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Abstract: In this paper, we propose a complete automated framework for white 
blood cells differential count in peripheral blood and bone marrow images, in 
order to reduce the analysis time and increase the accuracy of several blood 
disorders diagnosis. A new colour transformation is first proposed to highlight 
the white blood cells regions; then, a marker controlled watershed algorithm is 
used to segment the region of interest. The nucleus and cytoplasm are 
subsequently separated. In the identification step, a set of colour, texture  
and morphological features are extracted from both nucleus and cytoplasm 
regions. Next, the performances of a random forest classifier on a set of 
microscopic images are compared and evaluated. The obtained results reveal 
high recognition accuracies for both segmentation and classification stage. 
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1 Introduction 

The differential count of white blood cells (WBCs) for medical diagnosis requires a 
careful observation in peripheral blood and bone marrow microscopic images in order to 
detect abnormal or suspicious cells. However, this process (screening) is time consuming 
even for an experiment expert. 

The diagnosis relevance of several blood disorders such as leukaemia and myeloma, 
through the analysis of WBCs or leukocytes, depends on the correct recognition of cells. 
To achieve this goal, a computer analysis image system is required to automate the 
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process in order to help experts, to reduce the time of analysis and increase the accuracy. 
The main steps in such systems are segmentation and classification of WBCs. In this 
paper, we present a method to identify and classify a set of peripheral blood and bone 
marrow WBCs that includes basophil, neutrophil, eosophil, monocyte, lymphocyte and 
plasma cells. 

In many researches, cell segmentation is the most challenging step and there are not 
standard techniques for each domain, but the processing must be adapted to the context. 
Usually, peripheral blood and bone marrow images consist of WBCs, red blood cells 
(RBCs), platelets and plasma. Figure 1 shows two images where the most represented 
cells are RBCs and WBCs. Although WBCs are easily identifiable with their colour, 
texture and shape characteristics from RBCs and background, the images tend to have 
complex contents due to the proliferation, maturation and the wide variations in cell 
shape, dimensions and edges. Therefore, the proposed method to identify WBCs exploits 
this information to segment the nucleus and cytoplasm regions that will be used to 
classify the cell type. 

Figure 1 Example of peripheral blood and bone marrow images (see online version for colours) 

  

Note: Some WBCs are outlined with white contour and RBCs with red. 

The remaining of this paper is organised as follows. In Section 2, we present different 
methods to identify the WBCs. Next, in Section 3, we detail each step of the proposed 
method. In Section 4, we describe the implementation and we discuss results. Finally, in 
Section 5, we conclude the paper and present some possible future works. 

2 Related works 

In the literature, there exist various methods for segmenting WBCs in order to facilitate 
the classification in peripheral blood and bone marrow images. To this end, there  
are mainly two approaches. In the first approach, the WBCs nucleus are identified and 
then, adequate features are extracted to classify cells. Theera-Umpon and Dhompongsa 
(2007) propose a differential WBCs count framework in bone marrow images and show 
that nucleus alone can be used to classify cells, since its segmentation is much easier than 
the entire cell. They extracted morphological granulometries nucleus features, followed 
by WBCs classification using Bayes classifiers and artificial neural networks. Leukocyte 
cell nucleus enhancer using RGB and HSV property to segment nucleus region is 
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proposed in Huang and Hung (2012). In the recognition steps, they reduced 85 textural 
and shape features by PCA and classified cells using a genetic algorithm. Madhloom  
et al. (2010) work focus on five types of WBCs nucleus segmentation using a 
combination of contrast stretching and image arithmetic operation. 

In the second approach, the idea is to segment the entire WBCs individually and then 
to separate nucleus from cytoplasm in the second step. Recently, Arslan et al. (2014) 
have implemented WBCs segmentation in peripheral blood and bone marrow images 
based on colour and shape transformation. They transformed the RGB image into a new 
intensity map based on its green and blue bands to make the pixels of WBCs more 
distinguishable. Then, they calculated a distance transform on a binary mask of this new 
intensity map. They implemented a two-stage segmentation algorithm. First, the cell 
regions are separated from background using Otsu threshold method. The second stage, 
based on active contour, is to refine the WBCs boundaries regions and remove  
false positives. Finally, they combined the new intensity and distance maps in a  
marker-controlled watershed algorithm to delineate cell boundaries. Indeed, it was found 
that the proposed algorithm improve the WBCs segmentation performance. Putzu and  
Di Ruberto (2013) use colour transformation (RGB to CMYK) as WBCs are more 
contrasted in the Y component, followed by a redistribution of image grey levels by 
contrast stretching or histogram equalisation in order to simplify the process. The 
segmentation is realised using the triangle threshold method and arithmetic operations to 
remove the background, followed by a modified watershed to separate grouped WBCs 
from which are extracted various features for the classification phase. A system to locate 
WBCs in microscopic blood smear is proposed in Prinyakupt and Pluempitiwiriyawej 
(2015). The concept of the segmentation is based on morphological properties of the real 
cells. Therefore, the nucleus and cytoplasm were segmented separately after colour 
transformation, thresholding and ellipse curve fitting to overcome the shapes and sizes 
variability of WBCs. They extracted 15 features from the segmented nucleus and 
cytoplasm regions to classify five types of leukocytes using linear and naïve Bayes 
classifiers. Chu et al. (2015) introduce a method inspired by cosegmentation to delineate 
the entire WBCs contour. Colour transformation and thresholding are employed to obtain 
a reference subimage. Then, to cosegment the reference image and the other subimages a 
similarity measurement is used. Madhloom et al. (2012) integrate colour features with 
morphological operations to localise WBCs in peripheral blood images and extract each 
individual cell separately in a subimage. In a continuation of their experiments, 
Madhloom et al. (2013) develop a computerised recognition system of normal and 
abnormal lymphocytes cells based on shape and texture features extraction, selection  
and cell classification. Rezatofighi and Soltanian-Zadeh (2011) propose a system to 
classify five major groups of WBCs (eosinophil, basophil, monocyte, lymphocyte  
and neutrophil). Nucleus and cytoplasm were segmented using Gram-Schmidt 
orthogonalisation and a snake algorithm after the pre-processing procedures. Three kinds 
of features (colour, morphological and textural) are elicited and selected. Finally, they 
compared the results of two classifiers (ANN and SVM). A texture approach to WBCs 
recognition was presented by Sabino et al. (2004). Ramoser et al. (2005) employ colour 
transformation and K-means clustering for WBCs segmentation. A set of colour and 
shape features is performed with a polynomial support vector classifier to discriminate 
between different cell types. 

In previous work, we have identified plasma cell in bone marrow images algorithm in 
two phases. Firstly, nucleus extraction is performed by Otsu thresholding from green 
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channel, then a region growing with circularity criterion delimitates the cytoplasms. 
Features extraction and cells classification is presented in Benazzouz et al. (2015). 
Segmentation scheme using pixel classification based on the fusion of information and 
evidential algorithm to segment blood cell images is reported in Benazzouz et al. (2013, 
2016) and Baghli et al. (2014). 

The previous studies based on segmentation of nucleus regions alone are limited 
when considering the identification of cells types, since the cytoplasm is essential for the 
classification of several WBCs kinds. Moreover, the published methods show that the 
cells segmentation and features extraction are the most important steps. In this paper, we 
present the different steps of a differential WBCs counting system based on a new colour 
transformation, texture and shape properties leading to faster and more accurate results. 

3 Proposed methods 

In this paper, we propose to locate the entire WBCs in peripheral blood and bone marrow 
microscopic smear in three main steps: pre-processing, segmentation and classification as 
shown on Figure 2. The main properties used by the WBCs segmentation and 
classification algorithm are colour, texture and morphology. The first step reveals 
chromatic characteristics of the WBCs by applying decorrelation stretch to multichannel 
RGB image. Then, a simple colour transformation and Otsu thresholding suppresses 
background and most of the RBCs. In the segmentation step, two techniques have been 
used which are marker controlled watershed based on the colour transformation and 
distance maps, to separate grouped WBCs, followed by an image cleaning step to 
differentiate between WBCs, false positives and artefacts using shape, colour and texture 
features. Then the nucleus and cytoplasm separation is based on both green and a* bands 
of the RGB and L*a*b colour system. The result consists of a binary subimage showing 
the individual WBCs. Finally, WBCs are classified into categories; this phase is based on 
features extraction followed by a classifier. 

3.1 Pre-processing 

Since peripheral blood and bone marrow images captured at the microscope are all in 
RGB colour space (Figure 1), it becomes necessary to exploit these characteristics 
consistently to several works which conclude that reducing images into greyscale yields 
poor segmentation results (Arslan et al., 2014; Benazzouz et al., 2013; Putzu and  
Di Ruberto, 2013). However, the microscopic images suffer from uneven lighting and 
staining during acquisition process. Moreover, WBCs can present some complications 
due to the variations in cell contrast, texture and morphology. Therefore, a pre-processing 
step is necessary in order to derive a robust and consistent segmentation for a large image 
dataset. The pre-processing is twofold. 
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Figure 2 Block diagram of the proposed cells identification system (see online version  
for colours) 

 

3.1.1 Colour decorrelation stretching 

The nucleus regions are more contrasted than other components as shown in Figure 1. 
Moreover, the nucleus regions have lower value in the green channel compared with 
other regions and often the cytoplasm colour is indistinguishable from adjacent RBCs. 
Therefore, decorrelation stretching is necessary in order to enhance the colour differences 
in peripheral blood and bone marrow images by mapping the original colour values to a 
new set of colour with a wider range. In Figure 3(a), we can see that the colour points are 
highly correlated and concentrated. Decorrelation stretching method was introduced by 
Soha and Schwartz (1978) based on a principal component (PC) transformation of the 
acquired image (Gonzales and Wintz, 1977). This method is accomplished in four steps 
(Gillespie et al., 1986): 

 extract the PCs of the image 

 rotate and translate along the axes of the PCs 

 apply contrast stretching separately. 

 calculate the inverse transformation. 

The results of applying decorrelation stretching on RGB image are shown on Figure 3(b). 
The pixels of WBCs are more distinguishable and the WBCs can be easily segmented 
from the images. 

3.1.2 Colour transformation 

After decorrelation stretching, as shown in Figure 3(b), the RBCs regions have a greater 
value in the green channel than nucleus and cytoplasm regions. Moreover, the red and 
blue bands show the WBCs regions as the brightest objects in the image (Figure 4). 
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Therefore, we propose to enhance the WBC regions in the image by adding the pixel 
values in the red and blue bands and then subtract the green band value. Let I be the 
decorrelation stretch image. The IR, IG and IB denote the red, green and blue bands, 
respectively, in RGB colour space of the latter image. The enhanced IE can be denoted for 
every pixel (x, y) as: 

( , ), ( , ) 0
( , )

0, otherwise


 


E
T x y T x y

I x y  (1) 

where 

 ( , ) ( , ) ( , ) ( , )  R B GT x y I x y I x y I x y  

Figure 3 Distribution of RGB pixel values (a) before and (b) after decorrelation stretch  
(see online version for colours) 

 

 

 

(a)     (b) 

Notes: a Original. 
b Decorrelation stretching. 

Figure 5(a) show the new intensity map via the transformation (IE). Here, the entire 
WBCs are brighter than the RBCs and background, which simplifies the segmentation of 
WBCs from the image. We use Otsu (1979) threshold method to obtain the binary mask 
containing WBCs regions as shown in Figure 5(b). To refine the cell boundaries and 
remove the small artefacts in the background, we apply morphological operators 
(dilatation, erosion) as it can be seen in Figure 5(c). Nevertheless, the mask obtained may 
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contain some false positives cells (that are not WBCs) or damaged RBCs as shown in 
Figure 6. These false positives are filtered using colour, shape and texture features in the 
next segmentation step. 

Figure 4 Result of decorrelation stretching, (a) red band (b) green band (c) blue band 

 

(a) (b) (c) 

Figure 5 Colour transformation, (a) new intensity map (b) thresholding process (c) refined binary 
mask (see online version for colours) 

 

(a) (b) (c) 

Figure 6 Example of misfiled image, (a) input image (b) decorrelation stretching (c) refined 
binary mask (see online version for colours) 

 

(a) (b) (c) 

3.2 Segmentation 

The input image in the segmentation step is the binary mask. It can contain single or 
connected WBCs. To separate adjacent cells the segmentation process is divided into  
two parts. In the first part, we consider the marker controlled watershed algorithm 
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(Lindblad, 2002) which uses the distance and the new intensity (IE) maps to delineate 
cells boundaries (Arslan et al., 2014). Then, image cleaning is applies to remove all the 
false positives cells by using the colour, shape and texture features of the WBCs. 

3.2.1 Marker controlled watershed 

Watershed segmentation is a mathematical method based on the theory of topology for 
morphological segmentation (Beucher, 1982). The main drawback of this method is  
the over segmentation, to improve the performance of watershed segmentation,  
marker-controlled watershed transformations have been proposed by combining the 
shape and intensity maps (Arslan et al., 2014). 

Firstly, we transform the binary mask into a distance map by inner distance 
transformation using the Euclidean metric from every region pixel to the border and then 
we identify the markers from which flooding starts by applying H-minima transform as 
shown in Figure 7(a). At this stage, applying marker-controlled watershed, provide us 
inaccurate separation between adjacent WBCs [Figure 7(b)]. For this reason, it is 
necessary to refine the contours extracted. Therefore, we define a new marking function 
that combines the colour and shape characteristics of WBCs (Arslan et al., 2014). Let D 
be the distance transform and IE be the new intensity map. We define the marking 
function F for every pixel (x, y) as follows: 

( , ) ( , ). ( , ) EF x y D x y I x y  (2) 

By exploiting this new marking function in watershed flooding process, we obtain more 
natural contour of WBCs, as we can see in Figure 7(c). 

Figure 7 (a) Distance map, (b) watershed results with the original distance map and (c) the new 
marking function 

 

(a) (b) (c) 

3.2.2 Image cleaning 

The extracted WBCs mask by marker-controlled watershed step contains all the WBCs 
and sometimes other abnormal components or RBCs that show similar colour 
characteristics with WBCs (see Figure 6). Therefore, image cleaning is an important 
stage to remove false positives cells and avoid errors in the classification process. To 
achieve this goal, we consider texture and shape properties of the segmented WBCs. 
Thus, we calculate descriptors for each connected component in the cells binary mask, 
which are: 

 Area: the actual number of pixels in the connected region. 
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 Roundness: 

2

4 


π Area
Roundness

Perimeter
 (3) 

 Mean intensity: of the three bands (red, green, blue) in the decorrelated stretch 
image. 

1

1



 
N

i

i

Mean I
N

 (4) 

 Variance: here, we use the red and blue bands of the decorrelated stretch image to 
describe intensities similarity within the region. If we denote μ the mean of intensity 
Ii and N the pixel number of each connected component, we have: 

2

1

1

1 

 
 

N

i

i

Variance I μ
N

 (5) 

The latter descriptors are computed for two objectives: as a factor to remove the noise 
and to take as features in the cell recognition (classification) step. To eliminate the 
abnormal components, we employ random forest classification algorithm (Breiman, 
2001), in which several classification trees grow using a training set. Therefore, to 
classify a new object from an input vector, each tree gives a classification and the tree 
votes for that class. The forest chooses the classification having the greatest number of 
votes over all the trees in the forest (Berkley Statistics, https://www.stat.berkeley.edu/ 
~breiman/RandomForests/cc_home.htm). Thus, the WBCs can be extracted and the noise 
objects are eliminated. 

3.2.3 Nucleus and cytoplasm separation 

The goal of this stage is to divide the WBC to its basic components which are nucleus 
and cytoplasm. Before that, we cut out subimages containing only single WBC from the 
cleaned image (Figure 8) in order to avoid problems due to signal heterogeneity among 
different cells. However, the WBCs can have different shape and size. Therefore, we use 
the bounding box size which is the smallest rectangle containing each connected 
component in the WBCs binary mask, the result is a binary subimage which delimitate 
the entire cell as shown in Figure 8. 

Figure 8 Binary subimages extraction (see online version for colours) 
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In peripheral blood and bone marrow images, the nucleus regions are more contrasted in 
the green channel of the RGB colour space (Cseke, 1992; Sabino et al., 2004). However, 
a simple Otsu threshold in this colour band provide inaccurate nucleus regions, since 
there are granules in the cytoplasm region selected erroneously as part of the nucleus 
(Putzu and Di Ruberto, 2013). Moreover, the nucleus regions are more distinguishable in 
the a* channel of the L*a*b colour system. Thus, we make use of these properties by 
combining the binary image of both green and a* bands threshold. Combining these two 
colour bands, yield more accurate nucleus regions. Once the nucleus binary subimage 
have been created, to obtain the cytoplasm regions, we perform a subtraction between the 
entire cell and nucleus binary subimages. 

3.3 Classification 

In practice, the expert uses visual WBCs characteristics (nucleus and cytoplasm shape, 
texture and colour) to count the cells in the human blood or bone marrow smear and at 
the same time, identify the cells type. However, data extraction from WBCs can present 
some complications due to wide variations in cells morphologies, dimensions and 
boundaries. We automatically quantify these properties in order to provide a complete 
framework to support the medical activity, able to classify the major types of WBCs in 
bone marrow and peripheral blood images. These groups are basophil, neutrophil, 
eosinophil, monocyte, lymphocyte and plasma cell (derived from a type of lymphocyte) 
which include normal and dystrophic cells (LaFleur-Brooks, 2008; Sun, 2009) as shown 
in Table 1. To this end, morphological, colour and texture features are computed from the 
segmented nucleus and cytoplasm regions and used in a random forest classification 
(Breiman, 2001) to identify the cells types. 

Table 1 WBCs types and diameters 

WBC type 
Granulocytes  Agranulocytes 

Basophil Eosinophil Neutrophil  Lymphocyte Monocyte 

Diameter 
(μm) 

around 10 10–12 10–12  Small lymphocyte 7–8 
Large lymphocyte 12–18 

12–20 

3.3.1 Morphological features 

To obtain a robust classification, we extract morphological features based on the 
biological aspects of WBC subtype. These features include nucleus and the whole cell 
area and perimeter, since the monocyte and plasma cell size is high compared with 
basophil, neutrophil and eosinophil which have intermediate size, whereas, the 
lymphocyte size is very low (see Table 1). We use the ratio between nucleus and 
cytoplasm areas to determinate the spread between the two regions, this ratio is very high 
for lymphocyte and allows to differentiate it from the other WBCs kinds since the 
nucleus occupies the major cell area. In addition, roundness [see equation (1)], solidity 
and extent of nucleus and cell body are given by: 


Area

Solidity
Convex hull

 (6) 
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
Area

Extent
Bonding box area

 (7) 

The nucleus shape differentiates clearly the WBCs. The lymphocyte and plasma cell 
nucleus shape are closer to a circle (Putzu and Di Ruberto, 2013). Thus, they have higher 
values of nucleus roundness and extent, whereas, neutrophil have lower values. 
Moreover, solidity differentiates WBCs with irregular nucleus and body cell shape. 
Therefore, dystrophic plasma cells have lower cell solidity value than normal plasma cell. 
To these features are added two specific measures, the number of nucleus concavities and 
nucleus connected components. Hence, if there are multiple nucleus regions in the same 
cell the respective features are averaged. The number of concavities is found by 
subtracting the nucleus image from its convex hull; however, we consider only the 
concavities with a significant size and remove the small concavities. In lymphocyte, 
plasma cell and basophil the number of concavities is low when compared with monocyte 
and eosinophil, which have intermediate values, however, neutrophil have the highest 
values. 

Table 2 Features extracted for cells classification 

Region of interest Morphological features Colour and texture features 

Nucleus Area Energy 

Nucleus to cytoplasm ratio Contrast 

Roundness 

Solidity 

Extents 

Number of connected components 

Number of concavities 

Cytoplasm  Mean intensity in red channel 

Mean intensity in green channel 

Energy 

Homogeneity 

Entropy 

Correlation 

Contrast 

Whole cell Area  

Perimeter 

Roundness 

Solidity 

3.3.2 Colour and texture features 

In addition to the morphological features, we also take into account colour and  
texture information, since neutrophil, basophil and eosinophil contain granules, called 
granulocytes (see Table 1) and the other cells are smooth called agranulocytes (Putzu and 
Di Ruberto, 2013). Moreover, the difference in smear colour values is used to distinguish 
between normal and dystrophic plasma cells. In this paper, we used mean intensity in 
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each of the red and green band of the segmented regions. While textural features were 
computed from the co-occurrence matrix (energy, homogeneity, entropy, correlation and 
contrast) (Haralick et al., 1973). We computed the average of each features at four angles 
(0°, 45°, 90° and 135°) to make features rotation invariant. Table 2 illustrate the total 
employed features and the corresponding region of interest. 

4 Results 

The proposed method was tested on a set of 87 colour images containing 155 WBCs, 
obtained from marrow and peripheral blood smears dyed by May-Grunwald Giemsa 
(MGG) staining method. The images were taken on a Leica microscope with  
100× magnification achromatic lens and recorded by a digital camera with a 1,024  
× 768 pixels resolution. The WBCs have been classified by an expert to evaluate the 
segmentation and identification results, thus, each microscopic image has an associated 
ground truth image where nucleus, cytoplasm, background and RBCs regions are clearly 
separated and coloured with green, yellow, black and red respectively [see Figure 9(c)]. 

4.1 Segmentation results 

To evaluate our proposed method, we use both visual and quantitative measurements. 
Figure 9 shows samples segmentation results. First column denotes the input images, the 
second are the segmented images results where nucleus and cytoplasm are coloured  
with green and yellow for each WBCs and the third are ground truth images. The 
performances of the proposed method are excellent in most cases, since the background 
and the RBCs surrounding the WBCs are completely removed from the image in the  
pre-processing stage, in fact, the adjacency between cells increases the difficulty in many 
previous researches. Moreover, the damaged cells and the false positive objects are 
cleaned from the binary mask before the identification stage. Note that errors in the cells 
segmentation may affect the efficiency of the classification and identification process. In 
the same way, the non-entire cells located on the edge of the images affect the 
segmentation accuracy. We eliminate ten non-entire cells, located on the image border. 
Table 3 shows the obtained matrix confusion. Indeed, our segmentation focuses on the 
WBCs which include nucleus and cytoplasm. Even the diagnostic of experts is based 
essentially on this type of cells. 

Table 3 Segmentation confusion matrix 

 Nucleus Cytoplasm Other (red blood cells/background) 

Nucleus 0.9687 0.0313 0.0000 

Cytoplasm 0.0431 0.9250 0.0319 

Other (red blood 
cells/background) 

0.0000 0.0025 0.9975 
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Figure 9 Segmentation samples, (a) first column demonstrate the original images (b) second  
are segmentation results and (c) third are ground truth images (see online version  
for colours) 

 

(a) (b) (c) 

Table 4 Quantitative comparison in terms of segmented regions 

 Rate (%)  Accuracy (%) 

Nucleus Cytoplasm  Nucleus Cytoplasm 

Benazzouz et al. (2013) 94.63 90.25  95.02 84.53 

Benazzouz et al. (2016) 93.53 90.04  96.42 50.77 

Benazzouz et al. (2015) 98.73 94.04  96.67 91.44 

Proposed method 98.81 95.24  96.87 92.50 
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Table 5 Confusion matrix, accuracy and overall accuracy 
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For a quantitative evaluation, we compare the performance of our experiments to the 
methods mentioned in the related work on the same images dataset (Benazzouz et al., 
2013, 2015, 2016). As shown in Table 4, an average accuracy of 96.87% and 92.50% was 
obtained for nucleus and cytoplasm segmentation, respectively. Therefore, the proposed 
method achieved better results than Benazzouz et al. (2013, 2015, 2016) especially in 
cytoplasm regions. Indeed, our segmentation extracts the cytoplasm regions precisely 
even when the shape boundaries are irregular. We can note that the circularity criterion 
that prevents the deformation of the region growing in Benazzouz et al. (2015) and the 
misclassification between RBCs and some cytoplasm regions in Benazzouz et al. (2013, 
2016) affect the segmentation accuracy. 

4.2 Classification results 

The proposed method classifies the WBCs into seven types: lymphocyte, monocyte, 
eosinophil, neutrophil, basophil, plasma cell including normal and dystrophic cells 
(LaFleur-Brooks, 2008; Sun, 2009) with a set of 20 extracted features to represent the 
WBCs (see Table 2), Figure 10 presents some features histograms that have been 
extracted on the WBCs subimages dataset. The classification is performed using the 
random forest algorithm that requires as inputs the number of trees forming the forest. 
After multiple tests, we opt for the typical value of 100 trees. Also, the segmentation 
stage extracts properly 145 subimages containing individual WBCs from the image 
dataset. The learning was done on 92 cells images and 53 were used for testing. 

Figure 10 The histograms of eight extracted features from a set of twenty classification features 
(see online version for colours) 

 

For the purpose of evaluation we calculate the class accuracy (8) and the overall accuracy 
(9) from the confusion matrix as: 
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where M is the classes number, Tij is the number of samples of class i that are classified 
as samples of class j. 

As shown in Table 5, we obtain an overall accuracy of 95.86% and a robust 
recognition of the majority classes (lymphocyte, monocyte, neutrophil and basophil). 
However, we observe some misclassification of eosinophil into neutrophil since the 
eosinophil and neutrophil nucleus have similar shape. 

A first improvement with respect to the method described earlier by Benazzouz et al. 
(2015), where the authors separate WBCs into two classes (normal and dystrophic plasma 
cells vs. other types) in order to diagnose myeloma pathology, lies in the number of WBC 
classes that the proposed method can distinguish. The obtained plasma cells accuracy in 
their work is 75.25% due to the misclassification of most dystrophic plasma cells into 
other cells type. The proposed classification method provides an important improvement 
with an accuracy of 93.87% and 96.00% for normal and dystrophic plasma cells 
respectively (see Table 5). The main reason is that our classification algorithm employs 
morphological cell features in addition to the colour and texture features, since the 
segmentation stage is able to find the cells boundaries precisely. Nevertheless, it should 
be noted that some misclassification between normal and dystrophic plasma cells can be 
attributed to similar cells shape when even the human expert hardly recognises the 
difference. 

5 Conclusions 

In this paper, we have proposed an automatic differential WBCs count system to assist 
expert in medical diagnosis. The proposed system segments the WBCs nucleus and 
cytoplasm and then identifies the cell types by using colour, texture and shape properties. 
The experiments show good results in both segmentation and classification stage, 
considering the cells difference and the complex scenes, with an overall accuracy of 
95.86%. These results show that the WBCs identification depend on both the nucleus and 
cytoplasm segmentation and the choice of discriminative characteristics. This approach 
could be generalised to a greater number of cells types by introducing new discriminative 
features. 
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