F. Aziz, R. Wilson, and E. Hancock, Backtrackless walks on a graph, IEEE TNNLS, vol.24, issue.6, pp.977-989, 2013.

A. Barla, F. Odone, and A. Verri, Histogram intersection kernel for image classification, ICIP, pp.513-516, 2003.

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE TPAMI, vol.24, issue.4, pp.509-522, 2002.

K. Borgwardt and H. Kriegel, Shortest-path kernels on graphs, ICDM, pp.74-81, 2005.

E. Z. Borzeshi, M. Piccardi, K. Riesen, and H. Bunke, Discriminative prototype selection methods for graph embedding, PR, vol.46, issue.6, pp.1648-1657, 2013.

H. Bunke and K. Riesen, Improving vector space embedding of graphs through feature selection algorithms, PR, vol.44, issue.9, pp.1928-1940, 2010.

H. Bunke and K. Riesen, Towards the unification of structural and statistical pattern recognition, PRL, vol.33, issue.7, pp.811-825, 2012.

T. Caelli and S. Kosinov, An eigenspace projection clustering method for inexact graph matching, IEEE TPAMI, vol.26, issue.4, pp.515-519, 2004.

M. Cho, J. Lee, and K. Lee, Reweighted random walks for graph matching, ECCV, pp.492-505, 2010.

F. Comellas and J. Paz-sánchez, Reconstruction of networks from their betweenness centrality, pp.31-37, 2008.

D. Conte, P. Foggia, C. Sansone, and M. Vento, Thirty years of graph matching in pattern recognition, IJPRAI, vol.18, issue.3, pp.265-298, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01408706

G. Csurka, C. Dance, R. , L. Fan, J. Williamowski et al., Visual categorization with bags of keypoints, SLCVW, ECCV, pp.1-22, 2004.

N. Dahm, H. Bunke, T. Caelli, and Y. Gao, A unified framework for strengthening topological node features and its application to subgraph isomorphism detection, GbRPR, pp.11-20, 2013.

O. Duchenne, A. Joulin, and J. Ponce, A graph-matching kernel for object categorization, ICCV, pp.1792-1799, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650345

F. Dupé and L. Brun, Hierarchical bag of paths for kernel based shape classification, S+SSPR, pp.227-236, 2010.

A. Dutta and H. Sahbi, Supplemental material: Stochastic graphlet embedding, IEEE TNNLS, pp.1-4, 2018.

P. Foggia, G. Percannella, and M. Vento, Graph matching and learning in pattern recognition in the last 10 years, IJPRAI, vol.28, issue.1, pp.1-40, 2014.

T. Gärtner, A survey of kernels for structured data, ACM SIGKDD, vol.5, issue.1, pp.49-58, 2003.

J. Gibert, E. Valveny, and H. Bunke, Graph embedding in vector spaces by node attribute statistics, PR, vol.45, issue.9, pp.3072-3083, 2012.

Z. Harchaoui and F. Bach, Image classification with segmentation graph kernels, CVPR, pp.1-8, 2007.

T. Horváth, T. Gärtner, and S. Wrobel, Cyclic pattern kernels for predictive graph mining, KDD, pp.158-167, 2004.

S. Jouili and S. Tabbone, Graph embedding using constant shift embedding, ICPR, pp.83-92, 2010.
URL : https://hal.archives-ouvertes.fr/inria-00526993

J. Kandola, N. Cristianini, and J. S. Shawe-taylor, Learning semantic similarity, NIPS, pp.673-680, 2002.

J. Köbler, U. Schöning, and J. Torán, The Graph Isomorphism Problem: Its Structural Complexity, 1993.

R. Kondor and H. Pan, The multiscale laplacian graph kernel, NIPS, pp.2982-2990, 2016.

J. Lafferty and G. Lebanon, Diffusion kernels on statistical manifolds, JMLR, vol.6, pp.129-163, 2005.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, CVPR, pp.2169-2178, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00548585

W. Lee and R. P. Duin, A labelled graph based multiple classifier system, MCS, pp.201-210, 2009.

H. Ling and D. Jacobs, Shape classification using the inner-distance, IEEE TPAMI, vol.29, issue.2, pp.286-299, 2007.

J. Lugo-martinez and P. Radivojac, Generalized graphlet kernels for probabilistic inference in sparse graphs, NS, vol.2, issue.2, p.254276, 2014.

M. M. Luqman, J. Ramel, J. Lladós, and T. Brouard, Fuzzy multilevel graph embedding, PR, vol.46, issue.2, pp.551-565, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01022622

B. D. Mckay and A. Piperno, Practical graph isomorphism, ii, JSC, vol.60, pp.94-112, 2014.

K. Mehlhorn, Graph algorithms and NP-completeness, 1984.

S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Bahonar, Hierarchical graph embedding in vector space by graph pyramid, vol.61, pp.245-254, 2017.

M. Neuhaus and H. Bunke, Bridging the Gap Between Graph Edit Distance and Kernel Machines, 2007.

M. J. Newman, A measure of betweenness centrality based on random walks, SN, vol.27, issue.1, pp.39-54, 2005.

E. Pekalska and R. P. Duin, The Dissimilarity Representation for Pattern Recognition, Foundations And Applications. World Scientific, 2005.

N. Prulj, Biological network comparison using graphlet degree distribution, Bioinformatics, vol.23, issue.2, p.177, 2007.

K. Riesen and H. Bunke, Graph classification by means of lipschitz embedding, IEEE TSMCB, vol.39, issue.6, pp.1472-1483, 2009.

K. Riesen and H. Bunke, Iam graph database repository for graph based pattern recognition and machine learning, S+SSPR, pp.287-297, 2008.

K. Riesen, M. Neuhaus, and H. Bunke, Bipartite graph matching for computing the edit distance of graphs, GbRPR, ser, vol.4538, pp.1-12, 2007.

A. Robles-kelly and E. R. Hancock, A riemannian approach to graph embedding, PR, vol.40, issue.3, pp.1042-1056, 2007.

E. Saund, A graph lattice approach to maintaining and learning dense collections of subgraphs as image features, IEEE TPAMI, vol.35, issue.10, pp.2323-2339, 2013.

A. Sharma, R. Horaud, J. Cech, and E. Boyer, Topologically-robust 3d shape matching based on diffusion geometry and seed growing, CVPR, pp.2481-2488, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00590280

N. Shervashidze, S. V. Vishwanathan, T. Petri, K. Mehlhorn, and K. Borgwardt, Efficient graphlet kernels for large graph comparison, AISTATS, pp.488-495, 2009.

N. Shervashidze and K. M. Borgwardt, Fast subtree kernels on graphs, NIPS, pp.1660-1668, 2009.

A. J. Smola and R. Kondor, Kernels and regularization on graphs, pp.144-158, 2003.

V. N. Vapnik, Statistical Learning Theory, 1998.

S. V. Vishwanathan, N. N. Schraudolph, R. Kondor, and K. M. Borgwardt, Graph kernels, JMLR, vol.11, pp.1201-1242, 2010.

C. Watkins, Kernels from matching operations, 1999.

T. Weissman, E. Ordentlich, G. Seroussi, S. Verdu, and M. J. Weinberger, Inequalities for the l1 deviation of the empirical distribution, Tech. Rep, 2003.

R. Wilson, E. Hancock, and B. Luo, Pattern vectors from algebraic graph theory, IEEE TPAMI, vol.27, issue.7, pp.1112-1124, 2005.

B. Wu, C. Yuan, and W. Hu, Human action recognition based on context-dependent graph kernels, CVPR, pp.2609-2616, 2014.

F. Zhou, F. De-la, and T. , Deformable graph matching, CVPR, pp.1-8, 2013.

. Table-iv-classification-accuracies-(in-%)-obtained, . By, . Mutag, . Ptc, . Enzymes et al.,

M. Kernel and . Ptc-enzymes-d-&-d-nci1-nci109,

.. .. Sge-(t-=-{3 and . 4},

.. .. Sge-(t-=-{3, , vol.4

.. .. Sge-(t-=-{3, , vol.4

.. .. Sge-(t-=-{3, , vol.4

.. .. Sge-(t-=-{3 and . 5},

.. .. Sge-(t-=-{3, , vol.5

.. .. Sge-(t-=-{3, , vol.5

.. .. Sge-(t-=-{3, , vol.5

.. .. Sge-(t-=-{3 and . 6},

.. .. Sge-(t-=-{3, , vol.6

.. .. Sge-(t-=-{3, , vol.6

.. .. Sge-(t-=-{3, , vol.6

.. .. Sge-(t-=-{3 and . 7},

.. .. Sge-(t-=-{3, , vol.7

.. .. Sge-(t-=-{3, , vol.7

.. .. Sge-(t-=-{3, , vol.7

S. Belongie, J. Malik, and J. Puzicha, Shape matching and object recognition using shape contexts, IEEE TPAMI, vol.24, issue.4, pp.509-522, 2002.

A. Dutta and H. Sahbi, Stochastic graphlet embedding, IEEE TNNLS, pp.1-14, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02277646