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Structure-based Clustering Algorithm for Model Reduction

of Large-scale Network Systems

Muhammad Umar B. Niazi†, Xiaodong Cheng§, Carlos Canudas-de-Wit†, and Jacquelien M. A. Scherpen‡

Abstract— A model reduction technique is presented that
identifies and aggregates clusters in a large-scale network
system and yields a reduced model with tractable dimension.
The network clustering problem is translated to a graph
reduction problem, which is formulated as a minimization of
distance from lumpability. The problem is a non-convex, mixed-
integer optimization problem and only depends on the graph
structure of the system. We provide a heuristic algorithm to
identify clusters that are not only suboptimal but are also
connected, that is, each cluster forms a connected induced
subgraph in the network system.

Index Terms— Large-scale systems, model reduction, lumpa-
bility, clustering algorithm.

I. INTRODUCTION

Monitoring and control of large-scale network systems

require tremendous amounts of sensing and computational

resources. The paradigm of model reduction, [1]–[3], has

proven to be quite effective in reducing the complexity of

large-scale systems, such as chemical reaction networks [4],

building thermal [5], and power networks [6].

For model reduction of network systems, preserving the

topological structure is also critical in addition to the dy-

namical properties of the system. In this regard, clustered

model reduction techniques proposed in [7]–[11] have shown

promising results. Such techniques not only preserve the

topological structure but also provide the technical tools to

quantify model approximation error. The main goal is to

identify clusters in a network system that can be aggregated

to obtain a reduced system, whose state space is of tractable

dimension and whose input-output behavior is similar to the

input-output behavior of the original network system. This

similarity is achieved by minimizing a model approximation

error, which is characterized in terms of H2 or H∞ norm

of the difference between the frequency responses of both

systems.

In this paper, we propose a clustering approach that is

based only on the graph structure of the system. Such an

approach is called structure-based clustering and it is com-

putationally efficient because the computation of H2 or H∞

norms is not required. The dynamics of a large-scale network
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system are projected on a lower-dimensional state space,

[12], which yields a projected system whose state vector

contains the aggregated states of the clusters. The projected

system is shown to be influenced by the average deviation

vector that is considered to be an unknown input with a

certain structure. Neglecting the average deviation vector

yields a reduced system, which is an approximation of the

projected system. To obtain a better approximation, therefore,

we argue that it is sufficient to identify the clusters such

that the influence of average deviation vector is minimized.

By exploiting the structure of the average deviation vector,

we show that the problem boils down to a graph reduction

problem, [13], [14].

We revisit the notion of lumpability, [15]–[17], which

guarantees that the states of the projected and the reduced

systems are equal. We show that lumpability is the ideal

situation for model reduction. However, it is difficult to

achieve by a clustering algorithm; especially when there

are constraints on the number of clusters, the connectivity

of clusters, and the placements of dedicated sensors in the

network. Therefore, the clustering problem is formulated as

a minimization of the distance from lumpability, which is the

difference between the states of the projected system and the

reduced system. Such an approach is quite reasonable, for

instance, in the estimation of the average states of multiple

clusters in a network system, [18]–[20].

The clustering problem is a non-convex, mixed integer

optimization problem. The initial clustering is generated by

an algorithm based on a graph cut method. Then, a heuristic

algorithm is proposed that provides a suboptimal clustering

solution such that each cluster forms a connected induced

subgraph in the network, which is a crucial requirement when

dealing with physical network systems, [21].

II. SYSTEM DEFINITIONS

Consider a network system with a linear time-invariant

state-space representation

Σ :

{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

,

where x(t) = [ x1(t) · · · xn(t) ]⊤ ∈ R
n is the state

vector, u(t) = [ u1(t) · · · up(t) ]⊤ ∈ R
p is the input

vector, y(t) ∈ R
m is the output vector, and A ∈ R

n×n,

B ∈ R
n×p and C ∈ R

m×n are the system matrices.

We assume a symmetric state matrix, i.e., A = A⊤,

which corresponds to an undirected graph G = (V , E), where

V = {1, . . . , n} is the index set of nodes and E = V × V
the set of edges. That is, if (i, j) ∈ E , then the ij-entry of



A is aij = aji 6= 0; otherwise, aij = aji = 0. Without loss

of generality, suppose that the output y(t) consists of the

dedicated state measurements at m nodes, which are called

measured nodes. Let the set of measured nodes be Vm ⊂ V.

The remaining nodes Vu = V \ Vm are called unmeasured

nodes, where |Vu| = l and l = n−m. Suppose the reordering

of nodes such that Vu = {1, · · · , l} and Vm = {l+1, · · · , n}.
Thus the output matrix C = [ 0m×l Im ], and the state

matrix is partitioned as

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ R
l×l, A12 ∈ R

l×m, A21 ∈ R
m×l, and

A22 ∈ R
m×m.

Suppose a clustering (or partition) of unmeasured nodes

be Q = {C1, · · · , Ck} such that C1 ∪ · · · ∪ Ck = Vu and for

any α 6= β it holds that Cα ∩Cβ = ∅, where α, β = 1, · · · , k
and each of the set Cα is called a cluster. Let Q ∈ R

l×k be

the characteristic matrix of Q, which is defined as

[Q]iα =

{
1, if i ∈ Cα,
0, otherwise,

for i ∈ Vu and α = 1, · · · , k. Note that Q1k = 1l, i.e., each

node is assigned to at least one (and only one) cluster, and

Q⊤Q = diag[n1, · · · , nk ], where nα = |Cα|. Throughout

the paper, we suppose α, β = 1, · · · , k.

The projection matrix P ∈ R
n×(k+m) is defined as

P =

[
QN 0l×m

0m×k Im

]
, (1)

where N = (Q⊤Q)−
1

2 . Note that P⊤P = Ik+m and there

exists P̄ ∈ R
n×(k+m) such that PP⊤ + P̄ P̄⊤ = In, where

P⊤P̄ = 0 (see [1], [22]). We project the state vector x(t)
on a lower dimensional state space and obtain

z(t) = P⊤x(t) = [ z1(t)
⊤ y(t)⊤ ]⊤ ∈ R

n̂,

where n̂ = k +m and z1(t) = [ z1(t) · · · zk(t) ]⊤ with

zα(t) =
1√
nα

∑

j∈Cα

xj(t).

Then, we have x(t) = Pz(t) + P̄ P̄⊤x(t), where

P̄ P̄⊤x(t) = (I − PP⊤)x(t) =

[
J

0m×n

]
x(t)

with J = [ I −QN2Q⊤ 0l×m ] ∈ R
l×n. The vector

Jx(t) =: σ(t) ∈ R
l is the average deviation vector, whose

i-th entry is given by

σi(t) =





xi(t)−
1√
nα

zα(t) , if i ∈ Cα,

0 , if i ∈ Vm,
(2)

where
(
1/
√
nα

)
zα(t) is the average mean of the states of

Cα at time t ∈ R≥0.

The projected system corresponding to the network system

Σ is given as

Σ̊ :





ż(t) = Ez(t) + Fσ(t) +Gu(t)
σ(t) = Jx(t)
y(t) = Hz(t)

,

Σ Σ̊ Σ̂

u

y

−
0 ŷ

J F
x σ

≈

Fig. 1: The reduced system Σ̂ is obtained by approximating the

projected system Σ̊, whose state space is a lower-dimensional
projection of the state space of large-scale network system Σ. The

output of Σ̊ is equal to the output of Σ, whereas the output of Σ̂

approximates the output of Σ.

where E = P⊤AP , G = P⊤B, H = CP , and Fσ(t) =
P⊤AP̄ P̄⊤x(t) with

F =

[
NQ⊤A11

A21

]
.

Note that the output y(t) of the original system Σ and the

projected system Σ̊ is equal because

y(t) = Cx(t) = C
(
Pz(t) + P̄ P̄⊤x(t)

)
= CPz(t),

where CP̄ P̄⊤ = 0. Also, note that σ(t) enters Σ̊ as

an unknown input since it corresponds to the states of

unmeasured nodes Vu. However, we remark that it satisfies

the following structural property

Q⊤
σ(t) = 0, ∀ t ∈ R≥0. (3)

By approximating Σ̊, i.e., assuming Fσ(t) ≈ 0, we obtain

the reduced system

Σ̂ :

{
˙̂z(t) = Eẑ(t) +Gu(t)
ŷ(t) = H ẑ(t)

,

where ẑ(t) ∈ R
n̂ and ŷ(t) ∈ R

m. The relation between Σ,

Σ̊, and Σ̂ is illustrated by Figure 1.

III. LUMPABILITY

Lumpability is a notion that ensures that the state trajec-

tories of the reduced-system Σ̂ and the projected system Σ̊

remain equal for all t ∈ R≥0. This, in turn, ensures that

y(t) = ŷ(t) for all t ∈ R≥0, i.e., the output trajectories

of Σ̂ and Σ remain equal. Although lumpability is already

defined in [15]–[17], we define it from the perspective of the

projected system.

Definition 1. Let Σ̊ be the projected system of the network

system Σ and let Σ̂ be the reduced system obtained by

approximating Σ̊. Then, we say that Σ is lumpable to Σ̂

if z(0) = ẑ(0) implies z(t) = ẑ(t) for all t ∈ R>0, where

z(t) and ẑ(t) are the states of Σ̊ and Σ̂, respectively. ♦
To show that the above definition is equivalent to the defi-

nition given in [15]–[17], we present the following necessary

and sufficient condition of lumpability. We associate this

condition to [12], which to our knowledge is the earliest

to provide it.

Theorem 1 (Aoki [12]). Consider a network system Σ with

a set Vm of m measured nodes and a clustering (or partition)



Q = {C1, · · · , Ck} of l unmeasured nodes. Furthermore, let

Σ̊ to be the projected system of Σ, and let Σ̂ to be the

reduced system. Then, Σ is lumpable to Σ̂ if and only if

P⊤A = EP⊤, (4)

where P ∈ R
n×n̂ is the projection matrix given in (1).

Proof. Consider the difference between the state trajectories

of Σ̊ and Σ̂

z(t) − ẑ(t) =

∫ t

0

exp[E(t− τ)]Fσ(τ)dτ, (5)

where we assume that z(0) = ẑ(0).

Sufficiency: Assume (4) holds, then

Fσ(t) = P⊤AP̄ P̄⊤x(t) = EP⊤P̄ P̄⊤x(t) = 0,

for all t ∈ R≥0, because P⊤P̄ = 0. Thus z(t) − ẑ(t) = 0
for all t ∈ R≥0.

Necessity: Let z(t)− ẑ(t) = 0, for all t ∈ R≥0, then
∫ t

0

exp[P⊤AP (t− τ)]P⊤AP̄ P̄⊤x(τ)dτ = 0.

The above integral is zero if, and only if, P⊤AP̄ P̄⊤x(t) = 0
for all t ∈ R≥0. Since x(t) evolves in R

n and the columns of

P̄ span ker(P⊤), therefore P⊤AP̄ P̄⊤x(t) = 0 is equivalent

to the existence of X ∈ R
n̂×n̂ such that P⊤A = XP⊤. By

multiplying P from right, we obtain X = P⊤AP , which

proves the necessity of (4).

The condition (4) of lumpability can be interpreted in

many ways. Algebraically, (4) is equivalent to saying that

ker(P⊤) is A-invariant or that ker(P⊤) ⊆ ker(P⊤A), [17].

However, in terms of graph theory, (4) is satisfied only if the

partition N = {C1, · · · , Ck,Vm} ⊃ Q is almost equitable,

[7], [23]. This is a necessary condition, and not sufficient,

because almost equitable partition only concerns with the

inter-cluster topology of the graph and excludes the induced

subgraph formed by each cluster. Also, it excludes the

diagonal values of A, which play a crucial role in lumpability.

However, when A is assumed to be the Adjacency matrix of

G, we have a necessary and sufficient condition, that is, (4)

holds if and only if N is an equitable partition, [24], [25].

The goal of model reduction is to minimize ‖y(t)− ŷ(t)‖
for all t ∈ R≥0 by choosing the suitable clustering Q. For

this purpose, we remark that lumpability is the ideal situation.

That is, since lumpability ensures that ‖z(t) − ẑ(t)‖ = 0, it

also ensures ‖y(t)− ŷ(t)‖ = 0, for all t ∈ R≥0, because

‖y(t)− ŷ(t)‖ ≤ |||H ||| ‖z(t)− ẑ(t)‖,
where |||H ||| = 1 with |||·||| induced by the Euclidean norm.

However, the number of clusters, k, is already specified and

dedicated sensors already placed at m measured nodes in

the network system. In addition to that, we require that the

induced subgraph formed by each cluster in the network is

connected. In the presence of such constraints, lumpability is

almost impossible to achieve by clustering algorithms. Nev-

ertheless, we can achieve ‘almost’ lumpability by postulating

the clustering problem that aims to minimize ‖z(t)− ẑ(t)‖
for all t ∈ R≥0.

IV. CLUSTERING PROBLEM

The foundation of the clustering problem has been laid

above. That is, the clustering Q of unmeasured nodes must

be such that Σ is ‘almost’ lumpable to Σ̂. Therefore,

we formulate the clustering problem as a minimization

of δ(t) := ‖z(t)− ẑ(t)‖, for all t ∈ R≥0, which is the

distance from lumpability and can be considered as a model

approximation error.

From (5), we have

δ(t) ≤
∫ t

0

|||exp[E(t− τ)]||| ‖Fσ(τ)‖dτ

≤
(

sup
0≤γ≤t

‖Fσ(γ)‖
)∫ t

0

|||exp(Eτ)|||dτ.

Due to the interlacing property, [24], i.e., the eigenvalues

of E interlace the eigenvalues of A, we note that the

value of
∫ t

0 |||exp(Eτ)|||dτ depends on the eigenvalues of

A. However, we can minimize ‖Fσ(t)‖ for all t ∈ R≥0.

Note that ‖Fσ(t)‖ = ‖FJx(t)‖ ≤ |||FJ ||| ‖x(t)‖, where

|||FJ ||| = |||Ψ(Q)||| with

Ψ(Q) =

[
NQ⊤A11(I −QN2Q⊤)
A21(I −QN2Q⊤)

]
. (6)

Since ‖x(t)‖ depends on the dynamical properties of Σ, we

aim to minimize |||Ψ(Q)||| by choosing a suitable clustering

Q of unmeasured nodes with a characteristic matrix Q.

Suppose we require k clusters of unmeasured nodes, i.e.,

Q = {C1, · · · , Ck} with its characteristic matrix Q ∈ R
l×k

and N = (Q⊤Q)−
1

2 . Then, the clustering problem is

formulated as

min
Q∈Rl×k

|||Ψ(Q)|||

subject to Q1k = 1l, [Q]iα ∈ {0, 1};
(7)

where i = 1, · · · , l and α = 1, · · · , k. Note that the

constraint Q1k = 1l guarantees that each unmeasured node

is assigned to at least one and only one cluster.

It is worth mentioning that (7) is a non-convex, mixed

integer optimization problem. That is to say that solving (7)

only yields a suboptimal solution, which is a local minimum.

V. STRUCTURE-BASED CLUSTERING ALGORITHM

We present a heuristic algorithm to identify clusters cor-

responding to a suboptimal solution Q∗ of (7). Note that

(7) can be solved by the existing algorithms, [26]; however,

the connectedness of each cluster may not be guaranteed.

That is, we may obtain a solution Q∗ = {C1, · · · , Ck}
corresponding to the characteristic matrix Q∗ such that the

induced subgraphs Gα = (Cα, Eα), where Eα = E∩(Cα×Cα),
are not connected. Such a clustering is not desirable since it

complicates the interpretation of the reduced graph in terms

of the original graph. The algorithm presented in this section

guarantees the connectedness of the obtained clusters.

A. Notations

The connectedness of the clusters means that, for every

pair of nodes i, j ∈ Cα, we require that there exists a path

(a sequence of edges in Eα) that connect i and j. If there



exists such a path, then we say that i is adjacent to Cα and

use a notation i↔ Vα. If i ∈ Cα, where Gα is the subgraph

formed by Cα, then removing i from Cα gives a graph G−i
α . If

the graph G−i
α is connected, which is equivalent to verifying

rankL(G−i
α ) = |Cα|−2, then we say that removing i doesn’t

disconnect the graph Gα and use a notation i ←֓ Cα.

B. Clustering Initialization

Consider the induced subgraph Gu = (Vu, Eu), where

Vu = {1, · · · , l} is the set of unmeasured nodes, l = n−m,

and Eu = E∩(Vu×Vu) are the edges among Vu. We associate

a symmetric, weighted adjacency matrix Λ ∈ R
l×l to Gu as

[Λ]ij = [Λ]ji =

{
|||Ψ(Rij)|||, if (i, j) ∈ Eu;

0, otherwise;
(8)

where Ψ(·) is given in (6) and Rij ∈ R
l×(l−1) is the

characteristic matrix that puts the nodes i and j in one cluster

while keeping other l − 2 nodes in distinct l − 2 clusters.

Note that the matrix N in (6) is computed according to Rij

at this step, i.e., N(Rij) = (R⊤
ijRij)

− 1

2 . To illustrate further,

if there exists an edge (i, j) ∈ Eu, we associate a weight on

the edge which is the cost of assigning nodes i and j into

one cluster while keeping all other nodes unassigned. The

Laplacian matrix of Gu is defined as

Γ = diag(Λ1l)− Λ, (9)

where diag(Λ1l) ∈ R
l×l is a diagonal matrix with its ii-entry

equal to [Λ1l]i.

Algorithm 1 Clustering initialization

Input: Number of unmeasured nodes l, number of clusters

k, and the state matrix A.

Output: Clustering Q0 = {C1, C2, · · · , Ck}.
1: Obtain Gu = (Vu, Eu) and construct Λ as in (8).

2: repeat

3: Find an edge (µ, ν) := argmax(i,j)∈Eu
[Λ]ij .

4: Remove (µ, ν) from Gu and let [Λ]µν = [Λ]νµ = 0.

5: Compute Γ as in (9).

6: until rank Γ = l − k
7: Let cmax := argmaxα |Cα| and cmin := argminα |Cα|.
8: repeat

9: for each node i ∈ Ccmax
do

10: if i ←֓ Ccmax
and i↔ Ccmin

then

11: Move i from Ccmax
to Ccmin

.

12: end if

13: end for

14: cmax := argmaxα |Cα| and cmin := argminα |Cα|.
15: until (cmax ≤ l

k
and cmin > 1) or the maximum number

of iterations.

16: return Q0 = {C1, C2, · · · , Ck}.

The lines 1–5 of Algorithm 1 remove the edge between a

pair of nodes i and j that yield a higher cost |||Ψ(Rij)|||.
The process iterates until we are left with k connected

components of Gu. Note that Gu has k ≤ l connected

components if and only if rankΓ = l − k. However, this

process may yield clusters that consist of just one node.

To obtain a better clustering initialization, the lines 6–14

of the algorithm transfer nodes from the biggest cluster to

the smallest one in an iterative fashion. A node is transferred

only if it is adjacent to the smallest cluster and removing it

doesn’t make the induced subgraph formed by the biggest

cluster disconnected.

C. Heuristic Algorithm

We obtain an initial clustering Q0 from Algorithm 1 and

compute its characteristic matrix Q0 ∈ R
l×k.

Algorithm 2 Structure-based clustering

Input: Number of unmeasured nodes l, state matrix A, and

the initial clustering Q0 = {C1, · · · , Ck}.
Output: Suboptimal graph clustering Q∗ = {C∗1 , · · · , C∗k}

1: Compute ψ0 = |||Ψ(Q0)|||.
2: Assign ψM ← ψ0.

3: repeat

4: for each node i = 1, 2, · · · , l do

5: Let ζ be such that i ∈ Cζ .

6: Assign ψ ← ψM and M ← ζ.

7: if |Cζ | > 1 and i ←֓ Cζ then

8: for θ = 1 : k, θ 6= ζ and i↔ Cθ do

9: Move node i from Cζ into Cθ.

10: Compute the characteristic matrix Q.

11: Compute ψθ = |||Ψ(Q)|||.
12: if ψθ < ψ then

13: ψ ← ψθ , M ← θ
14: end if

15: Move node i back to the cluster Cζ .

16: end for

17: Move node i from Cζ to CM , and ψM ← ψ.

18: end if

19: end for

20: until convergence or the maximum number of iterations.

21: return Q∗ = {V∗
1 , · · · ,V∗

k}

At each iteration, Algorithm 2 moves each node i ∈ Cζ
to a cluster Cθ such that i ←֓ Cζ , i ↔ Cθ, and the cost

in (7) is minimized, where β, γ ∈ {1, · · · , k}. Note that

this algorithm converges to a suboptimal solution in a finite

number of iterations. Moreover, the constraints i ←֓ Cζ and

i↔ Cθ yield Q∗ with connected clusters.

VI. SIMULATION EXAMPLE

Suppose an undirected random graph G representing Σ

as shown in Fig. 2(a) with 100 nodes. We assume 4 mea-

sured nodes Vm shown as black and find a suboptimal

clustering with 5 clusters C1, · · · , C5 for 96 unmeasured

nodes. The state matrix A = −L(G), the input matrix

B ∈ {0, 1}100×4 is generated randomly, and the input vector

u(t) = [sin t sin 5t sin 10t sin 50t]⊤. We initialize

the clusters by using Algorithm 1, where the connected

subgraphs formed by each cluster are shown in Fig. 2(c).

Then, Algorithm 2 finds a suboptimal clustering as shown

in Fig.2(a), where each cluster forms a connected induced



(a) Random network with 100 nodes, Vm are the measured nodes,
and C1, · · · , C5 are the obtained suboptimal clusters.
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(b) Cost minimization at each iteration.

(c) Connected induced subgraphs formed by initial clusters ob-
tained from Algorithm 1.

(d) Connected induced subgraphs formed by suboptimal clusters
in (a) obtained from Algorithm 2 with initial clusters as in (c).

Fig. 2: Illustration of the clustering algorithm

subgraph as shown in Fig.2(d). The cost minimization with

respect to iterations is shown in Fig. 2(b).

The reduced system Σ̂ is obtained by aggregating the

clusters using the projection matrix P in (1). The norm of

the output of Σ̊, i.e., ‖y(t)‖; and the norm of the output of

Σ̂ with initial clustering, i.e., ‖y0(t)‖, and with suboptimal

clustering, i.e., ‖y∗(t)‖, are shown in Fig. 3(a). Likewise,

the norm of states are shown in Fig. 3(b).

Fig. 3(c) and (d) show the comparison between the errors

for initial clustering and the suboptimal clustering. An inter-

esting thing to note is that suboptimal clustering reduces the

error ‖z(t)−ẑ(t)‖ by around 95% and the error ‖y(t)−ŷ(t)‖
by around 80%. This suggests that structure-based clustering

algorithm, on the one hand, is well-suited for control and

estimation of aggregated states; and, on the other hand, it

yields a reduced system whose input-output behavior is very

similar to the input-output behavior of the original network

system.

VII. CONCLUSIONS

Clustered model reduction is an effective tool to reduce the

complexity of control and estimation problem for large-scale

network systems. We presented a structure-based clustering

approach for model reduction, in contrast to the input-output

behavior approaches already presented in the literature. That

is, we translated the model reduction problem to a static

graph reduction problem to attain computational feasibility.

The proposed clustering algorithm is heuristic by nature

and achieves a suboptimal clustering that minimizes the

distance from lumpability – a notion that is ideal for model

reduction. The algorithm is novel in a sense that it ensures

the connectivity of clusters, which is a crucial requirement

in several applications.

Structure-based clustering provides a computationally

tractable way to study the problem of estimation and regula-

tion of aggregated states of clusters in a large-scale network

system. The tractability results from the fact that the observer

and the controller can be designed based on the reduced

system with tractable dimensions. Such a methodology is

efficient because the states of the reduced model approximate

the aggregated states of the original network system.
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