, WHO. Global Tuberculosis Report. Global Tuberculosis Report, 2018.

P. Peyron, Foamy macrophages from tuberculous patients' granulomas constitute a nutrient-rich reservoir for M. tuberculosis persistence, PLoS Pathog, vol.4, 2008.

N. J. Garton, Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum, PLoS Med, vol.5, 2008.

H. M. Alvarez and A. Steinbuchel, Triacylglycerols in prokaryotic microorganisms, Appl Microbiol Biotechnol, vol.60, pp.367-376, 2002.

M. Waltermann and A. Steinbuchel, Neutral lipid bodies in prokaryotes: recent insights into structure, formation, and relationship to eukaryotic lipid depots, J Bacteriol, vol.187, pp.3607-3619, 2005.

H. M. Alvarez, Triacylglycerol and wax ester-accumulating machinery in prokaryotes, Biochimie, vol.120, p.16, 2016.

J. Daniel, H. Maamar, C. Deb, T. D. Sirakova, and P. E. Kolattukudy, Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages, PLoS Pathog, vol.7, 2011.

I. Caire-brandli, Reversible lipid accumulation and associated division arrest of Mycobacterium avium in lipoprotein-induced foamy macrophages may resemble key events during latency and reactivation of tuberculosis, Infect Immun, vol.82, pp.476-490, 2014.

N. J. Garton, H. Christensen, D. E. Minnikin, R. A. Adegbola, and M. R. Barer, Intracellular lipophilic inclusions of mycobacteria in vitro and in sputum, Microbiology, vol.148, pp.2951-2958, 2002.

C. Vilcheze and L. Kremer, Acid-Fast Positive and Acid-Fast Negative Mycobacterium tuberculosis: The Koch Paradox, Microbiol Spectr, vol.5, 2017.

R. J. Hammond, V. O. Baron, K. Oravcova, S. Lipworth, and S. H. Gillespie, Phenotypic resistance in mycobacteria: is it because I am old or fat that I resist you, J Antimicrob Chemother, vol.70, pp.2823-2827, 2015.

P. Santucci, Experimental Models of Foamy Macrophages and Approaches for Dissecting the Mechanisms of Lipid Accumulation and Consumption during Dormancy and Reactivation of Tuberculosis, Front Cell Infect Microbiol, vol.6, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01455789

M. Podinovskaia, W. Lee, S. Caldwell, and D. G. Russell, Infection of macrophages with Mycobacterium tuberculosis induces global modifications to phagosomal function, Cell Microbiol, vol.15, pp.843-859, 2013.

J. G. Rodriguez, Global adaptation to a lipid environment triggers the dormancy-related phenotype of Mycobacterium tuberculosis, MBio, vol.5, pp.1125-01114, 2014.

C. Zhang, Bacterial lipid droplets bind to DNA via an intermediary protein that enhances survival under stress, Nat Commun, vol.8, p.15979, 2017.

H. L. Sheehan and F. Whitwell, The staining of tubercle bacilli with Sudan black B, J Pathol Bacteriol, vol.61, pp.269-271, 1949.

C. Deb, A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen, PLoS One, vol.4, 2009.

F. Bouzid, Mycobacterium canettii Infection of Adipose Tissues, Front Cell Infect Microbiol, vol.7, p.189, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01573740

K. L. Low, Triacylglycerol utilization is required for regrowth of in vitro hypoxic nonreplicating Mycobacterium bovis bacillus Calmette-Guerin, J Bacteriol, vol.191, pp.5037-5043, 2009.

K. L. Low, Lipid droplet-associated proteins are involved in the biosynthesis and hydrolysis of triacylglycerol in Mycobacterium bovis bacillus Calmette-Guerin, J Biol Chem, vol.285, pp.21662-21670, 2010.

D. Raze, Heparin-binding Hemagglutinin Adhesin (HBHA) is involved in intracytosolic lipid inclusions formation in mycobacteria, Frontiers in microbiology, vol.9, p.2258, 2018.

K. A. Mattos, Modulation of lipid droplets by Mycobacterium leprae in Schwann cells: a putative mechanism for host lipid acquisition and bacterial survival in phagosomes, Cell Microbiol, vol.13, pp.259-273, 2011.

L. Kremer, Identification and structural characterization of an unusual mycobacterial monomeromycolyl-diacylglycerol, Mol Microbiol, vol.57, pp.1113-1126, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00079063

C. Barisch, P. Paschke, M. Hagedorn, M. Maniak, and T. Soldati, Lipid droplet dynamics at early stages of Mycobacterium marinum infection in Dictyostelium, Cell Microbiol, vol.17, pp.1332-1349, 2015.

C. Barisch and T. Soldati, Mycobacterium marinum Degrades Both Triacylglycerols and Phospholipids from Its Dictyostelium Host to Synthesise Its Own Triacylglycerols and Generate Lipid Inclusions, PLoS Pathog, vol.13, 2017.

A. Viljoen, M. Blaise, C. De-chastellier, and L. Kremer, MAB_3551c encodes the primary triacylglycerol synthase involved in lipid accumulation in Mycobacterium abscessus, Mol Microbiol, vol.102, pp.611-627, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01438163

M. P. Weir, W. H. Langridge, and R. W. Walker, Relationships between oleic acid uptake and lipid metabolism in Mycobacterium smegmatis, Am Rev Respir Dis, vol.106, pp.450-457, 1972.

R. Dhouib, Watching intracellular lipolysis in mycobacteria using time lapse fluorescence microscopy, Biochim Biophys Acta, vol.1811, pp.234-241, 2011.

L. G. Wayne and L. G. Hayes, An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence, Infect Immun, vol.64, pp.2062-2069, 1996.

J. Daniel, Induction of a novel class of diacylglycerol acyltransferases and triacylglycerol accumulation in Mycobacterium tuberculosis as it goes into a dormancy-like state in culture, J Bacteriol, vol.186, p.5017, 2004.

T. D. Sirakova, Identification of a diacylglycerol acyltransferase gene involved in accumulation of triacylglycerol in Mycobacterium tuberculosis under stress, Microbiology, vol.152, pp.2717-2725, 2006.

D. M. Roberts, R. P. Liao, G. Wisedchaisri, W. G. Hol, and D. R. Sherman, Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis, J Biol Chem, vol.279, pp.23082-23087, 2004.

H. Nakagawa, Y. Kashiwabara, and G. Matsuki, Metabolism of triacylglycerol in Mycobacterium smegmatis, J Biochem, vol.80, pp.923-928, 1976.

H. Bloch and W. Segal, Biochemical differentiation of Mycobacterium tuberculosis grown in vivo and in vitro, J Bacteriol, vol.72, pp.132-141, 1956.

J. D. Mckinney, Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase, Nature, vol.406, pp.735-738, 2000.

H. Medjahed, J. L. Gaillard, and J. M. Reyrat, Mycobacterium abscessus: a new player in the mycobacterial field, Trends Microbiol, vol.18, pp.117-123, 2010.

A. Bernut, Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation, Proc Natl Acad Sci, vol.111, pp.943-952, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02088315

A. Bernut, Mycobacterium abscessus-Induced Granuloma Formation Is Strictly Dependent on TNF Signaling and Neutrophil Trafficking, PLoS Pathog, vol.12, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02086787

Y. K. Kudykina, M. Shleeva, V. Y. Artsabanov, N. Suzina, and A. Kaprelyants, Generation of dormant forms by Mycobacterium smegmatis in the poststationary phase during gradual acidification of the medium, Microbiology, vol.80, p.638, 2011.

K. C. Mishra, Functional role of the PE domain and immunogenicity of the Mycobacterium tuberculosis triacylglycerol hydrolase LipY, Infect Immun, vol.76, pp.127-140, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00202869

C. Deb, A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis, J Biol Chem, vol.281, pp.3866-3875, 2006.

P. Santucci, Delineating the Physiological Roles of the PE and Catalytic Domains of LipY in Lipid Consumption in Mycobacterium-Infected Foamy Macrophages, Infect Immun, vol.86, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01860679

V. Delorme, MmPPOX inhibits Mycobacterium tuberculosis lipolytic enzymes belonging to the hormone-sensitive lipase family and alters mycobacterial growth, PLoS One, vol.7, 2012.

C. Rens, Effects of Lipid-Lowering Drugs on Vancomycin Susceptibility of Mycobacteria, Antimicrob Agents Chemother, vol.60, pp.6193-6199, 2016.

C. M. Goins, Characterization of Tetrahydrolipstatin and Stereo-derivatives on the Inhibition of Essential Mycobacterium tuberculosis Lipid Esterases, Biochemistry, 2018.

M. S. Ravindran, Targeting lipid esterases in mycobacteria grown under different physiological conditions using activity-based profiling with tetrahydrolipstatin (THL, Mol Cell Proteomics, vol.13, pp.435-448, 2014.

A. J. Martinot, Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis, PLoS Pathog, vol.12, 2016.

P. C. Nguyen, Oxadiazolone derivatives, new promising multi-target inhibitors against M. tuberculosis, Bioorg Chem, vol.81, pp.414-424, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01875577

L. Ramakrishnan, Revisiting the role of the granuloma in tuberculosis, Nat Rev Immunol, vol.12, pp.352-366, 2012.

J. Dietrich, Differential influence of nutrient-starved Mycobacterium tuberculosis on adaptive immunity results in progressive tuberculosis disease and pathology, Infect Immun, vol.83, pp.4731-4739, 2015.

H. M. Alvarez, F. Mayer, D. Fabritius, and A. Steinbuchel, Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630, Arch Microbiol, vol.165, pp.377-386, 1996.

H. M. Alvarez, R. Kalscheuer, and A. Steinbuchel, Accumulation and mobilization of storage lipids by Rhodococcus opacus PD630 and Rhodococcus ruber NCIMB 40126, Appl Microbiol Biotechnol, vol.54, pp.218-223, 2000.

H. D. Park, Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis, Mol Microbiol, vol.48, pp.833-843, 2003.

M. B. Reed, S. Gagneux, K. Deriemer, P. M. Small, and C. E. Barry, The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated, J Bacteriol, vol.189, pp.2583-2589, 2007.

S. H. Baek, A. H. Li, and C. M. Sassetti, Metabolic regulation of mycobacterial growth and antibiotic sensitivity, PLoS Biol, vol.9, 2011.

M. Waltermann, Mechanism of lipid-body formation in prokaryotes: how bacteria fatten up, Mol Microbiol, vol.55, pp.750-763, 2005.

N. Kapoor, Human granuloma in vitro model, for TB dormancy and resuscitation, PLoS One, vol.8, 2013.

V. Point, Synthesis and kinetic evaluation of cyclophostin and cyclipostins phosphonate analogs as selective and potent inhibitors of microbial lipases, J Med Chem, vol.55, pp.10204-10219, 2012.

M. H. Daleke, Conserved Pro-Glu (PE) and Pro-Pro-Glu (PPE) Protein Domains Target LipY Lipases of Pathogenic Mycobacteria to the Cell Surface via the ESX-5 Pathway, J. Biol. Chem, vol.286, 2011.

C. N. Paramasivan, S. Sulochana, G. Kubendiran, P. Venkatesan, and D. A. Mitchison, Bactericidal Action of Gatifloxacin, Rifampin, and Isoniazid on Logarithmic-and Stationary-Phase Cultures of Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.49, pp.627-631, 2005.

R. S. Wallis, Drug Tolerance in Mycobacterium tuberculosis, Antimicrobial Agents and Chemotherapy, vol.43, pp.2600-2606, 1999.

J. M. Bryant, Emergence and spread of a human-transmissible multidrug-resistant nontuberculous mycobacterium, Science, vol.354, pp.751-757, 2016.

S. B. Snapper, R. E. Melton, S. Mustafa, T. Kieser, and W. R. Jacobs, Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis, Mol Microbiol, vol.4, pp.1911-1919, 1990.

G. S. Besra, Mycobacteria Protocols, pp.91-107, 1998.

C. De-chastellier, EM analysis of phagosomes, Methods Mol Biol, vol.445, pp.261-285, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00294201

R. Goude, D. M. Roberts, and T. Parish, Electroporation of mycobacteria, Methods Mol Biol, vol.1285, pp.117-130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01134392

K. Cotes, Characterization of an exported monoglyceride lipase from Mycobacterium tuberculosis possibly involved in the metabolism of host cell membrane lipids, Biochem J, vol.408, pp.417-427, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478817

R. Dhouib, F. Laval, F. Carriere, M. Daffe, and S. Canaan, A monoacylglycerol lipase from Mycobacterium smegmatis Involved in bacterial cell interaction, J Bacteriol, vol.192, pp.4776-4785, 2010.

J. C. Palomino, Resazurin microtiter assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.46, pp.2720-2722, 2002.

P. C. Nguyen, Cyclipostins and Cyclophostin analogs as promising compounds in the fight against tuberculosis, Scientific Reports, vol.7, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01791688

A. Walzl, A Simple and Cost Efficient Method to Avoid Unequal Evaporation in Cellular Screening Assays, Which Restores Cellular Metabolic Activity, Int. J. Appl. Sci. Technol, vol.2, pp.17-21, 2012.

J. Rybniker, Lansoprazole is an antituberculous prodrug targeting cytochrome bc1, Nat Commun, vol.6, 2015.

M. Zhang, In vitro and in vivo activities of three oxazolidinones against nonreplicating Mycobacterium tuberculosis, Antimicrob Agents Chemother, vol.58, pp.3217-3223, 2014.

R. L. Lamason, SLC24A5, a putative cation exchanger, affects pigmentation in zebrafish and humans, Science, vol.310, pp.1782-1786, 2005.

A. Bernut, Deciphering and Imaging Pathogenesis and Cording of Mycobacterium abscessus in Zebrafish Embryos, J Vis Exp, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02086982