A. Abraham, Deriving reproducible biomarkers from multi-site resting-state data: An Autism-based example, NeuroImage, vol.147, pp.736-745, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01398867

Y. S. Abu-mostafa, M. Magdon-ismail, and H. Lin, Learning from data, 2012.

F. Alfaro-almagro, Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank, NeuroImage, vol.166, pp.400-424, 2018.

M. R. Arbabshirani, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls, NeuroImage, vol.145, pp.137-165, 2017.

Y. Bengio, Y. Lecun, and . Others, Scaling learning algorithms towards AI. Large-scale kernel machines, vol.34, pp.1-41, 2007.

E. Bingham and H. Mannila, Random projection in dimensionality reduction: applications to image and text data, Proceedings of the seventh ACM SIGKDD. Available at, 2001.

K. M. Borgwardt, Kernel Methods in Bioinformatics, Handbook of Statistical Bioinformatics, pp.317-334, 2011.

D. Bzdok, Classical Statistics and Statistical Learning in Imaging Neuroscience, Frontiers in neuroscience, vol.11, p.543, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583175

D. Bzdok and J. P. Ioannidis, Exploration, Inference, and Prediction in Neuroscience and Biomedicine, Trends in neurosciences, vol.42, issue.4, pp.251-262, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02044120

D. Bzdok, T. E. Nichols, and S. M. Smith, Towards algorithmic analytics for large-scale datasets, Nature Machine Intelligence, vol.1, issue.7, pp.296-306, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02178410

D. Bzdok and B. T. Yeo, Inference in the age of big data: Future perspectives on neuroscience, vol.155, pp.549-564, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516891

J. Chen, Learning to Explain: An Information-Theoretic Perspective on Model Interpretation, 2018.

H. Choi and K. H. Jin, Fast and robust segmentation of the striatum using deep convolutional neural networks, Journal of neuroscience methods, vol.274, pp.146-153, 2016.

J. H. Cole, Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker, NeuroImage, vol.163, pp.115-124, 2017.

R. Collobert and S. Bengio, Links Between Perceptrons, MLPs and SVMs, Proceedings of the Twenty-first International Conference on Machine Learning. ICML '04, p.23, 2004.

C. Cortes, Learning Curves: Asymptotic Values and Rate of Convergence, 1994.

G. Cowan, Advances in Neural Information Processing Systems, vol.6, pp.327-334

C. Cortes and V. Vapnik, Support-vector networks, Machine learning, vol.20, issue.3, pp.273-297, 1995.

D. D. Cox and R. Savoy, fMRI Brain Reading: detecting and classifying distributed patterns of fMRI activity in human visual cortex, NeuroImage, vol.19, issue.2, pp.261-270, 2003.

J. S. Cramer, The Origins of Logistic Regression, 2002.

B. C. Csáji, Approximation with artificial neural networks. Faculty of Sciences, vol.24, p.48, 2001.

N. U. Dosenbach, Prediction of individual brain maturity using fMRI, Science, vol.329, issue.5997, pp.1358-1361, 2010.

. Editorial, Daunting data, Nature, vol.539, pp.467-468, 2016.

B. Efron, Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction, 2012.

B. Efron and T. Hastie, Computer Age Statistical Inference, 2016.

E. S. Finn, Can brain state be manipulated to emphasize individual differences in functional connectivity?, NeuroImage. Available, 2017.

R. A. Fisher, The use of multiple measurements in taxonomic problems, Annals of eugenics. Available, 1936.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 2001.

J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning, 2001.

A. Fry, Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population, American journal of epidemiology, vol.186, issue.9, pp.1026-1034, 2017.

A. Gelman and J. Hill, Data analysis using regression and hierarchical/multilevel models, 2007.

Z. Ghahramani, Probabilistic machine learning and artificial intelligence, Nature, vol.521, issue.7553, pp.452-459, 2015.

R. Giryes, G. Sapiro, and A. M. Bronstein, Deep Neural Networks with Random Gaussian Weights: A Universal Classification Strategy? arXiv [cs.NE, 2015.

A. Gliozzo and C. Strapparava, Semantic Domains in Computational Linguistics, 2009.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

I. Guyon, Gene Selection for Cancer Classification using Support Vector Machines, Machine learning, vol.46, issue.1, pp.389-422, 2002.

K. Hamidieh, A data-driven statistical model for predicting the critical temperature of a superconductor, Computational Materials Science, vol.154, pp.346-354, 2018.

M. Havaei, Brain tumor segmentation with Deep Neural Networks, Medical image analysis, vol.35, pp.18-31, 2017.

J. Haynes, A Primer on Pattern-Based Approaches to fMRI: Principles, Pitfalls, and Perspectives, Neuron, vol.87, issue.2, pp.257-270, 2015.

T. He and Z. Zhang, Bag of Tricks for Image Classification with Convolutional Neural Networks, 2018.

T. He and R. Kong, Do Deep Neural Networks Outperform Kernel Regression for Functional Connectivity Prediction of Behavior? bioRxiv, p.473603, 2018.

M. P. Van-den-heuvel, Efficiency of functional brain networks and intellectual performance, The Journal of neuroscience: the official journal of the Society for Neuroscience, vol.29, issue.23, pp.7619-7624, 2009.

H. Jang, Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks, NeuroImage, pp.314-328, 2017.

K. Kamnitsas, Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation, Medical image analysis, vol.36, pp.61-78, 2017.

J. N. Kather, Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer, Nature medicine, vol.25, issue.7, pp.1054-1056, 2019.

D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2014.

G. Klambauer, Self-Normalizing Neural Networks, 2017.

J. D. Kruschwitz, General, crystallized and fluid intelligence are not associated with functional global network efficiency: A replication study with the human connectome project 1200 data set, NeuroImage, vol.171, pp.323-331, 2018.

M. Kuhn and K. Johnson, Applied Predictive Modeling, 2013.

Y. Lecun, Gradient-based learning applied to document recognition, Proceedings of the IEEE, vol.86, issue.11, pp.2278-2324, 1998.

Y. Lecun, Y. Bengio, and G. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

Y. Lecun and C. Cortes, MNIST handwritten digit database, 2010.

H. Li, Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images, NeuroImage, vol.183, pp.650-665, 2018.

H. Lin and C. Lin, A study on sigmoid kernels for SVM and the training of non-PSD kernels by SMO-type methods, pp.1-32, 2003.

S. M. Lundberg and S. Lee, A Unified Approach to Interpreting Model Predictions, Advances in Neural Information Processing Systems, vol.30, pp.4765-4774, 2017.

A. H. Marblestone, G. Wayne, and K. P. Kording, Toward an Integration of Deep Learning and Neuroscience, Frontiers in computational neuroscience, vol.10, p.94, 2016.

R. V. Marinescu, TADPOLE Challenge: Prediction of Longitudinal Evolution in Alzheimer's Disease, 2018.

A. F. Marquand, Understanding Heterogeneity in Clinical Cohorts Using Normative Models: Beyond Case-Control Studies, Biological psychiatry, vol.80, issue.7, pp.552-561, 2016.

G. J. Mclachlan, Discriminant Analysis and Statistical Pattern Recognition: McLachlan/Discriminant Analysis & Pattern Recog, 2005.

H. Mhaskar, Q. Liao, and T. Poggio, When and why are deep networks better than shallow ones?, Thirty-First AAAI Conference on Artificial Intelligence. aaai.org. Available at, 2017.

A. Mihalik, ABCD Neurocognitive Prediction Challenge 2019: Predicting individual fluid intelligence scores from structural MRI using probabilistic segmentation and kernel ridge regression, 2019.

K. L. Miller, Multimodal population brain imaging in the UK Biobank prospective epidemiological study, Nature neuroscience, vol.19, issue.11, pp.1523-1536, 2016.

G. S. Pamplona, Analyzing the association between functional connectivity of the brain and intellectual performance, Frontiers in human neuroscience, vol.9, p.61, 2015.

S. Pereira, Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images, IEEE transactions on medical imaging, vol.35, issue.5, pp.1240-1251, 2016.

S. M. Plis, Deep learning for neuroimaging: a validation study, Frontiers in neuroscience, vol.8, p.229, 2014.

J. Schmidhuber, Deep learning in neural networks: an overview. Neural networks: the official journal of the International Neural Network Society, vol.61, pp.85-117, 2015.

B. Schölkopf, Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond, 2002.

S. M. Smith and T. E. Nichols, Statistical Challenges in "Big Data, Human Neuroimaging. Neuron, vol.97, issue.2, pp.263-268, 2018.

C. Sudlow, UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age, PLoS medicine, vol.12, issue.3, p.1001779, 2015.

P. M. Thompson, ENIGMA and the individual: Predicting factors that affect the brain in 35 countries worldwide, NeuroImage, pp.389-408, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01380998

W. R. Uttal, Mind and brain: A critical appraisal of cognitive neuroscience, 2011.

S. Valverde, Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach, NeuroImage, vol.155, pp.159-168, 2017.

G. Varoquaux, Assessing and tuning brain decoders: Cross-validation, caveats, and guidelines, NeuroImage, pp.166-179, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01332785

S. Vieira, W. H. Pinaya, and A. Mechelli, Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological disorders: Methods and applications, Neuroscience and biobehavioral reviews, vol.74, pp.58-75, 2017.

J. Wang, Q. Chen, and Y. Chen, RBF Kernel Based Support Vector Machine with Universal Approximation and Its Application, Advances in Neural Networks -ISNN, pp.512-517, 2004.

C. Woo, Building better biomarkers: brain models in translational neuroimaging, Nature neuroscience, vol.20, issue.3, pp.365-377, 2017.

H. Xiao, K. Rasul, and R. Vollgraf, Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms, 2017.

C. Zhang, Understanding deep learning requires rethinking generalization, 2016.