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ON THE DISTRIBUTION OF THE SUM OF DIGITS
OF SUMS a+b

CHRISTIAN MAUDUIT, JOBEL RIVAT, AND ANDRAS SARKOZY

ABSTRACT. Let A, B be large subsets of {1, ..., N}. We study the distribution
of the sum of binary digits of the sums a + b with (a,b) € A x B.

1. INTRODUCTION

Throughout this paper we will use the following notations: N, Ny, Z, R and C
denote the set of positive integers, non-negative integers, integers, real numbers,
resp. complex numbers, ||z|| denotes the distance from z to the nearest integer and
we write e(a) = %™, We will denote the sum of digits of an integer n > 0 written
in base g by sq(n) and will write so(n) = s(n).

Many papers have been written on the arithmetic properties of sumsets of “dense”
sets of positive integers. A survey of the early work in this field is presented in [7].
In particular, in [5] the first and third author showed that if A, B are “large” subsets
of {1,2,...,N}, g € Nis fixed, (m,g — 1) = 1 and m is “small”, then the values of
the sum of digit function s,(n) assumed over the sums a + b (with a € A, b € B)
are well-distributed modulo m:

Theorem A. Ifg e N, g>2 meN, (mg—1)=1,r € Z and A, B C
{1,2,...,N}, then we have

{(a,b) € A x B, Sg(a—i-b)Ermodm}—%

<2y N (|4]18)"2,

where A = A(g,m) and v = (g, m) are defined by

g2
<1l), v= ,m) = ———.
(<1), y=1(g9,m) e

In another paper [6] we formulated the conjecture that if g € N is fixed and A,
B are “large” subsets of {1,2,..., N}, then there are a € A, b € B such that their

sum of digits sq(a + b) is equal to its expected value:
Conjecture 1. If ¢ > 0, N > Ny(e), A, B € {1,2,...,N} and |A|, |B| > €N,
then there are integers a, b such that a € A, b € B and
sgla+b) =[(g—1)v/2]
where v = v(N) € N is defined by g* < N < g*t! — 1.

1 o gsin(m/2m)
~ 2logyg & sin(m/2mg)
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2 CHRISTIAN MAUDUIT, JOKL RIVAT, AND ANDRAS SARKOZY
Later in [4] we proved this conjecture in the g = 2 special case in a slightly
stronger form:

Theorem B. For any L > 0 and € > 0 there is a number Nog = No(L,¢€) such that
if NeN, N> Ny, keN,

b log N

2log2

‘ < L(log N)'/4
and
A Be{l,2,...,N},

- log 2 1/2
then writing o = ( g ) , we have

10g4)1/2 4] |B]
(

‘|{(a7b)eAxB, s(a+b):k}|—( og N7

™

N
<
(log N)'/2 exp((o — €)(loglog N)1/2)
In this paper our goal is to extend the study of the distribution of the numbers

s(a + b) from a small neighbourhood of the expedted value to a possibly large
interval. We will prove the following theorem:

(4] 1B)"*.

Theorem 1. For N e N, N >2 A B e {1,2,...,N},; 0 < z < l‘ff;év define
Yon = Yon(2) by

_log2n 1 (log2N\"/?
~ log4 Y2n g log 2 '
Then we have

(1) |A||B||{(ab)€AxB s(a+0b) < z}|

N log log N)(log log log N)1/2
:(I)(yQN)+O< (loglog V) (log log log V) >

VIATB] (log N)1/4

uniformly in z as N tends to infinity, with ® defined by
D(u) = (2r) /2 /u e /2 gt

This theorem shows that for
(2) VI \B/Nloglof/]f = +o0

the numbers s(a + b) with (a,b) € A x B are distributed in the same way as the
numbers s(n) with n < 2N. (Indeed, compare this theorem with the statement of
Lemma ) Probably condition is not sharp. However, condition cannot be
replaced by

N
3 AlB] > —+

as the following example shows: let

AZBZ{néN: ZLWJ |n}
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Namely, for this sequences A, B holds, however, for (a,b) € A x B the numbers
s(a+b) tend to be smaller than expected by ¢y/log N (since the last L\/log NJ digits
of the sums a + b do not contribute to s(a + b)).

2. SKETCH OF THE PROOF

We will use the circle method (in similar manner as in [2]). Let us write

G(a) = Z e(a), H(a) = Ze(ba),

acA beB
(W S.@)= Y e(na)
n<2N
s(n)<z
and
(5) J= /0 G(a) H(a) S.(—a) da.

Then clearly we have

1
(6) J:/O SN ella+b—n)a)de

a€AbeEB n<2N
s(n)<z
= Y Y 1-[{(ab) € AxB, sla+b) <z}
(a,b)EAXB n<2N
s(n)<z
at+b=n
so that, indeed, in order to estimate the left hand side of we have to estimate
this integral J. The estimate of J can be reduced to the estimate of the generating
function S, («) which will be carried out in sections [3{and [4] and finally in section
we will complete the proof of the theorem by combining the lemmas proved in
sections Bl and A

3. THE ESTIMATE OF S,(«)

For x > 0 and 2z > 0 let

(7) R.(x)={neN: n<x, s(n) <z}
and
(8) R.(z) =|R.(x)|={neN: n<x, s(n) < z}.

Note that by using this notation the definition of S,(a) in can be rewritten as

9) Sy () = Z e(na).

n€R-(2N)
For x > 0 we write
log z 1 [(logx 1/2
T Jogd’ T2 <log2>
let
Ne(y)={n: n<xz s(n) < M, +yD,},
and write

Na(y) = Na(y)| = {n: n <, s(n) < My +yDe}|.
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The estimate of S, («) near 0 will be based on a theorem of Kétai and Mogyorddi
[3]. Here we state their result in the special case when the base of the number
system (denoted by them as K, and denoted above by us as g) is 2. They proved:

Lemma 1. We have

Na(y) =2 ®(y) + O (mlogl@gm)

(log z)'/2
uniformly in y as x tends to infinity.
Proof. This is the K = 2 special case of Theorem 1 in [3]. O

Lemma 2. For

(10) 0 < z<log2N,
N
11 _— < 2N
an (log )12 =
we have
Nloglog N
(12) R.(z)=|{n: n<x, s(n) <z} =2P(yan)+ O (W)

where yon 1s defined by

z — MQN
13 -
(13) YanN Don
Proof. Writing
z— M,
14 r — ’
(14) Y D,

by Lemma and , we have
(15) R.(z)=|{n: n<a, s(n) <z} =|{n: n<x, s(n) < My +y. D, }|

x loglog x Nloglog N
= Np(yz) = zP(ys 7 | = P(ys 1 AN1/2
) =20000) +0 (o) = w0001 +0 (it

Observing by that logz > log N,

L L gy [ A g2 ogles
log z t3/2 (log x)3/2 (log N)3/2

D, Day

and

Moy M, 1 /l°g2N dt log(2N/x) loglog N
1

Doy~ Do (0g2)'72 Jigg, 28172 (loga)' /2~ (log N)1/2’

it follows from , , and that
1 1 Msy M, loglog N
16 — Yy = -— ) = —— | =0(——]-
(16) N =Y ‘ <D2N Dx) <D2N Dx) ((10gN)1/2
By the Lagrange mean value theorem there is a real number £ between y, and yan

such that
‘ D(yan) — P(ya)
y2N - y:c

1 2 1
— (I)/ :7675 /2<7
(0= = =
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whence, by (16)),

1 loglog N
|(I)(y2N) - <I)(yac)| < E |y2N - yxl =0 (gg>

(log N)172
so that
loglog N
17 P =®(y,) +O0 | ———=———
(17) () = 0(0) + 0 (2B )
follows from and which completes the proof of Lemma ([l
Write
(18) _ (log N)**(logloglog N)/?
N .
Lemma 3. For
(19) 0<z<2N
and
(20) el <u
we have
2N
uN? loglog N
(21) S:(a) = (yan) nz::le(na) =0 <W>

Proof. By , 7 @[) and partial summation we have, writing Ny = LQN(log N)*I/QJ ,

2N
S.(a) = Z e(na) = Z e(na) + Z (R.(n) — R.(n—1))e(na)
neR.(2N) neR.(No) n=No+1

+ > R.(n)(e(na) —e((n+1)a)) + R.(2N) e((2N + 1)a).
n=~Ny

By (19), for No < n < 2N we can apply and we get

2N

5.(a) = O(No)+@(yon) ( S n(e(na) — e((n+ 1)) + 2N e((2N + 1>a>> E.()

n=~Ny
with

Nloglog N ~e(a (la| N + 1)N loglog N
Ez(a)_0<(logN1/2> <n2;\71 |+1> O< (log N1/ >
so that, since 0 < ¢ < 1,
B el Nloglog N uN?loglog N

(22)  S.(a) = @(yzw);e(na) +0 <(10gN)1/2) 0 ((logN)l/2>

follows from and . O
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4. THE ESTIMATE OF S, (a) FOR LARGE ||«

For (0,a) € R? and A\ € Z with A > 0 let
Fr(0,a) =272 Z e(s(n)f + na).
o<n<2A
For A > 0, we have the trivial upper bound
(23) |Fy\(6,0)] <1

and for A > 1,
A-1
Fy(0,a) =272 H (1+e(0+2w).
§=0
For o € Z we have F(0,a) = 1 and for o € R\ Z we have

sin 122 v -1

(24) [Fx(0, @) =272

< (22 si
e \(2 51n7r||a||)

For 0 < p < A, 0<m < 2" and n > 0 we have s(m + 2#n) = s(m) + s(n) and

(25) Fr(,a) = F,(0, ) Fx_,.(6,2" ).
For A\ > 1 we have
OF A—1 A—1
A _9—X . i j
W(H,a)—2 ;2me(9+2 oz)jl;[O(l—Fe(O—l—Zja)),
J#i
so that for (6,) € R%, A > 1 we have the elementary upper bound
OF
37*(9,04) < 7,

which, by the mean value theorem, gives (for A = 0 and (6,a) € R? we have
Fy(6,a) = 1) for any integer A > 0

(26) |Fx(0, )| < |FA(0, )| + 7w

Lemma 4. Let A > 0 be an integer and (0,a) € R%. We have

(27) |Fy (0, )| < e/ 4e—elOl*A

where

(28) c=m2/20.

Proof. This is Lemma 3.2 of [4]. O

Lemma 5. Let v > 1 be an integer and a € R. For 0 < 0y < %, and ¢ defined by

we have

efcegu
29 / F,(0,a)d0 < /me/*——.
2 101100 00l vev
Proof. This is Lemma 3.3 of [4]. O

Lemma 6. Let v; > 0 be an integer and o € R such that 272771 < ||af] < 271771,
For any 0 € R and any integer v > v we have

(30) FL(0,0)] < (227 4710l (v = 1)) B (6,0)].
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Proof. By we have
FV(07 Ol) = Fl/l (97 a)FV_Vl (07 2V1a)7

and writing o = n + 8 with 27271 < |B] < 27171 we have 2"t = 2¥1n + 213
with 272 < [2118] < 271 so that [|2"al = [278] > 1, and by and it
follows

1Fy_y, (6,2 0)| < 227 4 7By — 1)

and we get . ([l

Lemma 7. For real numbers U > 2, U™! < 6; < %, integers 1 < 11 < v, and
a € R such that 272771 < ||af| < 27171, we have

1/2
(31) / min (U [sin 6| ") |0, )] df

—1/2
<271 +1og(U6)) + (v — v) (U™ + 07 ?) 4 eV log —.

where the implied constant is absolute.

Proof. Let 8y = U™, so that 0 < 0y < % For 0] < 6y, since min (U, |sin7r9|_1> <
U=20y ! combining (30) with applied with A = v; and using parity we have

90 60 1
/ min (U, |smm9|*1) IF,(0,0)|df < 2U/ (2rv+w (v — yl)) do
90 0

and by integration we get

90 P
/ min (U, |sin7r0|*1) IF,(0,0)]d) < 25+~ 4 2 U~ (v — ).
0o

We have
. . -1 db
min (U, |sin 76) ) IF,(0,0)|do < IF,(0,0)] 2
00<1011<0: 00<1011<0: 0
and combining and the right hand side above is at most
de
23 vt / Ry - ul)/ |F,, (6, )| do.
do<lol<e: ? 60<1101|<01
By applied with v in place of v we obtain

-1

/ min (U, |sinﬂ'0|_1) IF,(0, )| d0 < 2"~ log(61 /00) + =
00< /0] <01

Observing that

1/2 1/2
/ efcﬁzuﬁ < efc(i%u/ ﬁ _ efcﬁrfulogil
o, 0 9, 0 260,
by we get
_ 1
/ min (U7 |sin 76| 1) |F,(6,a)| do < e~ log —.
01<[|0]1<1/2 20,
Combining these estimates leads to Lemma (I
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Lemma 8. For integers 0 < vy < v, (6,a) € R? such that ||0]| < 7 and 2727 <
ol <2711 and c defined by we have

(32) IF,(0,0)] < (6] eI 424~ 4 exp (=0 (6) 7 —w1)

where o(6) = \/—%(logQ)log (sin7(]|0] + 1)) = &2 + O(||9)).

Proof. This is Lemma 3.4 of [4] with v; + 2 in place of 4 and therefore a modified
absolute implied constant. The range of ||| is extended by continuity. O

Lemma 9. For integers 0 < v; < v, (6p,) € R? such that 0 < 6y < % and
2727 L laf| € 2717, and c defined by (28), we have

1— 670031/

/” \| |E, (6, )| df < — + 002"~ + O exp (—o(6o) Vv — 11) .
011<00

Proof. This is Lemma 3.5 of [4] with 11 + 2 in place of 11 and therefore a modified
absolute implied constant. The range of ||| is extended by continuity. O

Lemma 10. For integers 0 < v1 < v, a € R such that 2727 < |af| < 2711

and U > 5 we have

(33)

/ min (U, |sin 76|~ ) |F,(0,a)|df < i + i texp (=0 (1/5)v/v = v1) log U.
—1/2 v

Proof. Let 9y = U™!, so that 0 < 6y < % Since min (U, |sin7r9\_1> <U= 90_1, by

Lemma [0 we have

2
—clyv

0
0 _ 1 _

/ min (U, |sin 76| 1) |F, (0, )| df < ;7V—|-2Vl*”+exp (—o(0o)vv — 1),
6o 0

and by the mean value theorem and the monoticity of o we get

0o
/ min (U, |sinﬂ'9|_1> |F,(0,a)|df < 0y + 27" +exp (—o(1/5)v/v — v1) .
()

By Lemma [§ we have

/ min (U,\sinw9|_1) |F, (6, )| do
o< 110]1<1/5
1/5

1/5 )
< / e~ dh + (27" + exp (—o(1/5)V/v —11)) / 61do,

90 00
and writing 0 = 6y + t we have

1/5 400 +oo
/ / e—c<‘92—93)”d9 < / e_c(t2+290t)ydt < / e—ctzydt _ NS
. o o 2 /cv

so that the quantity above is

< v M2l 4 gy log(6y") + exp (—a(1/5)v/v — v1) log(65 ).
By Lemma [f] we have

1 —cv /25
sin%’ \/Eec/467

cv

/ wmin (U [sin 0| ") | E,(0, )] df <
llef>1/5
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Gathering the estimates above and observing that 2"*7% < exp (—o(1/5)/v — 1)

we get Lemma [T0} O
We will need a special case of the so called “Chernoff bounds”:

Lemma 11. Let v > 1 be an integer and X1,...,X, be independent random vari-
ables such that P(X; =1) = 1 and P(X; = 0) = 5 for j =1,...,v. Then for any
t > 0 we have

[E”(’Xl +- 4+ X, - %’ > t) < 2exp(—2t°/v).

Proof. E.g. apply Corollary A.1.2 of [I] to the random variables 1—-2X7,...,1-2X,
with a = 2t¢. (]

Lemma 12. Let v > 1 be an integer and £, > 0. We have
card {0 < s(n) — ¥| > &V} <2 exp (—2€)) .
Proof. Apply Lemma [11| with ¢ = &,/v. O
For any « € R, N € N, and z € R let us write
(34) T(a,N,z) = N~! Z e(na).

o<n< N
s(n)<z

n<2¥,

Lemma 13. Let v > 3 be an integer and o € R\ Z. For z € R we have
(35) IT(, 2", 2)| < |la]| " 27" loglog v + v~ /2 (log v)?,
where the implied constant is absolute.

Proof. Assume first that 2 < § — %\/Vlog v. By Lemmawith & = %\/logy we
have

(36) T (v, 2", 2)| < exp(—3logr) = v1/2,
Assume now that z > § + %\/Vlog v. Observing that

Z e(na)

n<2v

1 1
< = < @27t
[sin(ma)|  sin(7||«||) (2l

and writing

T(a,2",2) =277 Z e(na) — 27" Z e(na),
0<n<2v 0<n<2”
s(n)>z
by Lemma with &, = %\/logu we have
IT(, 2%, 2)| < [laf| 7' 277 + exp(—i logv) = [|af " 277 + v~ Y/2

It remains to consider the case when
1 1
g - 5\/ulogy <z < % + ix/ylogy.

Writing k, = L% — % vlog Z/J we have

T(a,2",2z) = Z 27" Z e(na) + T(a, 2", k),
ky, <k<z 0<n<2”
s(n)=k
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and
1/2
2 Y e(na) = / £, (0, ) e(—k6) o
o<z 172
s(n)=k
so that
1/2
T(a,2",z):/ S o(=k0) | Fu(6,0)d0+T(0,2", k),
—1/2 \ k, <k<=z

hence using with &, in place of z we have |T(a, 2%, k)| = O(v~/?) and we get

1/2
|T(a, 2", 2)| < / min([z] — k,, [sin78| ") |F, (0, )| db + O(v~1/?).
~1/2

We choose U = 2 + y/vlogv and observe that [z] — k, < U.

If ||| <2717 then holds by the trivial estimate. Therefore we can assume
that |Jaf| > 2717¥. Let 0 < v; < v be the unique integer such that 27271 < ||a|| <
2711 and let us first assume that
(37) v—u 2 (o (%))_2 (%logy—&—loglogy)2
holds, so that

exp (o(1/5)Vv —v1) = Vwlogr.
Applying we get
|T(, 2%, 2)| < v~ 1/2.

If condition does not hold, in particular we have
(38) v—u < (logv)?,
thus v1 > 1, and taking

9

0 — \/10g1/+210g10gu
te 2cv
we observe that, using , we have 1 < lo%z’ < U#, for v > 3, and 0 < % for
v > 22. Moreover we have

_ 1
Ut < logr, U™ < v~ /2, 2 12 « 12 logﬁ < log v,
1

and

2
60911/ _ V1/2

log v
and we can apply to get
IT(a, 2", 2)| < 2"V 1oglogv + (v — v1 v~ Y2,

and by we get for v > 22. Finally holds for 3 < v < 22 by using the
trivial upper bound and modifying the implied absolute constant. ([

Lemma 14. Let N > 16 be an integer and o € R\ Z. For z € R we have
(loglog N)(logloglog N) n (loglog N)?
N o] (log N)1/2

where the implied constant is absolute.

(39) IT(a, N, 2)| <
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Proof. If N is a power of 2 then follows from (3E). If N is not a power of
2, let r > 2 be an integer and write N = 27t + ... 4 2/ with j; > --- > j,.. If
o] < (2N)~1 holds trivially so we may assume that ||| > (2N)~!. We have

doena)= > ema)+ > e((2" +n)a)

0Sn<N 0<n<291 0<n< N—271
s(n)<z s(n)<z s(2914n)<z
= E e(na) +e(2a) E e(na)
0<n< 291 0<n< N—271
s(n)<z s(n)<z—1

hence
N|T(a,N,z)| < 2" |T(a, 27, 2)| + (N = 27) [T (o, N = 2%, 2 = 1)| .

Iterating this process we get

N|T(a,N,z)| <> 2 |T (e, 27,z — i)
=1
It follows that
(40) N[T(a,N,2)| < > 2 max |T(a,27,2)].
S
0G< AT :

Let us first assume that assume that ||a|| > N~'(log N)3/2. By
N TN, 2 <7+ > (Jlal " loglogj + 275"/ (log )?).

. 1, N
3<I<TES

Observing that

_ . N N logloglog N
Ilev| ! loglogj « ————~(log N)logloglogN = —————=—>—
3<J§DEN (log N)/2 (log N)1/2
= log 2
and
. . log log N)? .
Z 2771/2(log j)? < (loglog N)? Z 27 + (((l)g(])\%)l/)z Z 2
0
3<FEY 3<i <2t ¢ 2oz I <Togz
so that
L , N(loglog N)?
27 i=1/2(] 2 g\ )
Zl J ( Ogj) << (log N)1/2 )
3<i< Ly
and for ||al| > N~ (log N)*/2 we get (39).
It remains to consider the case where
(41) (2N)™! < [loof| < N~ (log N)3/2.
b togla)
—log (|| . J -1
= e: 2/ = .
J log 2 >0, ie Il

In we use the trivial estimate ’T(a,2j7z)’ <1for0<j < Jand for
J < j <log N/log2. This leads to

N[T(@ N2l < 30 @+ 3 (llal ™ loglogj +275*(10g3)?)

0<5<T J<j<leal
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We have
> V<2 = o™
0
and as above

2
J<j<TES
Now
Z loglog j <« (logloglog N) <1 + lli)gg];[ — J)
J<j<ial
and using

log N log(N o)

loglog N
log 2 log 2 < loglog
and this completes the proof of .
Lemma 15. For
(42) 0 < z < log(2N)
and
(43) lee]] > w
(where u is defined by (18)) we have
2N
(loglog N)logloglog N N(loglog N)?
(44)  |S:(a) — P(y2n) n; e(na)| < U (log N)1/2

Proof. By and it follows from [34] and [39] that

(loglog N)logloglog N N(loglog N)?

45)  [SA(x)l =] Y ena)| <

2 fal (log N)172
s(n)<z
< (loglog N)logloglog N N(loglog N)?
u (log N)1/2
and by we have
2N
e(2Na) — 1 1 1
(46) Dyan) Y e(na)| < <<
; e(a—1) el

follows from and .

Lemma 16. Uniformly for
0 < z<log2N

and all o € R we have

2N

S.(@) ~ B(yan) Y e(na)

n=1

N (loglog N)(logloglog N')'/?

) (log M)1/4

<
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Proof. Combining Lemmas [3] and [I5] we get for all « that

2N
S.(a) = ®(yan) ) e(na)
n=1
uN?loglog N  (loglog N)logloglog N  N(loglog N)?
(log N)1/2 u (log N)/2 7

and the choice of u made by gives (47).

5. COMPLETION OF THE PROOF OF THEOREM [l

We have
1
J= / G(a) H(a) Sy (—a)da = (yan) J1 + Jo
0
where
1 2N
Ji1 = / G(a)H(a) Z e(—na) da
0 n=1
and

1 2N
Jy = / G(a)H(a) (sx—a)—@(ymze(—na)) da

n=1
1 2N
< / |G(a)H(a)||S:(—a) — P(y2n) Z e(—na)| da,
0 n=1
whence by using
N (loglog N)(logloglog N) 1/2/
J: G(a d
y < (og N)1/4 G(e)H ()] dav,

by the Cauchy-Schwarz inequality and by Parseval identity

1/2

[ i< ([Mewra)” ([ i) - vam

so that

N (loglog N)(logloglog N)'/?
(48) I < (log N)1/1 VAl 18]

Clearly we have

(49) Jy = /ZZZ (a+b-—n)a)da=> > 1=|A|B|.

acAbeBn=1 acAbeB

By and we have

N (loglog N)(logloglog N')'/?
B0 1= ) |4 18] < BRI RS T AT

follows from @ and and this completes the proof of the theorem.
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