the interpretation of ρ.
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JρKα,S = {ρS}, JxKα,S = {α(x)},

Je1 � e2Kα,S = {s | s1 ∈ Je1Kα,S , s2 ∈ Je2Kα,S , (s1, s2, s) ∈ �S}

Fig. 1: Interpretation of arithmetic expressions over a relational structure S and

a variable assignment α : V → dom(S), where e1, e2 ∈ Earith(V), � ∈ Σ(2)
arith,

ρ ∈ R, and x ∈ V.

For any relational structure S, variable assignment α : V → dom(S) and
arithmetic expression e ∈ Earith(V), Fig. 1 defines the interpretation JeKS,α ⊆
dom(S). We consider interpretations over three different relational structures R,
R+ → R, and S, that we freely confuse with their domain.

First, arithmetic expressions are used as kinetic expressions. They are then
interpreted in the relational structure of the reals R. The binary operators are
interpreted as the binary partial functions �R for the addition, multiplication,
subtraction, division, and exponentiation of real numbers respectively. Note
that /R is not a total function, since division by zero is not defined. Therefore,
Jx/0KR,α = ∅ for any α : V → R.

Second, we use arithmetic expressions in ODEs. Then they are interpreted
in the structure of real-valued functions R+ → R. The binary operators now
denote the partial functions �R+→R for the addition, multiplication, subtraction,
division, and exponentiation of real-valued functions respectively. Note that any
constant ρ ∈ R is interpreted as the constant function with ρR+→R(ρ′) = ρ for
all ρ′ ∈ R+.

Third, we will interpret arithmetic expressions over the structure of signs
S = {↗,→,↘}. The binary operators need to be interpreted as ternary relations
�S ⊆ S2 × S. Let hS : R → S be the unique homomorphism between the
structures of reals and of signs. It satisfies for all ρ ∈ R that hS(ρ) = 1 if
ρ > 0, hS(ρ) = 0 if ρ = 0 and hS(ρ) = −1 if ρ < 0. Then we define for

any constant ρ ∈ R that ρS = hS(ρ) and for any operator � ∈ Σ
(2)
arith that

�S = {(hS(ρ), hS(ρ′), hS(ρ′′)) | (ρ, ρ′, ρ′′) ∈ �R}. We note that the addition +S

is not even a partial function, since (↗,↘, σ) ∈ +S for all three signs σ ∈ S.
For this reason, J↗+↘KS,γ = S for any γ : V → S. The intuition is that an
arithmetic expression is evaluated non-deterministically to the set of all possible
signs.

4 Chemical Reaction Networks

Let S be a finite set. A chemical solution with species in S is a multiset M : S → N.
The multiset [A/3, B/2] for instance is often written as 3A+ 2B.

Definition 2. A reaction with species in S is an element of NS×Earith(S)×NS .
A reaction network with species in S is a subset of reactions with species in S.
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r1 : S + E
1000000∗S∗E−−−−−−−−→ C

r−1 : C
0.2∗C−−−−→ S + E

r2 : C
0.1∗C−−−−→ E + P

(a) Reactions of Renz .

S

E

C

P

1
1000000S E

−1
0.2C

2
0.1C

(b) Graph of Renz .

S̊
◦
= −r1 + r−1

∧ E̊
◦
= −r1 + r−1 + r2

∧ C̊
◦
= r1 − r−1 − r2

∧ P̊
◦
= r2

where
r1 = 1000000 ∗ S ∗ E
r−1 = 0.2 ∗ C
r2 = 0.1 ∗ C

(c) odes(Renz ).

Fig. 2: The enzymatic reaction network Renz .

For instance, if e = 5.1 ∗ exp(A, 2) ∗ B then r = (3A + B, e,A + 2C) is a

chemical reaction, that we denote as usual as r : 3A+B
e−→ A+ 2C. A state α of

a reaction network R assigns each species of R a concentration, which is a positive
real number, so α : S → R+. Let JeKR,α = 5.1 ∗R expR(JAKR,α, 2) ∗R JBKR,α. The
above reaction states that the concentration of A changes at any time point with
state α with speed −2 ∗R JeKR,α, the concentration of B with speed −1 ∗R JeKR,α,
and the concentration of C with speed 2 ∗R JeKR,α. Negative speeds mean that
the species is consumed, while positive speeds mean that the species is produced.

Let r = (M, e,M ′) be a chemical reaction with species in S. We denote the
kinetic expression of r by kinr = e. For any species A ∈ S, the stoichiometry of
A in r is defined by stoicr(A) = M ′(A)−M(A). The ODE system of a reaction
network R is the following equation system:

odes(R) =def

∧
A∈S

Ȧ
◦
=

∑
r∈R

stoicr(A) ∗ kinr ∧A ≥ 0

A formal definition of the syntax and semantics of ODEs will be given in Section
6 based on notions from the first-order logic in Section 5. For now, we just state
that all species occurring in an arithmetic expression denote some real valued
function of type R+ → R, that must be positive in addition. An expression
Ȧ denotes the derivative of the denotation of A if its derivative exists, and is
undefined otherwise. Note that derivatives may become negative. The arithmetic
operators are interpreted as arithmetic operations in the structure of real-valued
functions R+ → R.

As an example of a CRN, we show the network of enzymatic reactions in
Fig. 2. It has species S = {S,E,C, P} and the three reactions in Fig. 2a, all
with mass action kinetics. Reaction r1 transforms a pair of a substrate S and
an enzyme E to a complex C, reaction r−1 does the inverse, and reaction r2

transforms the complex C into the free enzyme E and the product P . The graph
of the CRN Renz is given Fig. 2b and its ODEs in Fig. 2c.
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Je ◦= e′Kα,S =

{
1 if JeKα,S ∩ Je′Kα,S 6= ∅
0 else

Jφ ∧ φ′Kα,S = JφKα,S ∧B Jφ′Kα,S

J¬φKα,S = ¬B(JφKα,S) J∃x.φKα,S =


1 if exists s ∈ dom(S).

JφKα[x/s],S = 1
0 else

Fig. 3: Interpretation of formulas φ ∈ FΣ over a relational structure S with
signature Σ with respect to a variable assignment α : V → dom(S).

5 First-Order Logic

We recall the syntax and semantics of first-order logic formulas. Rather than
opting for maximal generality, we restrict ourselves to signatures able to capture
ODEs and FO-BNNs.

We consider signatures Σ = Σ(2) ∪Σ(1) ∪R with a set of binary operators in
Σ(2), unary operators in Σ(1), and constants in R. Arithmetic expression have

the signature Σarith = Σ
(2)
arith ∪ Σ

(1)
arith ∪ R with Σ

(1)
arith = ∅. An expression in

EΣ(V) then has the following form where x ∈ V, ρ ∈ R, � ∈ Σ(2) and o ∈ Σ(1).

e, e1, e2 ∈ EΣ(V) ::= x | ρ | e1 � e2 | o(e)

Clearly, these expressions generalize on arithmetic expressions since Earith(V) =
EΣarith

(V). The notion of relational structures can be lifted from the signature
of arithmetic expressions to expressions with general signatures in the obvious
manner, and also the semantics from arithmetic expressions to expressions in
EΣ(V).

We are particularly interested in the signature Σ̇arith with Σ̇
(2)
arith = Σ

(2)
arith

and Σ̇
(1)
arith = {̇}. The structure of real-valued functions can be extended to give

an interpretation of the unary operator ,̇ so that Ṙ+→R(f) is the derivative of f
for any derivable real-valued function f : R+ → R, and undefined otherwise.

The set of first-order formulas FΣ(V) is constructed from equations between
expressions in e, e′ ∈ EΣ(V) and the usual first-order connectives:

φ ∈ FΣ(V) ::= e
◦
= e′ | ∃x.φ | φ ∧ φ | ¬φ where x ∈ V

We sometimes use shortcuts e ≥ 0 for the formula ∃x.e ◦= x ∗ x and e ≤ e′ for
e′ − e ≥ 0. The set of free variables fv(φ) contains all those variables of φ that
occur outside the scope of any occurrence of the existential quantifier.

The semantics of a first-order formula φ ∈ FΣ(V) is the truth value JφKα,S ∈ B
defined in Fig. 3. It depends on some relational structure S with signature Σ
and variable assignment α : V → dom(S). An equation e

◦
= e′ is true if the

intersection of the possible values for e and the possible values for e′ is non-empty,
that is, if JeKα,S ∩ Je′Kα,S 6= ∅. The set of solutions of a formula φ ∈ FΣ(V) over
a relational structure S with the same signature Σ is solS(φ)={α|fv(φ) | α : V →
dom(S), JφKα,S = 1}.
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Fig. 4: The deterministic numerical sim-
ulation of odes(Renz ) with initial con-
centrations S(0) = 1.0 ∗ 10−5, E(0) =
0.5 ∗ 10−5 and P (0) = C(0) = 0 mol/L.

6 Sign Abstraction of ODE Trajectories

We define systems of ODEs as formulas of first-order logic in order to formalize
their syntax and semantics in a framework suitable for abstract interpretation.
We then introduce a temporal and a causal transition relation on abstract states,
by applying the sign abstraction to the trajectories of the ODEs.

Definition 3. An ODE system is a first-order logic formula φ ∈ F
Σ̇arith

(V) such

that all subexpressions of φ that are rooted by the dot-operator have the form ẋ
for some x ∈ V and do not occur below any existential quantifier.

Note in particular that higher-order derivations ˙̇x are not permitted. The
semantics of an ODE system φ is the set of its solutions over the relational
structure of real-valued functions, i.e., solR+→R(φ). For each such solution β and
variable x ∈ fv(φ), we call β(x) : R+ → R a trajectory of x.

For any choice of initial concentrations α : fv(φ)→ R+, there exists at most
one solution β ∈ solR+→R(φ), such that β(x)(0) = α(x) for all x ∈ fv(φ). This
solution can be computed numerically by the usual integration methods for
ODEs starting with the initial concentrations. If some operations of the ODEs
are undefined during the integration, no solution exists. For illustration, we show
in Fig. 4 the solution of the ODEs of the reaction network Renz with initial
concentrations S(0) = 1.0 ∗ 10−5, E(0) = 0.5 ∗ 10−5 and P (0) = C(0) = 0 mol/L.

A (concrete) state with variables V ⊆ V is a function α : V → R, and an
abstract state a function γ : V → S. We next show how to define a successor
relation on the abstract states of ODEs.

Definition 4 Temporal next transitions. Let γ1, γ2 : S → S be two abstract
states and φ an ODE system. We call γ2 a (temporally) next state of γ1 with
respect to φ and write (γ1, γ2) ∈ nextφ if there exists a real-valued function
β ∈ solR+→R(φ) and two time points 0 ≤ t1 < t2 such that, for all species A ∈ S
and time points t′2 ∈]t1, t2]: γ1(A) = hS(β(A)(t1)) and γ2(A) = hS(β(A)(t′2)).

For instance, for odes(Renz ), the next state of [S/1, E/1, C/0, P/0] is [S/1,
E/1, C/1, P/1], which has itself as next state. For this example, the next states
are always unique, but in general this may not be the case.
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Interestingly, [S/1, E/1, C/0, P/0] does not have [S/1, E/1, C/1, P/0] as next
state. The reason is that instantaneously when C is produced, reaction r2 starts
producing P , so that both C and P will appear at the same time point. Never-
theless, the creation of C causes the creation of P , but this is not observable in
the temporal order and thus not in the relation nextode(Renz ).

So far, the states do not contain any information about the values of the
derivatives (since ẋ is not a variable but an expression). In order to change this,
let :̊ V → V be a bijection such that V̊ is disjoint from V for any V ⊆ V. For
any ODE system φ we define a formula φ̊ ∈ FΣarith

without dot operator, by
replacing any subexpression of the form ẋ in φ by x̊:

φ̊ =def φ[ẋ/x̊ | x ∈ fv(φ)]

Note that no dot operators remain in φ̊, since all subexpressions of φ that are
rooted by the dot operator must be of the form ẋ by the definition of ODEs. For
any assignment β : V → (R+ → R) and time point t ≥ 0 we define an assignment
βt : {x, x̊ | x ∈ V } → R such that: βt(x) = β(x)(t) and βt(̊x) = Ṙ+→R(β(x))(t).

Lemma 5. If β ∈ solR+→R(φ) then βt ∈ solR(φ̊).

When interested in derivatives, we consider the successor relation of the
formula next φ̊. For instance, with respect to next ˚odes(Renz )

, the abstract state

γ1 = [S/1, E/1, C/0, P/0, S̊/↘, E̊/↘, C̊/↗, P̊ /→] has the successor γ2 = [S/1,
E/1, C/1, P/1, S̊/↘, E̊/↘, C̊/↗, P̊ /↗]. Furthermore, causality can be observed
in the signs of the derivatives: we have γ1(C̊) = ↗ since γ1(E) = γ1(S) = 1.
In contrast, we have γ1(P̊ ) = → since γ1(C) = 0. As a consequence, for any
solution β ∈ solR+→R(odes(Renz )), the value of limt→0 β(C)(t)/t 6= 0 so the
change of C(t) at t = 0 can be observed in the limit, while limt→0 β(P )(t)/t = 0,
so the change of P (t) at t = 0 cannot be observed in the limit. Nevertheless
γ2(C) = γ2(P ) = 1, since the successor time point of 0 is not in the limit.

Definition 6 Causal next transitions. Let φ be an ODE system, V = fv(φ),
and γ1, γ2 : (V ∪ V̊ )→ S abstract states. We call γ2 a causally-next dotted state

of γ1 and write (γ1, γ2) ∈ ˚cnextφ if γ2 ∈ solS(φ̊) and there exists an abstract state
γ′2 such that (γ1, γ

′
2) ∈ next φ̊ and for all x ∈ V : γ2(x) = γ1(x) if γ′2(̊x) = 0 and

γ2(x) = γ′2(x) otherwise. We say that γ2|V is a causally-next state of γ1|V and

write (γ1|V , γ2|V ) ∈ cnextφ if (γ1, γ2) ∈ ˚cnextφ.

For odes(Renz ), the causally next state of [S/1, E/1, C/0, P/0] is [S/1, E/1,
C/1, P/0], of which the causally next state is [S/1, E/1, C/1, P/1]. As here
we often have nextodes(R) ⊆ (cnextodes(R))

∗. We believe that this holds more
generally for any reaction network R for which the numerical simulation by
Euler’s algorithm is sound when using exact arithmetics. Euler’s algorithm
performs simulation steps, which may introduce approximation errors. These
errors may lead to arbitrarily false traces in some case, but may also be ignored
in many others. For Renz , this is the error of setting the value of P at the next
step to 0 if the value of P was 0 at the previous step and Ṗ = 0 (since C was
absent). In reality, P should be set to a small non-zero value at the next step.
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7 Abstract Interpretation of ODEs

We recall John’s soundness theorem [17] for the abstract interpretation of first-
order logic formulas, and apply it for interpreting ODEs abstractly over signs.

Theorem 7 John’s Soundness Theorem [1,24,17]. For any homomorphism
h : S → ∆ between relational structures with signature Σ and any negation-free
formula φ ∈ FΣ(V): h ◦ solS(φ) ⊆ sol∆(φ).

Proof We only give a sketch of the proof. Let α : V → dom(S). For any
expression e ∈ EΣ(V) we can show that h(JeKα,S) = JeKh◦α,∆ by induction on
the structure of e. It then follows for any positive formula φ ∈ FΣ(V) that
JφKα,S ≤ JφKh◦α,∆. This is equivalent to that: {h ◦ α | α ∈ solS(φ)} ⊆ sol∆(φ)
and thus h ◦ solS(φ) ⊆ sol∆(φ).

Recall that hS : R→ S is a homomorphism between relational structures with
signature Σarith and that the formula φ̊ has the same signature Σarith for any
ODE φ. John’s theorem thus shows:

Corollary 8. For any ODE φ: hS ◦ solR(φ̊) ⊆ solS(φ̊).

This corollary states that the set of abstract dotted states of an ODE φ can
be overapproximated by interpreting φ̊ abstractely in the structure of signs. It
can be used to reason about the temporal and causal next transition relations of
ODEs as follows:

Lemma 9. For any ODE φ, if (γ1, γ2) ∈ next φ̊∪ ˚cnextφ, then {γ1, γ2} ⊆ solS(φ̊).

Proof

1. Definition 4 of the temporal next relation and Lemma 5 show that for any
pair (γ1, γ2) ∈ next φ̊ that it satisfies γ1 = hS ◦ α1 and γ2 = hS ◦ α2 for

some α1, α2 ∈ solR(φ̊). Corollary 8 of John’s soundness theorem for abstract

interpretation of logic formulas applied to ODEs shows that hS ◦ solR(φ̊) ⊆
solS(φ̊) and thus {γ1, γ2} ⊆ solS(φ̊).

2. If (γ1, γ2) ∈ ˚cnextφ then γ2 ∈ solS(φ̊) by Definition 6. Furthermore, there

exists γ′2 such that (γ1, γ
′
2) ∈ next φ̊. The first property shows that γ1 ∈ solS(φ̊)

too.

8 Boolean Networks with Non-deterministic Updates

Any (abstract) state in BV is a function β : V → B that we call a bit vector. For
instance, the state [S/1, E/1, C/0, P/1] can be identified with the bit vector 1101
when ordering the species as in above. In the pictures of state transition graphs,
the states are drawn as bit vectors in oval nodes and the state transitions as
arrows linking these nodes. The legends in blue boxes specify the species order.

Following [25], a Boolean network B with non-deterministic updates (BNN)
and species in S is generally some kind of definition of an abstract state transition
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Fig. 5: The state transition graph of the FO-BNN bnn(Renz ) in Fig. 6.

graph B ⊆ BS × BS , as for instance in Fig. 5. Definitions of state transition
graphs can be expressed in various manners. Here we propose a novel alternative
that is based on formulas of first-order logic interpreted over the structure of
signs S. We assume that S ⊆ V and fix two bijections −→ : V → V and˚: V → V
such that S, S̊,

−→
S , and

−→
S̊ are disjoint subsets of V. Furthermore, we assume

that
−→
x̊ = −̊→x for any x ∈ V.

From the perspective of the sign abstraction of a reaction network, variable
A ∈ S states whether species A is present at the current time point and Å is the

sign of Ȧ. Variable
−→
A stands for the presence of A at the next time point, and

similarly,
−→
Å for the sign of the derivative at the next time point

−̇→
A .

Definition 10. A first-order Boolean network with nondeterministic updates
(FO-BNN) and variables in V ⊆ V is a first-order formula φ ∈ FΣarith

with free

variables fv(φ) = V ∪
−→
V .

Notice that the dot operator cannot occur in FO-BNNs φ. Any variable

assignment γ : V ∪
−→
V → S yields an abstract state transition:

trans(γ) = (γ|V , γ|−→V ◦
−→) ∈ SV × SV

For illustration, an FO-BNN for Renz with the (free) variables in S = {S,E,C, P}
is shown in Fig. 6. It can be inferred from the ODEs of the reaction network
as follows: First the formula ode(Renz ) is added. Second, a copy of ode(Renz )

is added, in which all variables x are replaced by −→x . All variables in S̊ ∪
−→
S̊

are existentially quantified. Furthermore, for any species A ∈ S, we relate the

variable
−→
A to the variables A and Å by the equation

−→
A
◦
= A + Å. This states

that
−→
A can be true only if either A or Å are true, i.e. if the concentration of

A is either present or increasing at the previous time point. Finally, we impose

A ≤
−→
A for stating that species A can never become absent when it was present

before. Because the kinetics in Renz are all mass-action laws, this invariant holds
here for all the species. It may be false for other reaction networks though.

Furthermore, the solution sets of FO formulas over finite relational structures
such as S can be computed by finite set constraint programming. We have
implemented a constraint solver for the relational structure S in Minizinc [23]
which allows us to compute the transition graph of FO-BNNs, i.e., the relation
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∃̊S∃E̊∃C̊∃P̊∃
−→
S̊ ∃
−→
E̊∃
−→
C̊∃
−→
P̊ .

S̊
◦
= −r1 + r−1 ∧

−→
S̊
◦
= −−→r1 +−→r−1 ∧

−→
S
◦
= S + S̊ ∧ S ≤

−→
S

∧ E̊
◦
= −r1 + r−1 + r2 ∧

−→
E̊
◦
= −−→r1 +−→r−1 +−→r2 ∧

−→
E
◦
= E + E̊ ∧ E ≤

−→
E

∧ C̊
◦
= r1 − r−1 − r2 ∧

−→
C̊
◦
= −→r1 −−→r−1 −−→r2 ∧

−→
C
◦
= C + C̊ ∧ C ≤

−→
C

∧ P̊
◦
= r2 ∧

−→
P̊
◦
= −→r2 ∧

−→
P
◦
= P + P̊ ∧ P ≤

−→
P

where
r1 = 1000000 ∗ S ∗ E r−1 = 0.2 ∗ C r2 = 0.1 ∗ C
−→r1 = 1000000 ∗

−→
S ∗
−→
E −→r−1 = 0.2 ∗

−→
C −→r2 = 0.1 ∗

−→
C

Fig. 6: An FO-BNN for the reaction network Renz .

of bit vectors that it defines. The transition graph in Fig. 5 is defined by the
FO-BNN for the reaction network Renz in Fig. 6.

The set of species of reaction network Renz has cardinality 4. Therefore, the
state transition graph of the FO-BNN of Renz has 24 = 16 states. So clearly, the
number of states of a FO-BNN may be exponential in the number of its species.
Therefore, it is generally advantageous if one does not have to compute the whole
state transition graph, but only the needed part of it. Suppose that we know
the sign abstraction of the initial state, we can then generate the subgraph of
the state transition graph that is accessible from the abstraction of the initial
state, without computing any further states or transitions. In this way, much
smaller subgraphs can be observed. For Renz , for instance, for any Boolean state
the accessible subgraph contains at most 3 Boolean states.

Fig. 7: Abstract simula-
tion of the FO-BNN in
Fig. 6 for the reaction
network Renz .

fun abs sim(φ, V, γ0)
Treach := ∅ Sreach := {γ0} Snew := Sreach

while Snew 6= ∅ :

Tnew := trans ◦ solS(φ∧∨
γ∈Snew

∧
x∈V ∪

−→
V
x
◦
= γ(x))

Snew := {γ2 | (γ1, γ2) ∈ Tnew} \ Sreach

Treach := Treach ∪ Tnew

Sreach := Sreach ∪ Snew

return Treach

Fig. 8: The abstract simulation of an FO-BNN φ
with variables in V from an abstract initial state γ0

computes the set of abstract state transitions Treach.

The abstract simulation of the FO-BNN of Renz , starting with the abstract
state [S/1, E/1, C/0, P/0] is given in Fig. 7. This example illustrates, that abstract
simulation is related to the causality rather than the temporality of species

12



production. For instance, the temporal transition (1100, 1111) ∈ nextode(Renz ) is
represented by two causal edges 1100→ 1110→ 1111 in the abstract simulation.
These show the causality of the production: C is produced if S and E are present,
and P is produced if C is present. But when C is produced then instantaneously
P is produced too, so even though C causally precedes P (as shown by the
abstract simulation), they are both produced at the same time (in any solution of
the ODEs). We notice that causality also plays for concrete numerical simulation
with Euler’s method: P will be produced shortly after C, depending on the step
size that is admitted. The reachable subgraph can be computed by repeated
constraint solving. In each step, the values of the variables in S are constrained
to the Boolean states from which the subgraph is to be explored.

In general, for any FO-BNN φ with species in S and abstract initial state

γ0 : V ∪
−→
V → S, the abstract simulation represented by the set Sreach of all

reachable states and the corresponding transition relation Treach can be obtained
by iteratively computing the sets of new transitions Tnew and new reachable
states Snew starting from the initial state γ0, as in Fig. 8. The algorithm ends
when no new reachable states are obtained from the available transitions.

9 Abstract Simulation of Reaction Networks

To simulate reaction networks abstractly, we propose to translate them to FO-
BNNs based on the abstract interpretation of logic formulas over the structure of

signs. For any variable assignment α : V → R, we define −→α :
−→
V → R such that

α(x) = −→α (−→x ) for all x ∈ V . For any reaction network R, let
−→
R be the reaction

network with species in
−→
S obtained from R by replacing any species A ∈ S by

−→
A . For any A ∈ S, let varsA be the sequence of the four variables A, Å,

−→
A,
−→
Å .

Our objective is to approximate the relation cnextode(R) on abstract states
by a Boolean network. For any A ∈ S, we consider formulas next spec(varsA)
with the following property. For all γ1, γ2 : S ∪ S̊ → S and all reaction networks
R with species in S:

(γ1, γ2) ∈ ˚cnextodes(R) ⇒ (γ1 ∪ −→γ2)|{varsA} ∈ sol
S(next spec(varsA))

There are several possibilities to define next spec(varsA), of which we propose:

– next spec1(varsA) =def (
−→
A
◦
= 1 → (A

◦
= 0 ∧ Å ◦

= 1) ∨ A ◦
= 1)) ∧ (

−→
A
◦
= 0 →

(A
◦
= 0 ∧ Å ◦

= 0) ∨
−→
Å
◦
= −1))

– next spec2(varsA) =def next spec1(varsA) ∧ (
−→
A
◦
= 0 → ((A

◦
= 0 ∧ Å ◦

=

0) ∨ (A
◦
= 1 ∧ Å ◦

= −1 ∧
−→
Å
◦
= 1))))

– next spec3(varsA) =def next spec1(varsA) ∧ (
−→
A
◦
= 0→ A

◦
= 0)

It is not difficult to see that next spec1(varsA) satisfies the above requirement
since using causally-next relation (but this would not hold for the temporal-
next relation). If all kinetic expressions are infinitely derivable, then, when a
concentration becomes 0, the derivative requires an increase immediately after,

13



in order to not become negative. If all reactions follow the mass action law then
non-zero concentrations can never become zero later on, so next spec3(varsA)
should satisfy the requirement too.

Let next spec(varsA) be one of the three formulas next speci(varsA) above
or any other formula satisfying the above property. Which of these choices is
applicable or best depends on properties of the reaction network.

Definition 11. For any reaction network R with species S = {A1, . . . , An}, we
define the FO-BNN bnn(R) depending on the choice of next spec as follows:

∃Å1. . . . .∃Ån. ˚odes(R)∧∃
−→
Å1. . . . .∃

−→
Ån.

˚
odes(

−→
R )∧

∧n
i=1 next spec(Ai, Åi,

−→
Ai,
−→
Åi)

Fig. 6 gives the FO-BNN of the reaction network Renz with next spec3.

Theorem 12 Soundness of bnn(R). cnextodes(R) ⊆ trans ◦ solS(bnn(R)).

Proof Let (γ1, γ2) ∈ cnextodes(R). Then there exists (γ′1, γ
′
2) ∈ ˚cnextodes(R)

such that γ′1 = γ1|S and γ′2 = γ2|S . By assumption on next spec(varsA), this

implies for all A ∈ S that γ′1 ∪
−→
γ′2 ∈ solS(

∧n
A∈S next spec(varsA)). Lemma 9

shows that γ′1, γ
′
2 ∈ solS( ˚odes(R)) so that

−→
γ′2 ∈ solS(

˚
odes(

−→
R )). By definition of

bnn(R), we obtain γ′1|S ∪
−−→
γ′2|S ∈ solS(bnn(R)). Hence, (γ1, γ2) = (γ′1|S , γ

′
2|S) ∈

trans ◦ solS(bnn(R)) as stated by the theorem.

Based on the Soundness Theorem 12 we can simulate any reaction network
R by abstractly simulate the Boolean network bnn(R). The abstract simulation
of bnn(Renz ) with next spec3 for next spec, for instance, was shown earlier.

10 Thresholds

We use Booleans to distinguish whether the concentration of a species is zero
or not. It often happens, thought, that we would like to know whether the
concentration of a species is above or below a given threshold. We now show that
this can be treated with the above techniques.

Suppose we are given a species S ∈ S and a threshold ε > 0, say ε = 0.3, and
we want to know whether the concentration of S is above, equal, or below ε, so
whether S− ε < 0. The idea is to add an artificial species Sε to the network, such
that Ṡε = S − ε. This can be done by adding the following two reactions:

Sconsε : Sε
0.3−−→

Sprodε :
S−→ Sε

The ODEs of the so extended reaction network contain the expected equation.
We can thus run the abstract simulation algorithm on the extended reaction
network. When applied to the reaction network Renz with the same initial
concentrations than above, this yields the following accessible transition graph:

14



Fig. 9: Abstract simulation for the Renz network with two thresholds.

In this picture, we write S−ε instead of S̊ε. The negative sign S−ε =↘ means
S < ε, and a positive sign S−ε =↗ means S > ε, and S−ε =→ means S = ε.

The proper addition of thresholds, combined with the utilisation of the exact
Boolean abstraction algorithm [2] for the set of linear equations of the extended
reaction network, provides a considerably more fine-grained abstract simulation
of the network. For example, with the addition of a further threshold for P in
Renz and an upper bound on the sum of the initial concentrations of S,C, P ,
the abstract simulation allows us to conclude that only one final state may
be reachable during the abstract simulation, where the concentration of S is
below the given threshold, as shown in Fig. 9. The automatic application of the
exact Boolean abstraction algorithm to the simulation of Boolean networks with
thresholds requires however an extension of the algorithm to the inhomogeneous
case, which is under implementation. For the simulation shown in Fig. 9, a subset
of the inhomogeneous equations was reduced to the homogeneous case by manual
rewriting, so that the original algorithm could be applied.

11 Application to Biomodel’s Reaction Networks

Biomodels [20] is an online repository which contains a curated collection of
over a thousand published models about various biological systems [20]. Most
of these were previously published as ODE, but are now provided as reaction
networks in the SBML format [18]. We applied abstract simulation to reaction net-
work B448 of the Biomodels database at https://www.ebi.ac.uk/biomodels/
BIOMD0000000448. It models insulin signalling in human adipocytes in normal
conditions [8]. Once converted to the BioComputing’s XML format, the network
involves 27 species and 34 reactions. Its graph in Fig. 13 covers one full page,
and its ODEs are given in Fig. 14. In the initial (concrete) state given in the
SBML model, all the species except IRins start with a concentration strictly
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Fig. 10: The numerical simulation of B448
projected to species IRins.

Fig. 11: Abstract simulation of
B448

above 0. The full numerical simulation of the 27 species is given in Fig. 12. while
Fig. 10 focuses on the concentration of IRins over time.

The total number of abstract states is 227. However, by starting from the
abstraction of the initial concentrations in the SBML model (all species are present
except IRins), the state transition graph is reduced to 2 edges between 2 states
(Fig. 11). One of these states being the initial abstract state mentioned above,
and the other is the 1-only bit vector. The latter is an attractor, as its exiting
edge is making a self-loop. This is consistent with the concrete simulation of the
model (Fig. 10) and the steady-state computed numerically, but independent of
the precise initial concentrations chosen in the SBML model.

Fig. 12: The numeric simulation of B448 with all species.
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v2b
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34.8PKB308p
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Fig. 13: The graph of reaction network B448
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I̊R = −rv1a − rv1basal + rv1g + rv1r
˚IRp = rv1basal + rv1c − rv1d − rv1g
˚IRins = rv1a − rv1c
˚IRip = rv1d − rv1e

˚IRi = rv1e − rv1r
˚IRS1 = −rv2a + rv2b − rv2basal + rv2g
˚IRS1p = rv2a − rv2b − rv2c + rv2d

˚IRS1p307 = rv2c − rv2d − rv2f
˚IRS1307 = rv2f + rv2basal − rv2g

X̊ = −rv3a + rv3b
X̊p = rv3a − rv3b

˚PKB = −rv4a + rv4b + rv4h
˚PKB308p = rv4a − rv4b − rv4c
˚PKB473p = −rv4e + rv4f − rv4h

˚PKB308p473p = rv4c + rv4e − rv4f
˚mTORC1 = −rv5a + rv5b
˚mTORC1a = rv5a − rv5b
˚mTORC2 = −rv5c + rv5d
˚mTORC2a = rv5c − rv5d

˚AS160 = −rv6f1 + rv6b1
˚AS160p = rv6f1 − rv6b1
˚GLUT4m = rv7f − rv7b

˚GLUT4 = −rv7f + rv7b
˚S6K = −rv9f1 + rv9b1
˚S6Kp = rv9f1 − rv9b1

S̊6 = −rv9f2 + rv9b2
S̊6p = rv9f2 − rv9b2
rv1a = IR 0.6331 10
rv1basal = 0.03683IR
rv1c = IRins 0.8768
rv1d = IRp 31.01
rv1e = IRip 1840Xp

rv1g = IRp 1944
rv1r = IRi 0.5471
rv2a = IRS1 3.227IRip
rv2b = IRS1p 3424
rv2c = IRS1p 5759mTORC1a
rv2d = IRS1p307 280.8
rv2f = IRS1p307 2.913
rv2basal = IRS1 0.04228
rv2g = IRS1307 0.2671
rv3a = X 0.001377IRS1p
rv3b = Xp 0.09876
rv5a = mTORC1 (1.842PKB308p473p +
0.05506PKB308p)
rv5b = mTORC1a 24.83
rv5c = mTORC2 0.08575IRip
rv5d = 1.06mTORC2a
rv4a = 5790PKB IRS1p
rv4b = 34.8PKB308p
rv4c = 4.456PKB308p mTORC2a
rv4e = 42.84PKB473p IRS1p307
rv4f = 143.6PKB308p473p
rv4h = 0.5361PKB473p
rv6f1 = AS160 (2.652PKB308p473p +

36.93 (PKB473p)2.137

(30.54)2.137+(PKB473p)2.137
)

rv6b1 = AS160p 65.18
rv7f = GLUT4 50.98AS160p
rv7b = GLUT4m 2286

rv9f1 = S6K 0.1298 (mTORC1a)0.9855

(5873)0.9855+(mTORC1a)0.9855

rv9b1 = S6Kp 0.04441
rv9f2 = S6 3.329S6Kp
rv9b2 = S6p 31

Fig. 14: The ODEs of reaction network B448.

12 Conclusion and Future Work

We presented an algorithm that simulates a reaction network abstractely without
any exact knowledge on the initial concentrations. The soundness Theorem 12
relies on the causal next relation of the reaction network, rather than on its
temporal next relation. The precise relationship between these two relations
seems to be related to approximation errors of Euler’s numeric simulation.

One open question is whether one can compute the causal next relation exactly,
similarly to the exact computation of the Boolean abstraction of linear equation
systems from [2]. Another question is whether more accurate approximations
may be possible than those presented here.
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The next step will be to lift our abstract simulation algorithm to reaction
networks for which the kinetic expressions are only partially known. The most
frequent case is that some parameters of the kinetic expressions are unknown.
Alternatively, the form of the kinetic expressions may be known only up to
similarity [24,1]. Such networks cannot even be simulated concretely without
estimating the missing kinetic information from data, so abstract simulation may
provide an interesting alternative for the qualitative analysis of such networks.

We hope that the present work could be of interest to the research community
of Boolean networks. We believe that FO-BNNs offer an interesting alternative to
classical Boolean networks with deterministic updates. So the classical questions
for Boolean networks should be reconsidered for FO-BNNs.

Acknowledgements. We thank Jun Pang and Löıc Paulevé for the helpful
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well as our colleagues from BioComputing Emilie Allart, Maxime Folschette and
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