M. A. Ajeel, M. K. Aroua, and W. M. Daud, Anodic Degradation of 2-chlorophenol by carbon black diamond and activated carbon composite electrodes, Electrochim. Acta, vol.180, pp.22-28, 2015.

P. T. Anastas and J. J. Breen, Design for the environment and green chemistry: the heart and soul of industrial ecology, J. Cleaner Produc, vol.5, pp.97-102, 1997.

M. R. Arcanjo, I. J. Silva, . Jr, E. Rodríguez-castellón, A. Infantes-molina et al., Conversion of glycerol into lactic acid using Pd or Pt supported on carbon as catalyst, Catal. Today, vol.279, pp.317-326, 2016.

S. Bagheri, N. M. Julkapli, Y. , and W. A. , Catalytic conversion of biodiesel derived raw glycerol to value added products, Renew. Sustain. Energy Rev, vol.41, pp.113-127, 2015.

B. Beden, I. Çetin, A. Kahyaoglu, D. Takky, and C. Lamy, Electrocatalytic oxidation of saturated oxygenated compounds on gold electrodes, J. Catal, vol.104, pp.37-46, 1987.

N. Boniardi, R. Rota, G. Nano, and B. Mazza, Analysis of the sodium lactate concentration process by electrodialysis, Separat. Technol, vol.6, pp.43-54, 1996.

P. Boontawan, S. Kanchanathawee, and A. Boontawan, Extractive fermentation of l-(+)-lactic acid by Pediococcus pentosaceus using electrodeionization (EDI) technique, Biochem. Eng. J, vol.54, pp.192-199, 2011.

A. M. Bruno, C. A. Chagas, M. M. Souza, and R. L. Manfro, Lactic acid production from glycerol in alkaline medium using Pt-based catalysts in continuous flow reaction system, Renew. Energy, vol.118, pp.160-171, 2018.

W. Bühler, E. Dinjus, H. J. Ederer, A. Kruse, and C. Mas, Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near-and supercritical water, J. Supercrit. Fluids, vol.22, pp.37-53, 2002.

C. Dai, L. Sun, H. Liao, B. Khezri, R. D. Webster et al., Electrochemical production of lactic acid from glycerol oxidation catalyzed by AuPt nanoparticles, J. Catal, vol.356, pp.14-21, 2017.

H. Danner, L. Madzingaidzo, M. Holzer, L. Mayrhuber, and R. Braun, Extraction and purification of lactic acid from silages, Bioresour. Technol, vol.75, pp.181-187, 2000.

S. Demirel-gülen, M. Lucas, C. , and P. , Liquid phase oxidation of glycerol over carbon supported gold catalysts, Catal. Today, vol.102, issue.103, pp.166-172, 2005.

N. Dimitratos, J. A. Lopez-sanchez, D. Lennon, F. Porta, L. Prati et al., Effect of particle size on monometallic and bimetallic (Au,Pd)/C on the liquid phase oxidation of glycerol, Catal. Lett, vol.108, pp.147-153, 2006.

T. V. Elisseeva, V. A. Shaposhnik, and I. G. Luschik, Demineralization and separation of amino acids by electrodialysis with ion-exchange membranes, Desalination, vol.149, pp.405-409, 2002.

R. Farma, M. Deraman, A. Awitdrus, I. A. Talib, E. Taer et al., Preparation of highly porous binderless activated carbon electrodes from fibres of oil palm empty fruit bunches for application in supercapacitors, Bioresour. Technol, vol.132, pp.254-261, 2013.

O. O. Fashedemi, H. A. Miller, A. Marchionni, F. Vizza, and K. I. Ozoemena, Electro-oxidation of ethylene glycol and glycerol at palladiumdecorated FeCo@Fe core-shell nanocatalysts for alkaline direct alcohol fuel cells: functionalized MWCNT supports and impact on product selectivity, J. Mater. Chem. A, vol.3, pp.7145-7156, 2015.

J. Feng, W. Xiong, B. Xu, W. Jiang, J. Wang et al., Basic oxidesupported Ru catalysts for liquid phase glycerol hydrogenolysis in an additivefree system, Catal. Commun, vol.46, pp.98-102, 2014.

M. Fidaleo and M. Moresi, Assessment of the main engineering parameters controlling the electrodialytic recovery of sodium propionate from aqueous solutions, J. Food Eng, vol.76, pp.218-231, 2006.

M. Finn, J. A. Ridenour, J. Heltzel, C. Cahill, and A. Voutchkova-kostal, Next-generation water-soluble homogeneous catalysts for conversion of glycerol to lactic acid, Organometallics, vol.37, pp.1400-1409, 2018.

R. Francke and R. D. Little, Redox catalysis in organic electrosynthesis: basic principles and recent developments, Chem. Soc. Rev, vol.43, pp.2492-2521, 2014.

J. Fu, Q. He, P. J. Miedziak, G. L. Brett, X. Huang et al., The Role of Mg(OH)2 in the So-Called "Base-Free" Oxidation of Glycerol with AuPd Catalysts, Chem. A Eur. J, vol.24, pp.2396-2402, 2018.

S. Gil, N. Cuenca, A. Romero, J. L. Valverde, and L. Sánchez-silva, Optimization of the synthesis procedure of microparticles containing gold for the selective oxidation of glycerol, Appl. Catal. A, vol.472, pp.11-20, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01057442

J. F. Gomes, C. Martins, M. J. Giz, G. Tremiliosi-filho, and G. A. Camara, Insights into the adsorption and electro-oxidation of glycerol: Self-inhibition and concentration effects, J. Catal, vol.301, pp.154-161, 2013.

M. I. González, S. Alvarez, F. A. Riera, and R. Álvarez, Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration, Desalination, vol.228, pp.84-96, 2008.

I. Grand_view_research, Global Glycolic Acid Market by Application (Personal Care, Household Cleaning, Industrial) is Expected to Reach USD 277.8 Million by, p.2020, 2016.

O. P. Gupta, M. Chauhan, and R. Loomba, Study of the variation in the cathode potential with temperature in Ni-Cd alloy plating from a sulphate bath, Surface Technol, vol.21, pp.155-160, 1984.

V. Hábová, K. Melzoch, M. Rychtera, Á. Sekavov, and B. , Electrodialysis as a useful technique for lactic acid separation from a model solution and a fermentation broth, Desalination, vol.162, pp.361-372, 2004.

C. Huang, T. Xu, Y. Zhang, Y. Xue, C. et al., Application of electrodialysis to the production of organic acids: State-of-the-art and recent developments, J. Membrane Sci, vol.288, pp.1-12, 2007.

M. Hunsom and P. Saila, Electrochemical conversion of enriched crude glycerol: effect of operating parameters, Renew. Energy, vol.74, pp.227-236, 2015.

B. Katryniok, H. Kimura, E. Skrzynska, J. Girardon, P. Fongarland et al., Selective catalytic oxidation of glycerol: perspectives for high value chemicals, Green Chem, vol.13, pp.1960-1979, 2011.

K. S. Kumar, P. Haridoss, and S. K. Seshadri, Synthesis and characterization of electrodeposited Ni-Pd alloy electrodes for methanol oxidation, Surface Coat. Technol, vol.202, pp.1764-1770, 2008.

P. Lakshmanan, P. P. Upare, N. Le, Y. K. Hwang, D. W. Hwang et al., Facile synthesis of CeO2-supported gold nanoparticle catalysts for selective oxidation of glycerol into lactic acid, Appl. Catal. A, vol.468, pp.260-268, 2013.

C. H. Lam, A. J. Bloomfield, and P. T. Anastas, A switchable route to valuable commodity chemicals from glycerol via electrocatalytic oxidation with an earth abundant metal oxidation catalyst, Green Chem, vol.19, pp.1958-1968, 2017.

C. S. Lee, M. K. Aroua, W. M. Wan-daud, P. Cognet, Y. Pérès et al., Selective electroreduction of glycerol to 1,2-propanediol on a mixed carbon-black activated carbon electrode and a mixed carbon black-diamond electrode, BioResources, vol.13, pp.115-130, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01983314

G. S. Luo, S. Pan, and J. G. Liu, Use of the electrodialysis process to concentrate a formic acid solution, Desalination, vol.150, pp.227-234, 2002.

S. Lux, P. Stehring, and M. Siebenhofer, Lactic acid production as a new approach for exploitation of glycerol, Separat. Sci. Technol, vol.45, pp.1921-1927, 2010.

L. Madzingaidzo, H. Danner, and R. Braun, Process development and optimisation of lactic acid purification using electrodialysis, J. Biotechnol, vol.96, pp.223-239, 2002.

E. P. Maris and R. J. Davis, Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts, J. Catal, vol.249, pp.328-337, 2007.

C. Martin, H. Huser, K. Servat, and K. B. Kokoh, Electrosynthesis of lactic acid on copper and lead cathodes in aqueous media, Electrochim. Acta, vol.51, pp.111-117, 2005.

C. Martin, H. Huser, K. Servat, and K. B. Kokoh, Electrosynthesis of lactic acid and 2,3-dimethyltartaric acid from pyruvic acid on lead cathode in aqueous medium, Tetrahedron Lett, vol.47, pp.3459-3462, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00291119

D. Motta, F. J. Trujillo, N. Dimitratos, A. Villa, and L. Prati, An investigation on AuPt and AuPt-Bi on granular carbon as catalysts for the oxidation of glycerol under continuous flow conditions, Catal. Today, vol.308, pp.50-57, 2018.

R. K. Purushothaman, J. Van-haveren, D. S. Van-es, I. Melián-cabrera, J. D. Meeldijk et al., An efficient one pot conversion of glycerol to lactic acid using bimetallic gold-platinum catalysts on a nanocrystalline CeO2 support, Appl. Catal. B, vol.147, pp.92-100, 2014.

J. Qi, L. Xin, D. J. Chadderdon, Y. Qiu, Y. Jiang et al., Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration, Appl. Catal. B-Environ, vol.154, pp.360-368, 2014.

M. Research, Lactic Acid Market by Application (Biodegradable Polymer, Food and Beverage, Personal Care and Pharmaceutical) and Polylactic Acid Market by Application, and by Geography-Global Trends and Forecasts to 2020, 2015.

E. G. Rodrigues, M. F. Pereira, X. Chen, J. J. Delgado, and J. J. Órfão, Selective oxidation of glycerol over platinum-based catalysts supported on carbon nanotubes, Indus. Eng. Chem. Res, vol.52, pp.17390-17398, 2013.

P. Saila and M. Hunsom, Effect of additives on one-pot electrochemical conversion of enriched crude glycerol, Korean J. Chem. Eng, vol.32, pp.2412-2417, 2015.

L. S. Sharninghausen, J. Campos, M. G. Manas, and R. H. Crabtree, Efficient selective and atom economic catalytic conversion of glycerol to lactic acid, Nat. Commun, vol.5, p.5084, 2014.

Y. Shen, S. Zhang, H. Li, Y. Ren, and H. Liu, Efficient Synthesis of lactic acid by aerobic oxidation of glycerol on Au-Pt/TiO2 Catalysts, Chem. A Eur. J, vol.16, pp.7368-7371, 2010.

Z. Shen, F. Jin, Y. Zhang, B. Wu, A. Kishita et al., Effect of alkaline catalysts on hydrothermal conversion of glycerin into lactic acid, Indus. Eng. Chem. Res, vol.48, pp.8920-8925, 2009.

M. Simões, S. Baranton, and C. Coutanceau, Electrochemical Valorisation of Glycerol, ChemSusChem, vol.5, pp.2106-2124, 2012.

S. Van-de-vyver, C. Odermatt, K. Romero, T. Prasomsri, and Y. Román-leshkov, Solid lewis acids catalyze the carbon-carbon coupling between carbohydrates and formaldehyde, ACS Catal, vol.5, pp.972-977, 2015.

F. Wang, S. Shao, C. Liu, C. Xu, R. Yang et al., Selective oxidation of glycerol over Pt supported on mesoporous carbon nitride in base-free aqueous solution, Chem. Eng. J, vol.264, pp.336-343, 2015.

F. Yang, M. Hanna, and R. Sun, Value-added uses for crude glycerol-a byproduct of biodiesel production, Biotechnol. Biofuels, vol.5, p.13, 2012.

?. Zeli, B. Vasi?-ra?ki, and Ã. , Process development and modeling of pyruvate recovery from a model solution and fermentation broth, Desalination, vol.174, pp.267-276, 2005.

C. Zhang, T. Wang, X. Liu, and Y. Ding, Selective oxidation of glycerol to lactic acid over activated carbon supported Pt catalyst in alkaline solution, Chinese J. Catal, vol.37, pp.61055-61060, 2016.

M. Zhang, R. Nie, L. Wang, J. Shi, W. Du et al., Selective oxidation of glycerol over carbon nanofibers supported Pt catalysts in a base-free aqueous solution, Catal. Commun, vol.59, pp.5-9, 2015.

Z. Zhang, L. Xin, L. , and W. , Electrocatalytic oxidation of glycerol on Pt/C in anion-exchange membrane fuel cell: Cogeneration of electricity and valuable chemicals, Appl. Catal. B, vol.119, issue.120, pp.40-48, 2012.

Z. Zhang, L. Xin, J. Qi, D. J. Chadderdon, K. Sun et al., Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anionexchange membrane electro-catalytic flow reactor, Appl. Catal. B, vol.147, pp.871-878, 2014.

C. Zhou, J. N. Beltramini, Y. Fan, and G. Q. Lu, Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals, Chem. Soc. Rev, vol.37, pp.527-549, 2008.

Y. Zhou, Y. Shen, and J. Piao, Sustainable conversion of glycerol into value-added chemicals by selective electro-oxidation on ptbased catalysts, vol.5, pp.1624-1624, 2018.