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20We simulate dynamical mechanical spectroscopy in a Cu64Zr36 bulkmetallic glass using non-equilibriummolec-
21ular dynamics. Applying several loading conditions (constant volume, longitudinal, uniaxial and isostatic), we
22find that different elastic moduli have very contrasted dynamical properties but satisfy the dynamic correspon-
23dence principle, which states that the relations between staticmoduli can be extended to dynamicalmoduli, both
24below and above the glass transition temperature. In particular, we determine the debated dynamic Poisson's
25ratio from three different but consistent expressions. Finally, we trace the origin of dissipation down to regions
26of low stability devoid of icosahedral clusters.
27© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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39 Dynamic mechanical spectroscopy (DMS) is a widespread method
40 to measure complex dynamic elastic moduli and characterize the visco-
41 elastic properties of materials [1]. In the case of metallic glasses (MGs)
42 of particular interest here [2], DMS has been used to evaluate internal
43 friction, i.e. the energy dissipated during cyclic deformation, a key engi-
44 neering parameter for a number of applications such as resonating
45 micro-electromechanical systems (MEMS) [3]. On a more fundamental
46 level, DMShas also been used to study the intricate relaxation dynamics
47 characteristic of disordered solids [4,5] and in particular the primary (α)
48 and secondary (β) relaxations [4,6].
49 Experimentally, two modes of deformation are applied, bending
50 [7–9] and torsion [10–12], giving access respectively to the complex
51 Young and shear moduli. DMS has also been simulated using non-
52 equilibrium molecular dynamics (NEMD) [13–17]. The simulations are
53 limited to rather high frequencies (N1 GHz) but allow to simultaneously
54 measure the dissipation and analyze its origin at the atomic level. In par-
55 ticular, it has been shown that inmetallic glasses, atomswith stable ico-
56 sahedral environments do not participate in dissipation [13].
57 In the static limit, there are only two independent elastic moduli in
58 isotropic media [18]. They come as pairs, such as (λ, G), with λ Lamé's
59 first parameter and G the shear modulus, and (E, ν), with E Young's
60 modulus and ν Poisson's ratio. Thesemoduli are related to one another,

61with for instance, G = E/2(1 + ν). Therefore, if one can measure any
62two moduli, all other moduli are known. These relations are well
63established in static elasticity and derive from Hooke's law. It has been
64assumed that they also hold true in the dynamic case, through the so-
65called dynamic correspondence principle [19,20], which simply means
66that real static moduli can be replaced by their complex dynamic coun-
67terparts. However, concerns have been raised about the dynamic
68Poisson's ratio [21–24]. Also, the correspondence principle has actually
69never been tested experimentally because it requires a precision on
70the complex moduli very difficult to reach [21]. It has also not been
71tested in NEMD, which to the best of our knowledge, has so far only
72been applied with shear deformations. At high frequencies, in the har-
73monic regime, the dynamic elastic moduli can be expressed analytically
74[25] and satisfy the correspondence principle. However, the same is far
75from clear in the anharmonic regime observed in MGs.
76Here, we consider a typical CuZr MG and use NEMD to apply differ-
77ent loading geometries and test the dynamic correspondence principle
78over a wide range of frequencies and temperatures. We find that differ-
79ent elasticmoduli exhibit very different dynamic properties but that the
80correspondence principle applies both below and above the glass tran-
81sition temperature. We also devote a special discussion to the compli-
82cated case of Poisson's ratio.
83The MD simulations were performed using the open source
84LAMMPS package [26]. We considered a Cu64Zr36 MG, which has a
85high glass forming ability and has been widely investigated byMD sim-
86ulations in the past [27–32]. The interatomic interactions are based on
87the EAM potential developed by Mendelev et al. [33]. We simulated a
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88 glass with 108,000 atoms (see Fig. 1(a)), obtained by quenching a liquid
89 from 2000 K down to 100 K with a typical quenching rate of 1011 K/s,
90 keeping the pressure to zero during the cooling procedure.
91 WesimulatedDMSusing the samemethodology as in previousNEMD
92 works [13,16,25]. Fig. 1 illustrates the case of pure shear. The sample was
93 first equilibrated at the target temperature and zero pressure for 1 ns. As
94 shown in Fig. 1(a), we then applied a sinusoidal strain εxx(t)= εA sin (ωt)
95 along the X direction, with εA and Tω=2π/ω, the amplitude and period of
96 the cyclic deformation. In order to impose a pure shear and keep the vol-
97 ume of the cell constant, we applied strains εyy(t) = εzz(t) = − 0.5εxx(t)
98 along the Y and Z directions. We tested different strain amplitudes (see

99Supplementary materials) and found εA = 2.5% an optimal value, small
100enough to remain in the elastic regime but large enough to avoid a poor
101signal-to-noise ratio at high temperatures. We also simulated different
102numbers of cycles (see Supplementary materials), and found that
1035 cycles are enough to measure accurately dynamic elastic moduli. The
104variation of the stress tensor was recorded during the deformation. As il-
105lustrated in Fig. 1(a), after shifting all values by periodicity in the first pe-
106riod, we fitted the stress in the X direction as σxx(t) = σ0 + σA sin (ωt+
107δ),withσA the stress amplitude and δ the phase shift. Discarding the small
108offset stressσ0, wehave in complexnotation,σxx(t)=σA/εA exp (iδ)εxx(t).
109According to Hooke's law:

σ ¼ 2Gεþ λTr εð ÞI ð1Þ

111111which in the present case of pure shear where Tr(ε) = 0 yields σxx =
2Gεxx. The dynamic shear modulus is thus G ∗ = 0.5σA/εA exp (iδ), with

112the storage and loss moduli given by the real and imaginary parts of G ∗:
113G′=0.5σA/εA cos (δ) andG′′=0.5σA/εA sin (δ).Wenote also that accord-
114ing to Hooke's law (Eq. (1)), we should have σyy(t) = σzz(t) = − 0.5σxx

115(t), which is readily tested in Fig. 1(b).
116Fig. 1(c) shows the storage G′ and loss G″ shear moduli as a function
117of temperature. Similar results were obtained by Yu et al. [13]. The stor-
118age and loss moduli are highly dependent on the loading frequencies,
119with an α-relaxation peak in G″ close to the glass transition tempera-
120ture, which shifts to higher temperature as the frequency increases, in
121agreement with experiments [4,6,34].
122At variance with previous works, which considered only shear de-
123formations, we applied four different loading conditions, shown sche-
124matically in Fig. 2(a):

125(1) Constant volume: application of sinusoidal strains εxx(t)= − 2εyy
126(t) = − 2εzz(t) to obtain the shear modulus G ∗, as discussed
127above.
128(2) Uniaxial deformation: application of a sinusoidal strain along the X
129direction andmaintainσyy(t)=σzz(t)=0 to obtain Young'smod-
130ulus, E ∗, defined as σxx(t) = E ∗εxx(t).
131(3) Longitudinal deformation: application of a sinusoidal strain along
132the X direction and maintain the Y and Z dimensions unchanged
133to obtain the longitudinal modulus, M ∗, defined as σxx(t) =
134M ∗εxx(t).
135(4) Isostatic deformation: application of the same sinusoidal
136strain along the X, Y and Z directions simultaneously to obtain
137the bulk modulus K ∗ defined as P(t) = − (σxx(t) + σyy(t) +
138σzz(t))/3 = − 3K ∗ε(t).
139

140Fig. 2(b) and (c) show the amplitude of the complex moduli σA/εA
141and the phase shifts obtained with the different loading conditions.
142They have opposite hierarchies: a loading condition, which strongly
143constrains the deformation, such as an isostatic deformation, yields a
144high σA/εA ratio, and a small phase shift and vice versa for a weakly
145constraining loading, such as uniaxial loading. We also find as expected
146that above the α-relaxation peak, when the system is no longer a glass
147but is in the supercooled region, Young's and shear moduli drop down
148to zero and their phase shift increases to almost π/2, i.e. the system is
149now a viscous liquid. But way of contrast, the bulk and longitudinal
150moduli remain finite at all temperatures, with negligibly small phase
151shifts.
152Hooke's law (Eq. (1)) imposes relations between the elastic mod-
153uli as listed in Table. 1. For instance, for the longitudinal deformation,

154

ε ¼
ε 0 0
0 0 0
0 0 0

0
@

1
A, such that, from Hooke's law, σxx = (2G + λ)ε, σyy

155= σzz = λε. We therefore have M = 2G + λ and λ is obtained by
156monitoring σyy and σzz. Fig. 3(a) and (b) show the evolution of M ∗

157and λ ∗ from the NEMD simulations. If the dynamic correspondence

Fig. 1.Viscoelasticity in pure shear: (a) Time-dependent applied strain and resulting stress
in X direction at 800 K and a frequency of 10 GHz (Tω = 100 ps). The inset shows the
atomic configuration and a schematic of the loading. (b) Tensile stresses in all three
directions. (c) Storage shear modulus G′, loss modulus G″ and phase shift δG as a
function of temperature for different loading frequencies noted in the figure.
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158 principle holds, we should have M ∗ = 2G ∗ + λ ∗, or equivalently, G ∗ =
159 (M ∗ − λ ∗)/2, which can be compared to the direct measurement of G ∗

160 by constant volume deformation. The comparison is done in Fig. 3(c),
161 which shows that the above relation indeed holds at all temperatures.
162 We note that λ ∗ is mostly independent of both the temperature and the
163 frequency, with negligible λ′′ and phase shift. As a result, there is a con-
164 stant offset between M′ and 2G′ and M ′ ′ ≅ 2G ′ ′. Similarly, in Fig. 3
165 (d), we verify thatK ∗=λ ∗+2G ∗/3. Itmay not be surprising that these re-
166 lations satisfy the correspondence principle since they are linear. More
167 complicated is the case of Young's modulus, which is expressed as E ∗ =
168 G ∗(3λ ∗ + 2G ∗)/(λ ∗ + G ∗). However, Fig. 3(e) shows that this dynamic
169 relation is also verified.
170 Wenow turn our attention to the dynamic Poisson's ratio, which has
171 been debated in the literature because it may be defined in different
172 ways [24]. We note that the ratio εyy(t)/εxx(t) is not sinusoidal and
173 therefore cannot be used to define Poisson's ratio. Instead, we use the
174 ratio of complex strains, ν� ¼ −εyy�=εxx� . This definition is compared
175 in Fig. 3(f) with two expressions obtained from the correspondence
176 principle: ν ∗ = λ ∗/2(λ ∗ + G ∗) and ν ∗ = 0.5 − E ∗/6K ∗. All three

177expressions lead to the same result, further confirming the reliability
178of the correspondence principle. We see that ν′ reaches 0.5 in the
179supercooled regime, i.e. the liquid is incompressible. Also, ν′′ and δν
180are negative, which implies that the transverse strain lags behind the
181longitudinal strain under dynamic loading, as expected due to damping
182effects [35]. A negative δν is also consistent with λ′′ being negligibly
183small as seen above, since in this case, tanδν ≃ − G′′/(λ′+ G′). Negative
184δν were observed in previous experimental works, directly measuring
185the dynamic Poisson's ratio of several polymers [23,35]. Since the
186phase shift is very small, an extreme accuracy of the measurements is
187needed and some works have also reported zero phase shift [36,37].
188Atomic mobility is the key to understand structural relaxation in
189MGs [13]. Fig. 4(a) shows an example of non-affine atomic
190displacements between the end of the 1st and the 5th cycles, when
191the cell is back to its original shape and there is no displacement in-
192duced by the applied homogeneous deformation. Atoms in different re-
193gions have very different mobilities, as expected from dynamic
194heterogeneities [38]. Following the work of Yu et al. [13], we define
195“faster atoms” as having displacements larger than 1.4 Å, half the aver-
196age nearest neighbor distance. The “slow atoms” shown in Fig. 4
197(b) have almost reversible displacements under the deformation, and
198therefore contribute only to the elastic deformation of the MG. Con-
199versely, the “faster atoms” undergo irreversible movements during the
200loading, i.e. inelastic deformation, which leads to energy dissipation.
201To further reveal the structural origin of the dynamic heterogeneity,
202Fig. 4(c) shows the Cu atoms with Voronoi index ⟨0,0,12,0⟩, identified
203as the central atoms of full icosahedral clusters. By deleting the isolated
204atoms with a cutoff 3.7 Å (the first minimum of the radial distribution

Fig. 2. (a) Schematic representation of the four loading conditions applied in NEMD simulations. (b) and (c) Amplitude of the complex moduli σA/εA and phase shifts for the four loading
conditions at a frequency of 10 GHz.

t1:1 Table 1
t1:2 Conversion formulas of elastic constants for homogenous isotropic materials.

t1:3 K E M ν

t1:4 (λ, G)
λþ 2G

3
Gð3λþ 2GÞ

λþ G
λ + 2G λ

2ðλþ GÞ
t1:5 (K, E) K E 3Kð3K þ EÞ

9K−E
3K−E
6K
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205 function), not only the “slow atoms” on the surface of the simulation
206 box but also the atoms with reversible movements inside the box
207 match very well, as shown comparing Fig. 4(b) and (d). This result is
208 consistent with the work of Yu et al. [13]. It can be concluded that the
209 Cu-centered full icosahedral clusters in CuZr MG are stable and have a
210 low atomic mobility, contributing to the stored elastic energy in each
211 loading cycle. Conversely, most other atoms have larger mobilities and
212 undergo irreversible inelastic displacements, contributing to the visco-
213 elastic component and the energy dissipated in each loading cycle.

214In summary, our results provide a numerical verification of the dy-
215namic correspondence principle by investigating Cu64Zr36 MG in
216NEMD simulations. The resulting relationships between the viscoelastic
217complex moduli provide a guidance for engineering applications of vis-
218coelastic materials under multi-axial stress conditions. Moreover, a
219well-posed definition of dynamic Poisson's ratio is highlighted. Spa-
220tially, the Cu-centered icosahedral clusters are found stable under cyclic
221deformation, contributing to the elastic component of the deformation,
222while most other atoms undergo irreversible displacements and

Fig. 3. Temperature dependence ofmeasured and predicted complexmoduli: (a) LongitudinalmodulusM ∗ and (b) Lamé's first parameter λ ∗ obtainedwith NEMD at various frequencies,
(c)–(f) Predictions of the complex shear, bulk, Young'smoduli and Poisson's ratio using the dynamic correspondence principle (red data), comparedwith direct NEMDdata (black data) at
10 GHz. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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223 contribute to the viscoelastic part. Our findings make a contribution to
224 better understand the dynamic mechanical relaxations of MGs and
225 also convey important information on themicrostructural processes oc-
226 curring during the glass transition.
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