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MOMENTS OF A THUE–MORSE GENERATING FUNCTION

CHRISTIAN MAUDUIT, HUGH L. MONTGOMERY, AND JOËL RIVAT

Abstract. We study the moments of even order of the generating function
∏

0≤r<n(1 − e(2rx))
of the Thue–Morse sequence and we present several conjectures related to these moments.

1. Introduction

For any nonnegative integer m we denote by s(m) the number of distinct powers of 2 in the
binary representation of m. Then the Thue–Morse sequence (or Prouhet–Thue–Morse sequence)
is the sequence ((−1)s(m))m∈N. This sequence occurs in many questions related to combinatorics,
algebra, number theory, harmonic analysis, geometry, dynamical systems, ergodic theory, etc. (see
for example [1] or [14]). Mahler introduced it for the first time in the context of harmonic analysis
in [13] in order to illustrate the results obtained by Wiener [19]. He showed in particular that for
any k ∈ N the sequence

(
1
N

∑
m<N(−1)s(m)(−1)s(m+k)

)
N∈N converges, and that the limit is nonzero

for infinitely many integers k. This can be interpreted as the fact that the correlation measure
of the symbolic dynamical system associated to the Thue–Morse sequence is the Riesz product∏

r≥0 (1− cos 2rt) (see [12]).
It follows from the definition of s that for |z| < 1 we have

∞∏
r=0

(
1− z2r

)
=

∞∑
m=0

(−1)s(m)zm .

For any n ∈ N we consider the function Tn defined for x ∈ R by

(1.1) Tn(x) =
∏

0≤r<n

(1− e(2rx)) =
∑

0≤m<2n

(−1)s(m)e(mx),

where e(θ) = e2πiθ.
The study of the values of ‖Tn‖p, 1 ≤ p ≤ +∞ plays an important role in many problems.

In particular, sharp estimates for ‖Tn‖1 and ‖Tn‖∞ allowed Mauduit and Rivat to prove a Prime
Number Theorem for the sum-of-digits function in [15] (see [16] and [5] for the study of the sum-
of-digits function along polynomial sequences) and the study of the ratios ‖Tn+1‖p/‖Tn‖p (for p an
even integer) allowed Kurths, Pikowsky, and Zaks to compute the generalized dimension for the
Fourier spectrum of the Thue–Morse sequence in [21] (see also [20]).

Here we consider the moments

(1.2) Mk(n) =

∫ 1

0

|Tn(x)|2k dx
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for positive integers k, which turn out to have some interesting and unexpected properties. By
Parseval’s identity it is clear that Mk(n) is an integer, and that M1(n) = 2n. We show that for
any fixed k, the sequence of moments Mk(n) satisfies a linear recurrence of order k.

Theorem 1. For positive integers k let Ak = [aij] be the k × k matrix with integral entries

(1.3) aij = (−1)i22k−2i−1
(
j + k − i

i

)
j + k

j + k − i
(0 ≤ i, j < k),

and let

(1.4) pk(z) = det(zI − Ak) = zk − ck−1,kzk−1 − · · · − c0,k ∈ Z[z]

be the characteristic polynomial of Ak. Then

(1.5) Mk(n) = ck−1,kMk(n− 1) + · · ·+ c0,kMk(n− k)

for all integers n ≥ k.

The fact that the aij are integers is not immediately clear from (1.3), but their integrality will
be established in the course of the proof of Theorem 1.

Theorem 2. For all positive integers k, there exists a Ck > 0 such that for n→ +∞,

(1.6) Mk(n) = Ck ρ(Ak)
n(1 + o(1))

where ρ(Ak) denotes the spectral radius of Ak.

It is well known that ‖Tn‖∞ ≤ 2× 3(n−1)/2 (see for example [8, Lemme II], [17, Lemma p. 72-73]
or [6, Formule (2.10)]) so that

Mk(n) ≤
(

4

3

)k
× 3kn,

and it follows from (1.6) that

ρ(Ak) ≤ 3k.

The next theorem gives a better upper bound for ρ(Ak).

Theorem 3. We have

ρ(Ak) ≤
1

2
(3k + 42k/3) =

3k

2
(1 + o(1)).

The method used in the proof of Theorem 2 yields better upper bounds for ρ(Ak) for small values
of k. For example it leads to ρ(A2) ≤ 4

√
2 and ρ(A3) ≤ 16, while in fact numerical computation

gives ρ(A2) = 5.1231 and ρ(A4) = 14.2191 and we conjecture that ρ(Ak) ∼ 1
2
3k (see section 7).

It would be nice to have more explicit formulas for the cj,k defined by (1.4). In this direction,
we determine the trace and determinant of Ak, which yields ck−1,k and c0,k.

Theorem 4. With the matrix Ak defined as in (1.3),

(1.7) trAk = 3k−1 + (−1)k−1,

and

(1.8) detAk = εk2
k2

where εk = 1 if k ≡ 0 or 1 (mod 4), and εk = −1 if k ≡ 2 or 3 (mod 4).



MOMENTS OF A GENERATING FUNCTION 3

From (1.7) it follows that if tk = trAk, then

(1.9) tk = 2tk−1 + 3tk−2 .

Since c0,k 6= 0, the linear recurrence (1.5) is genuinely of order k (not less). However, it could
still be the case that Mk satisfies a linear recurrence of lower order—in which case the polynomial
pk would be reducible. Numerical experimentation suggests that the pk are all irreducible, but this
is far from proven. Indeed, numerical experimentation suggests that the eigenvalues of the Ak, and
the coefficients of pk have many striking properties. Our conjectures on this issue are collected
in §7.

The authors are happy to thank Dick Askey for helpful comments, particularly relating to the
identities in §2.

2. A combinatorial identity

In the course of proving Theorem 1, we encounter the following combinatorial sum, which can be
written in closed form.

Lemma 1. For integers i and n with 0 ≤ i < n,

(2.1) s0(n, i) :=
∑

i≤m≤n/2

(
n

2m

)(
m

i

)
= 2n−2i−1

(
n− i
i

)
n

n− i
.

This formula is asserted as item (3.120) in Gould [9, p. 36], but with no indication as to where a
proof might be found. A complicated proof can be pieced together by combining several exercises
from various chapters of Riordan [18]. A machine proof might be constructed using an implemen-
tation of Zeilberger’s algorithm, but we have not achieved that. In fact, the formula is ancient, as
it is a special case of a formula known to Chu in the thirteenth century (see Askey [2, Chapter 7]).

Proof. Let r = m− i. Then

s0(n, i) =

(
n

2i

) n/2−i∑
r=0

(
n

2r + 2i

)(
r + i

i

)
(
n

2i

) =

(
n

2i

) n/2−i∑
r=0

ar,

say. By simple algebra we see that

ar+1

ar
=

(r + i− n/2)(r + i− (n− 1)/2)

(r + 1)(r + i+ 1/2)
.

Since a0 = 1, it follows that

s0(n, i) =

(
n

2i

) n/2−i∑
r=0

(i− n/2)r(i− (n− 1)/2)r
(i+ 1/2)rr!

(2.2)

=

(
n

2i

)
2F1

(
i− n/2 , i− (n− 1)/2

i+ 1/2

∣∣∣ 1

)
.

Here (x)r = x(x+ 1)(x+ 2) · · · (x+ r − 1) is the Pochhammer symbol.
The Chu–Vandermonde identity asserts that if s is a nonnegative integer, then

(2.3)
s∑
r=0

(−s)r(a)r
(c)rr!

=
(c− a)s

(c)s

for arbitrary a and c. In Andrews–Askey–Roy [3, Corollary 2.2.3] this arises as a special case of a
hypergeometric identity due to Gauss [7].
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Suppose that n is even, say n = 2t. In (2.3) we take s = t− i, a = i− t+ 1/2, and c = i+ 1/2
to see that

s0(n, i) =

(
n

2i

)
(t)t−i

(i+ 1/2)t−i
.

Now (a+ 1/2)m = (2a+ 1)2m/
(
22m(a+ 1)m

)
, so that

s0(n, i) = 22t−2i
(
n

2i

)
(t)t−i(i+ 1)t−i
(2i+ 1)2t−2i

.

As (t)t−i = (n− i− 1)!/(t− 1)!, (i+ 1)t−i = t!/i!, and (2i+ 1)2t−2i = n!/(2i)!, we get

s0(n, i) = 2n−2i
(n− i− 1)! t

i!(n− 2i)!
= 2n−2i−1

(
n− i
i

)
n

n− i
,

as was to be shown.
Suppose that n is odd, say n = 2t+ 1. In (2.3) we take s = t− i, a = i− t−1/2, and c = i+ 1/2

to see that

s0(n, i) =

(
n

2i

)
(t+ 1)t−i

(i+ 1/2)t−i
= 22t−2i

(
n

2i

)
(t+ 1)t−i(i+ 1)t−i

(2i+ 1)2t−2i

= 2n−2i−1
n(2t− i)!
i!(n− 2i)!

= 2n−2i−1
(
n− i
i

)
n

n− i
,

which completes the proof. �

The sum s0(n, i) has a companion, namely

(2.4) s1(n, i) :=
∑

i≤m≤(n−1)/2

(
n

2m+ 1

)(
m

i

)
= 2n−2i−1

(
n− i− 1

i

)
.

This evaluation in closed form is also an easy consequence of the Chu–Vandermonde identity (2.3).
By using familiar properties of binomial coefficients it is easy to show that

(2.5)
s0(n+ 1, i) = s0(n, i) + s1(n, i) + s1(n, i− 1),

s1(n+ 1, i) = s1(n, i) + s0(n, i) .

These identities make it possible to prove (2.1) and (2.4) simultaneously by a double induction.
This is a little tedious, since various bases of induction need to be checked. In addition, this ignores
the fact that both (2.1) and (2.4) are simple consequences of an ancient formula.

3. Proof of Theorem 1

Following Fouvry & Mauduit [6], for f ∈ L2(T) we define the operators

Pk f(x) =
1

2
(2 sinπx/2)2kf(x/2) +

1

2
(2 cosπx/2)2kf((x+ 1)/2),(3.1)

Qk f(x) = (2 sin πx)2kf(2x).(3.2)

Thus

(3.3) Mk(n) =

∫ 1

0

Qn
k1 dx .
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For f, g ∈ L2(T) we note that

〈Qk f, g〉 =

∫ 1

0

(2 sinπx)2kf(2x)g(x) dx

=
1

2

∫ 2

0

(2 sinπu/2)2kf(u)g(u/2) du

=
1

2

∫ 1

0

f(u)
(
(2 sinπu/2)2kg(u/2) + (2 cos πu/2)2kg((u+ 1)/2)

)
du

= 〈f, Pk g〉 .
Thus Pk is the adjoint of Qk, Pk = Q∗k. In particular,

(3.4) Mk(n) = 〈Qn
k 1, 1〉 = 〈1, P n

k 1〉 =

∫ 1

0

P n
k 1 dx .

Let Ek denote the vector space of even trigonometric polynomials with period 1 and degree < k.
Of course cos 2πjx for 0 ≤ j < k is a basis for Ek, but we note that

(3.5) sin2j πx = (−1)j2−2j
j∑

n=−j

(−1)n
(

2j

j − n

)
e(nx)

is an even trigonometric polynomial with period 1 and degree j, so 1, sin2 πx, sin4 πx, . . .,
sin2(k−1) πx is also a basis for Ek. Suppose that 0 ≤ j < k. Then

Pk sin2j πx = 22k−1 sin2(j+k) πx

2
+ 22k−1 cos2(j+k)

πx

2
.

By the half angle formulæ this is

= 22k−1
(1− cosπx

2

)j+k
+ 22k−1

(1 + cos πx

2

)j+k
.

By the binomial theorem this is

= 2k−j
∑

0≤m≤(j+k)/2

(
j + k

2m

)
cos2m πx,(3.6)

which is an even trigonometric polynomial with period 1 and degree [(j + k)/2] < k. Thus Pk
maps Ek to itself. Let P̃k denote the restriction of Pk to Ek. Continuing from (3.6), we find that

P̃k sin2j πx = 2k−j
∑

0≤m≤(j+k)/2

(
j + k

2m

)
(1− sin2 πx)m

= 2k−j
∑

0≤m≤(j+k)/2

(
j + k

2m

) m∑
i=0

(−1)i
(
m

i

)
sin2i πx

= 2k−j
∑

0≤i≤(j+k)/2

(−1)i sin2i πx
∑

i≤m≤(j+k)/2

(
j + k

2m

)(
m

i

)
.

Here it is clear that the coefficient of sin2i πx is an integer. From Lemma 1 with n = j + k, we see
that

P̃k sin2j πx =
k−1∑
i=0

aij sin2i πx
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with the aij defined in (1.3). Let pk be the characteristic polynomial of the matrix Ak = [aij], as
defined in (1.4). By the Cayley–Hamilton theorem we know that pk(Ak) = 0. Thus

Ank = ck−1,kA
n−1
k + ck−2,kA

n−2
k + · · ·+ c0,kA

n−k
k

for n ≥ k, and hence

P̃k
n

= ck−1,kP̃k
n−1

+ ck−2,kAP̃k
n−2

+ · · ·+ c0,kP̃k
n−k

.

Thus

Mk(n) =

∫ 1

0

P̃k
n

1 dx

=

∫ 1

0

ck−1,kP̃k
n−1

1 + · · ·+ c0,kP̃k
n−k

1 dx

= ck−1,kMk(n− 1) + ck−2,kMk(n− 2) + · · ·+ c0,kMk(n− k),

which completes the proof.

4. Proof of Theorem 2

The operator Pk that we introduced in (3.1) is a special case of positive quasi-compact transfer
operators that have been studied by many authors in ergodic theory (see in particular [4, 10, 11]).

When the transfer function is a trigonometric polynomial (in our case (2 sinπx)2k) the quasi-
compactness of Pk is trivial. Indeed, as we saw in §3 the operator Pk acts on the k dimensional
vector space Ek and Ak is the matrix of Pk in the basis (1, sin2 πx, sin4 πx,. . ., sin2(k−1) πx).

Proposition 1. The spectral radius of Pk is equal to

(4.1) ρ(Ak) = lim
n→+∞

‖P n
k 1‖1/n∞

and is the only eigenvalue of Pk with modulus ρ(Ak). The eigenfunction ψk associated to ρ(Ak) is
strictly positive on [0, 1]. We have the following spectral decomposition of Pk:

(4.2) Ek = ker(Pk − ρ(Ak)Id)⊕ Fk,

where Fk is a subspace of Ek stabilized by Pk and such that the spectral radius of the restriction of
Pk to Fk is strictly less than ρ(Ak). Moreover for any x ∈ [0, 1] we have

(4.3) ρ(Ak) = lim
n→+∞

P n+1
k 1(x)

P n
k 1(x)

.

Proof. Proposition 1 follows from the study made by Hervé in [11] in the context of wavelet theory
(see in particular Théorème 3.1 and Théorème 4.2 from [11]). In order to apply the results from
[11]) it is enough to check that the function (2 sin πx)2k does not admit any invariant periodic cycle
(i.e. there exists no positive integer Q such that

∀q ∈ {1, . . . , Q}, ∀` ∈ {0, . . . , 2q − 1}, sin π

(
`

2q − 1
+

1

2

)
= 0),

The fact that ψk is stricly positive is a consequence of the study by Conze and Raugi in [4] on
the invariant compact sets associated to the transformations x 7→ x

2
and x 7→ x+1

2
of the interval

[0, 1] and the description by Hervé in [10] of the zeros of the eigenvalues of this class of operators.
Moreover the fact that ρ(Ak) is the only eigenvalue of Pk with modulus ρ(Ak) follows from the
proof of Théorème 4.2 in [11]. �
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Writing the function 1 according to (4.2), it follows that

1 = αkψk + fk,

with αk ∈ R (αk 6= 0 because of (4.1)) and fk ∈ Fk.
This implies that

Mk(n) =

∫ 1

0

P n
k 1 dx

= αkρ(Ak)
n

∫ 1

0

ψk(x)dx(1 +O(θ−nk )),

where θk > 1 is the ratio of ρ(Ak) to the spectral radius of the restriction of Pk to Fk.

5. Proof of Theorem 3

Applying the method of [17, Lemma pages 72-73] or [6, page 583] we have for all integer n ≥ 2

Tn(x) =
∏

0≤r<n

|2 sin(π2rx)| ≤ 2
∏

0≤r<n−1

u(2rx),

where

u(x) = 2 |sin(πx)|2/3 |sin(2πx)|1/3 .
It follows that

Mk(n) ≤ 4kIk(n− 1)

where for n ≥ 0,

Ik(n) =

∫ 1

0

∏
0≤r<n

u(2rx)2k dx

(with the convention that an empty product is equal to 1, so that Ik(0) = 1). We have for n ≥ 1

Ik(n) =

∫ 1/2

0

u(x)2k
∏

1≤r<n

u(2rx)2k dx+

∫ 1

1/2

u(x)2k
∏

1≤r<n

u(2rx)2k dx

=

∫ 1

0

(
1

2
u(x/2)2k +

1

2
u((x+ 1)/2)2k

) ∏
0≤r<n−1

u(2rx)2k dx

≤ wkIk(n− 1),

where

wk = max
x∈R

1
2

(
u(x/2)2k + u((x+ 1)/2)2k

)
.

By induction we get

Ik(n) ≤ wnkIk(0) = wnk .

For all x ∈ R we have u(x/2)3 +u((x+1)/2)3 = 8 |sin πx| ≤ 8, so that min(u(x/2), u((x+1)/2)) ≤
41/3. Furthermore for all x ∈ R we have u(x) ≤ u(1/3) =

√
3, hence

wk ≤
1

2
(3k + 42k/3).

It follows that Mk(n) ≤ 4kIk(n− 1) ≤ 4kwn−1k and from (1.6) we deduce that

ρ(Ak) ≤ wk,

which completes the proof of Theorem 3.
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6. Proof of Theorem 4

From the definition (1.3) of the aij it is clear that

trAk =
k−1∑
i=0

aii =
1

k

k−1∑
i=0

(−1)i22k−2i−1
(
k

i

)
(k + i)

=
k−1∑
i=0

(−1)i22k−2i−1
(
k

i

)
+

k−1∑
i=0

(−1)i22k−2i−1
(
k − 1

i− 1

)
=

1

2

(
(4− 1)k − (−1)k

)
− 1

2

(
(4− 1)k−1 − (−1)k−1

)
= 3k−1 + (−1)k−1 .

As for the second assertion of Theorem 4, let Bk = [bijk] be the k × k matrix with entries

bijk =

(
j + k − i

i

)
+

(
j + k − i− 1

i− 1

)
=

(
j + k − i

i

)
j + k

j + k − i
(0 ≤ j, k < k).

Thus

detAk = detBk ×
k−1∏
i=0

(
(−1)i22k−2i−1) = εk2

k2 detBk,

so it suffices to show that detBk = 1. We induct on k. We know that B1 = [1], so detB1 = 1. Let
b0 k, . . . ,bk−1 k denote the columns of Bk. Our first task is to show that if 0 < j < k, then

(6.1) bj k − bj−1 k =

[
0

bj−1 k−1

]
.

To this end we note first that b0 j k = 1 for all j, so that b0 j k − b0 j−1 k = 0 for 0 < j < k. If
2i ≤ j + k − 1, then

bi j k − bi j−1 k =

(
j + k − i

i

)
+

(
j + k − i− 1

i− 1

)
−
(
j + k − i− 1

i− 1

)
−
(
j + k − i− 2

i− 2

)
= bi−1 j−1 k−1 .

If 2i = j + k, then bi j−1,k = 0, and so bi j k − bi j−1 k = bi j k = 2 = bi−1 j−1 k−1. If 2i > j + k, then
bi j k = bi j−1 k = bi−1 j−1 k−1 = 0. Thus we have (6.1).

We now operate on Bk as follows: We subtract column bk−2 k from bk−1 k, then subtract bk−3 k
from bk−2 k, and so on, until finally we subtract b0 k from b1 k. The result is a matrix of the form[

1 0
∗ Bk−1

]
.

Thus detBk = detBk−1, so the induction is complete.

7. Conjectures and Questions

Based on some experimentation with the matrices Ak and Bk, their characteristic polynomials and
their eigenvalues, we propose the following:

Conjecture 1. All eigenvalues of Ak are real.

Conjecture 2. If k = 2r, then Ak has r positive eigenvalues, and r negative eigenvalues. If
k = 2r + 1, then Ak has r + 1 positive eigenvalues, and r negative eigenvalues.
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Conjecture 3. If the negative eigenvalues of Ak are replaced by their negatives, then the resulting
numbers interlace with the positive eigenvalues, e.g., when k = 5, the eigenvalues are 122.32, 37.02,
6.14, −18.59, −64.91.

Conjecture 4. For each k, the characteristic polynomial pk is irreducible over Q.

Conjecture 5. With ck−r,k defined in Theorem 1 and εr defined in Theorem 4,

sgn ck−r,k = εr−1 .

Conjecture 6. The zeros of pk interlace with those of pk+1.

Conjecture 7. Let Bk be defined as in the Proof of Theorem 4. The eigenvalues of Bk are all
positive real.

Conjecture 8. The spectral radius of Ak satisfies

ρ(Ak) =
3k

2
(1 + o(1)).

Numerical computations suggest the stronger conjecture that ρ(Ak) = 1
2

3k +O(k2).
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