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Abstract

We establish exponential inequalities for the supremum of martingales obtained from counting

processes as well as for the supremum of their square martingales. Exponential inequalities are also

provided for the oscillation modulus of these martingales.
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1 Introduction

The counting processes naturally arise in a lot of applied circumstances, and the understanding of their
evolution is the object of a lot of modelization problems. Exponential inequalities are of great interest
in this context, particularly because they play a decisive role in the control of errors in statistics. The
exponential inequalities for the distribution of random variables have been of interest for many years
(see Hoe�ding [1963] for one of the �rst result about this issue), and it is still a very active domain
of research for various types of processes, like sums of i.i.d. random variables, empirical processes, U -
statistics, Poisson processes, martingales and self-normalised martingales, with discrete or continuous
time. For example, for discrete time processes with i.i.d. random variables, exponential inequalities
have been obtained for the empirical process or for U -statistics of order two in Hanson and Wright
[1971], Giné and Zinn [1992], Arcones and Giné [1993], Talagrand [1996], Ledoux [1997], Klass and
Nowicki [1997], Bretagnolle [1999], Massart [2000] or Giné et al. [2000] to cite a few. We may refer
also to Massart [2007] or Bercu et al. [2015] for a wide review of exponential inequalities for discrete
time martingales.

In this paper we focus on counting processes and their associated square martingales in continuous
time. Our aim is to provide exponential inequalities for the oscillation modulus of a counting process
as well as its associated square martingale. To this end, we exhibit �rst local martingale properties
of the exponential of some counting processes and their square martingales, we establish exponential
inequalities with explicit constants for the supremum of those processes, leading to exponential bounds
for the oscillation modulus.

Some results already exists for martingales in continuous time, one may refer for instance to The-
orem 23.17 of Kallenberg [1997]) for semi-martingales such that [M ]∞ ≤ 1 almost surely, or Reynaud-
Bouret [2003] for the case of the Poisson process. Another framework is considered in Van De Geer
[1995] or Reynaud-Bouret [2006], where exponential inequalities are obtained for more general counting
processes than the Poisson process. These exponential bounds are derived from technics adapted from
the empirical process, with extensions of Bernstein's exponential inequality to general martingales. As
a consequence of the results of Van De Geer [1995], exponential inequalities with explicit constants
have been established for the supremum of counting processes with absolutely continuous compen-
sators in Reynaud-Bouret [2006], as well as for supt∈[0,T ] supaM

a
t where (Ma

t )t≥0 is a countable family
of martingales associated to counting processes.
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The case of the square martingale is closely related to the one of U-statistics of order two which has a
long history too, and exponential inequalities with explicit constants for such processes are also of main
interest for statistical problems in a non-asymptotic framework. Indeed the estimator of a quadratic
form may naturally be a U -statistics of order two, and the results obtained on square martingales are
generally not the simple consequence of those obtained for simple martingales. In statistical problems
like the estimation of a quadratic functional of a density (Laurent [2005]), or in testing problems (see
Fromont and Laurent [2006] for a goodness-of-�t test in density or Fromont et al. [2011] for an adaptive
test of homogeneity of a Poisson process), the keystone for controlling the statistical error is to use
exponential inequalities for the right model, and many of them come from results on sequences of
i.i.d. random variables. In the speci�c case of the Poisson process, a sharp exponential inequality
with explicit constants hold for U-statistics of order two and for double integrals of Poisson processes
in Houdré and Reynaud-Bouret [2003]. The Poisson process is viewed as a point process (Ti)i≥1 on
the real line, allowing to use the inequalities obtained for U -statistics of i.i.d. random variables like
Rosenthal's inequality and Talagrand's inequality, after conditioning by the total random number of
point.

In our case, we do not make any assumption about the independence of the underlying point
process. We therefore shall consider more general counting processes than the Poisson process, like
non-explosive Cox processes or Hawkes processes with bounded intensities for instance. Comparing
to the existing literature, we use quite di�erent proofs with stochastic calculus instead of adapting
previous technics in discrete times. This leads to a more accurate tail of the distribution for large
deviations, namely in x log x, through inequalities with explicit constants. This also allows us to
consider the supremum of double integrals of other counting processes than the Poisson process.

The remainder of this article is organized as follows: in the next section, we recall some general
notations, while Section 3 is devoted to the exponential martingales of the counting processes. The
exponential inequalities of our martingales and their associated square martingales are presented in
Section 4. We provide some applications of the inequalities for U-statistics of order two in Section 5.
We compute also the oscillation modulus of the martingales in this section. Finally, we have gathered
all the proofs in Section 6.

2 Notations

Let F = (Ft)t≥0 be a complete right-continous �ltration, N = (Nt)t≥0 be a F-adapted counting process
with a continuous compensator Λ = (Λt)t≥0. We assume that the jumps of N are totally inaccessible
and that N − Λ is a martingale with respect to the �ltration F .

We consider also H = (Hs)s≥0, a left-continuous adapted process of bounded variations, bounded
by the non-random real number ‖H‖∞,[c,d] on the interval [c, d], that is sups∈[c,d] |Hs| ≤ ‖H‖∞,[c,d]

almost surely. If c = 0 and T ≥ 0, ‖H‖∞,[0,T ] will be written ‖H‖∞,T for short. The non-random real

number ‖H‖2,[c,d] will stand for a bound of the L2 norm of H in L2(Λ([c, d])), that is
∫ d
c |Hu|2dΛu ≤

‖H‖22,[c,d] < +∞ almost surely.

Recall that for a stochastic process X, we de�ne [X]t by

[X]t =< Xc >t +
∑
s≤t
|∆Xs|2

where < Xc > is the quadratic variation of the continuous part of X and ∆Xs = Xs − Xs− is the
jump of X at s. We will use the fact that if X is a martingale and H is a predictable process satisfying
E[
∫∞

0 H2
sd[X]s] < +∞, then (

∫ t
0 HsdXs)t≥0 is a martingale (see [Bass, 2011, p.134]).

Recall also that for a C2 function f and a semi-martingale (Xt)t≥0, the Itô formula ([Bass, 2011,
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Theorem 17.10]) entails

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXs +

1

2

∫ t

0
f ′′(Xs−)d < Xc >s +

∑
s≤t

[f(Xs)− f(Xs−)− f ′(Xs−)∆Xs].

For f = exp and a semi-martingale X satisfying < Xc >≡ 0 and X0 = 0, this leads to

eXt = 1 +

∫ t

0
eXs−dXs +

∑
s≤t

eXs− [e∆Xs − 1−∆Xs]. (1)

Finally we de�ne for every n ≥ 1

Sn(X) = inf{t > 0, eXt− ≥ n}

with the convention inf ∅ = +∞. If (eXt−)t≥0 is a �nite left-continuous process, then Sn(X) is a
stopping time (see [Bass, 2010, Theorem 2.4]) satisfying lim

n→+∞
Sn(X) = +∞ almost surely.

3 Martingale properties

We consider in this section the three martingales M = (Mt)t≤T , M̃ = (M̃t)t≤T and
≈
M = (

≈
Mt)t≤T

de�ned for t ≤ T by

Mt =

∫ t

0
Hsd(Ns − Λs),

and the two double integrals with their compensator

M̃t = (

∫ t

0
Hsd(Ns − Λs))

2 −
∫ t

0
H2
sdNs

= M2
t −

∫ t

0
H2
sdNs

=

∫ t

0
2Ms−Hsd(Ns − Λs),

and

≈
Mt = (

∫ t

0
Hsd(Ns − Λs))

2 −
∫ t

0
H2
sdΛs

= M2
t −

∫ t

0
H2
sdΛs

=

∫ t

0
(2Ms−Hs +H2

s )d(Ns − Λs).

Our main goal is to establish in the next section some exponential inequalities for these three
martingales. We will use Cherno� bounds in order to do that, so we are �rst interested by the

exponential martingales associated with the three processes M, M̃ and
≈
M. We start �rst with the

process M in the following lemma, proving that the exponential of M is a local-martingale. We follow
the proof of Theorem VI.2 in Brémaud [1981] where the case of an absolutely continuous compensator
Λ is treated. We may also refer to Sokol and Hansen [2012] to �nd in that case some conditions on the
intensity and the counting process to obtain an exponential which is a martingale.

Lemma 1. Let Z be the process de�ned for a �xed real number λ and all t ≤ T by

Zt = λMt −
∫ t

0
(eλHs − 1− λHs)dΛs.

Then for every n ≥ 1, the process (exp(Zt∧Sn(Z)))t≤T is a martingale.
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Let us de�ne now for a > 0

Ta = inf
0<t≤T

{|Mt| > a}.

Since the jumps of N are totally inaccessible, Ta is a stopping time ([Bass, 2011, Proposition 16.3]).
The next lemma sets out a stopped exponential martingale associated with the martingale M̃.

Lemma 2. Let Z̃ be the process de�ned for a �xed real number λ and all t ≤ T by

Z̃t = λM̃t −
∫ t

0
(e2λHsMs − 1− 2λHsMs)dΛs.

For every positive a and every n ≥ 1, the process (exp(Z̃t∧Ta∧Sn(Z̃))t≤T is a martingale.

Finally we present the analogue of Lemma 2 for the martingale
≈
M.

Lemma 3. Let
≈
Z be the process de�ned for a �xed real number λ and all t ≤ T by

≈
Zt = λ

≈
Mt −

∫ t

0
(eλHs(Hs+2Ms) − 1− λHs(Hs + 2Ms))dΛs.

For every positive a and every n ≥ 1, the process (exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

))t≤T is a martingale.

4 Exponential inequalities

We have gathered in this section our main results, that is the exponential inequalities for the three

martingalesM , M̃ and
≈
M. The rates that appear in these inequalities are governed by the rate function

I de�ned for x ≥ 0 by
I(x) = (1 + x) log(1 + x)− x.

We start with a technical lemma that provides a useful inequality for the proofs of the main
theorems.

Lemma 4. Let It(H,λ) be de�ned for t ≥ 0 by
∫ t

0 (eλHs − 1 − λHs)dΛs. For t ≤ T and every real λ,
we get the almost sure inequality

|It(H,λ)| ≤
‖H‖22,T
‖H‖2∞,T

g(|λ|‖H‖∞,T ) (2)

where g(x) = ex − 1− x. Moreover the function g satis�es for every positive A,B and x

inf
λ>0

(Ag(Bx)− λx) = −AI(
x

AB
). (3)

We present now in Theorem 1 an inequality for the martingale M , with its two-sided version.

Theorem 1. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

Mt ≥ x) ≤ exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)) (4)

and

P( sup
0≤t≤T

|Mt| ≥ x) ≤ 2 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)). (5)
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Such exponential inequalities have already been obtained for martingales with bounded jumps in
Kallenberg [1997], Van De Geer [1995] or Reynaud-Bouret [2006]. In Kallenberg [1997], the bound is

of the form exp(− Ax2

1+Bx) for some constants A and B, and is available for a semi-martingale M such
that [M ]∞ ≤ 1 almost surely, which is not our case here. In Van De Geer [1995], the bound is of the
form A exp(−Bx) for some constants A and B and x large enough. Finally in Reynaud-Bouret [2006],
the inequality is of the form P(supt∈[0,T ] supaM

a
t ≥ A

√
x + Bx) ≤ exp(−x) for a countable family of

martingales (Ma
t )t≥0. Comparing to all these results, in the case of the large deviations, that is when

x tends to in�nity, we get a more acccurate tail namely in x log x instead of x. When x tends to zero,
these bounds are similar (up to constants), taking the form A exp(−Bx2).

The next Theorem deals with the square martingale M̃. The same inequality is obtained for −M̃ ,
leading to a two-sided inequality.

Theorem 2. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

M̃t ≥ x) ≤ 3 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)) (6)

and

P( sup
0≤t≤T

−M̃t ≥ x) ≤ 3 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)), (7)

thereby we have the following two-sided exponential inequality:

P( sup
0≤t≤T

|M̃t| ≥ x) ≤ 6 exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

√
x

2
)). (8)

If we compare (5) and (8), we can notice that the upper bound in (8) involves
√
x instead of x in

the inequality (5), leading to a sharper bound when x tends to zero, contrary to the case of the large

deviations. Finally the next Theorem 3 is the analogue of Theorem 2 for the martingale
≈
M.

Theorem 3. For every positive x and T , we have the following inequalities:

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ 3 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)) (9)

and

P( sup
0≤t≤T

−
≈
Mt ≥ x) ≤ 3 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)), (10)

thereby we have the following two-sided exponential inequality:

P( sup
0≤t≤T

|
≈
Mt| ≥ x) ≤ 6 exp(−

‖H‖22,T
‖H‖2∞,T

I(
‖H‖2∞,T
‖H‖22,T

√
1 + 8x/‖H‖2∞,T − 1

4
)). (11)

Comparing now (8) and (11), we observe thatM and
≈
M are behaving in the same way for x tending

to zero, while M̃ appears to be much more concentrated around its expectation. When x tends to
in�nity, (11) provide a similar bound (up to a constant) to (8), which is quite surprising in view of the

relationship
≈
M = M̃ +

∫
H2d(N −Λ). Moreover using this relationship, (5) with H2 instead of H, (8)

and x
2 , lead also to an exponential inequality but less sharp than (11) because ‖H‖42,T ≤ ‖H2‖22,T .
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5 Examples of applications

5.1 U-statistics of order two

The main hypothesis of the previous theorems is to suppose that the counting process N has a con-
tinuous compensator Λ, which is bounded in some spaces (as well as H) through the assumption
‖H‖2,T < +∞. If the process N admits an intensity λ, some mild assumptions on λ ensure the
continuity of the compensator Λ =

∫
λ(s)ds. This allows us to consider for instance Poisson, Cox

or Hawkes processes with a bounded intensity such that N − Λ is a martingale. As an exam-
ple, if the process ( 1

hE[Nt+h − Nt|Ft])h,t is uniformly bounded for h small enough, we know that
the F-intensity of N is bounded and N − Λ is a martingale because the intensity is obtained by
λ(t) = limh→0+

1
hE[Nt+h −Nt|Ft] almost surely (see formula (3.5) in Chapter 2 of Brémaud [1981]).

If N is a Poisson process, some sharp exponential inequalities have already been obtained in Houdré

and Reynaud-Bouret [2003] for double stochastic integrals of the form Zt =
∫ t

0

∫ y−
0 h(x, y)d(Nx −

Λx)d(Ny−Λy) where h is a bounded Borel function. The Poisson process N is viewed as a point process
(Ti)i≥1, so that Zt is the U -statistic of order two for the Poisson process: Zt =

∑
0≤Ti<Tj≤t h(Ti, Tj).

This allows to use the inequalities obtained for U -statistics after conditioning by the total random
number of points, leading to a similar inequality to the one in Giné et al. [2000].

Such exponential inequalities for U -statistics are very useful for statistical applications. For instance
the estimation of the L2 norm

∫
f2(x)dx of the density of i.i.d. random variables via selection model is

considered in Laurent [2005] and Fromont and Laurent [2006]. The estimator of a quadratic distance
is naturally a U -statistics of order two and the exponential inequality of Houdré and Reynaud-Bouret
[2003] is a main tool for the study of the property of the estimator. In the Poisson model too, as in
Fromont et al. [2011] where the homogeneity of a Poisson process is tested, the method is based on an
approximation of the L2-norm of the intensity of the Poisson process seen as a point process (Ti)i≥1

on the real line.
In the particular case where h is a stochastic kernel of the form h(x, y) = H(x)H(y), M̃ may be

written M̃t = 2Zt, i.e. it is a double stochastic integrals or a U -statistics of order two. Although we
are not limited to the Poisson case, by the Meyer theorem (see [Protter, 2005, page 104]), the jumps
of a Poisson process are totally inaccessible so that we may apply Theorem 2. Comparing to Giné
et al. [2000] or Houdré and Reynaud-Bouret [2003], where the supremum of (Zt)t≥0 is not considered,
the inequality (6) provide di�erent bounds for the large deviations (with an additional log x in our
inequality) as well as for the small deviations. Indeed in Giné et al. [2000] or Houdré and Reynaud-

Bouret [2003], the bound is of the form L exp(− 1
L min( x

1/2

A1/2 ,
x2/3

B2/3 ,
x
C ,

x2

D2 )) for some explicit constants
A, B, C, D and L.

5.2 Oscillation modulus control

The main theorems of the previous section provide also an upper bound for the oscillation modulus of
the three martingales. We consider then c, d and x three non-negative real numbers, and the counting
process N c

t = Nt+c −Nc whose compensator is Λt+c − Λc. The followong theorem gives upper bounds
for the oscillation modulus of the martingales M and M̃.

Theorem 4. For every non-negative x, c and d, we have the following inequality for the oscillation

modulus of M :

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥ x) ≤ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

2
)). (12)
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For the martingale M̃, we get the following exponential upper bound

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x) ≤ 10 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)), (13)

leading to the exponential inequality for the oscillation modulus of M̃ :

P( sup
(s,t)∈[c,d]2

|M̃t − M̃s| ≥ x) ≤ 10 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

16
))

+ 2 exp(−
‖H‖22,d
‖H‖2∞,d

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))

+ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
)). (14)

In view of Theorems 1 and 2, the previous inequalities show that considering the oscillation modulus
instead of the martingalesM and M̃ themselves does not a�ect the exponential bounds, except for the
constants. We obtain in Theorem 4 explicit constants with respect to the integrand H as well as the
interval [c, d], which may be useful for the applications.

6 Proofs

Proof of Lemma 1 The process Z is de�ned as λMt−
∫ t

0 (eλHs−1−λHs)dΛs where λ is a �xed real
number. Z is of bounded variations because H and M are of bounded variations, and the continuity
of Λ entails the equality ∆Zs = λHs∆Ns. We get then from (1) that

eZt = 1 +

∫ t

0
eZs−dZs +

∑
s≤t

eZs− [eλHs∆Ns − 1− λHs∆Ns]

= 1 +

∫ t

0
eZs− [λdMs − (eλHs − 1− λHs)dΛs] +

∫ t

0
eZs− (eλHs − 1− λHs)dNs

= 1 +

∫ t

0
eZs− (eλHs − 1)d(Ns − Λs).

For n ≥ 1, the stopping time Sn(Z) is de�ned by

Sn(Z) = inf{t > 0, eZt− ≥ n}.

Since eZt− is a �nite left-continuous process, limn→+∞ Sn(Z) = +∞ almost surely. Moreover, for every
t ≤ T,

eZt∧Sn(Z) = 1 +

∫ t

0
eZs− (eλHs − 1)1s≤Sn(Z)∧Td(Ns − Λs).

To conclude, the result follows from the inequality

E[

∫ ∞
0

e2Zs− (eλHs − 1)21s≤Sn(Z)∧TdNs] ≤ n2(eλ‖H‖∞,T + 1)2E[NT ] < +∞

7



Proof of Lemma 2 We proceed as in the proof of Lemma 1. The process Z̃ is de�ned as λM̃t −∫ t
0 (e2λHsMs − 1 − 2λHsMs)dΛs for a �xed real λ. Z̃ is of bounded variations because H and M are

of bounded variations too, and since Λ is continuous, we may compute ∆Z̃s = 2λHsMs−∆Ns. We get
from (1) that

eZ̃t = 1 +

∫ t

0
eZ̃s−dZ̃s +

∑
s≤t

eZ̃s− [e2λHsMs−∆Ns − 1− 2λHsMs−∆Ns]

= 1 + λ

∫ t

0
eZ̃s−dM̃s +

∫ t

0
eZ̃s− (e2λHsMs− − 1− 2λHsMs−)d(Ns − Λs)

= 1 +

∫ t

0
eZ̃s− (e2λHsMs− − 1)d(Ns − Λs)

and

e
Z̃t∧Ta∧Sn(Z̃) = 1 +

∫ t

0
eZ̃s− (e2λHsMs− − 1)1s≤Ta∧Sn(Z̃)d(Ns − Λs).

It remains to show that E[
∫ +∞

0 e2Z̃s− (e2λHsMs− − 1)21s≤T∧Ta∧Sn(Z̃)dNs] < +∞. For all s ≤ T ∧ Ta ∧
Sn(Z̃),

|2λHsMs− | ≤ 2|λ|‖H‖∞,T |Ms− | ≤ 2|λ|(a+ ‖H‖∞,T )‖H‖∞,T ,

(e2λHsMs− − 1)2 ≤ (e2|λ|(a+‖H‖∞,T )‖H‖∞,T + 1)2.

As a consequence, we obtain with the fact that e2Z̃s− ≤ n2 for s ≤ Sn(Z̃)

E[

∫ +∞

0
e2Zs− (e2λHsMs− − 1)21s≤T∧Ta∧Sn(Z̃)dNs] ≤ n2(e2|λ|(a+‖H‖∞,T )‖H‖∞,T + 1)2E[NT ] < +∞

Proof of Lemma 3 We follow the steps of the proof of Lemma 2, adapting the computations to this

case. The process
≈
Z is de�ned as λ

≈
Mt −

∫ t
0 (eλHs(Hs+2Ms) − 1 − λHs(Hs + 2Ms))dΛs for a �xed real

λ. The process
≈
Z is again of bounded variations because H and M are of bounded variations, and the

continuity of Λ entails the equality ∆
≈
Zs = λHs(Hs + 2Ms−)∆Ns. Then (1) yields

e
≈
Zt = 1 +

∫ t

0
e
≈
Zs−d

≈
Zs +

∑
s≤t

e
≈
Zs− [eλHs(Hs+2Ms− )∆Ns − 1− λHs(Hs + 2Ms−)∆Ns]

= 1 + λ

∫ t

0
e
≈
Zs−d

≈
Ms +

∫ t

0
e
≈
Zs− (eλHs(Hs+2Ms− ) − 1− λHs(Hs + 2Ms−))d(Ns − Λs)

= 1 +

∫ t

0
e
≈
Zs− (eλHs(Hs+2Ms− ) − 1)d(Ns − Λs)

and

exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

) = 1 +

∫ t

0
e
≈
Zs− (eλHs(Hs+2Ms− ) − 1)1

s≤Ta∧Sn(
≈
Z)
d(Ns − Λs).

The proof is complete showing that E[
∫ +∞

0 e2
≈
Zs− (eλHs(Hs+2Ms− ) − 1)21

s≤T∧Ta∧Sn(
≈
Z)
dNs] < +∞. For

all s ≤ T ∧ Ta ∧ Sn(
≈
Z),

|Hs(Hs + 2Ms−)| ≤ ‖H‖2∞,T + 2‖H‖∞,T |Ms− | ≤ ‖H‖2∞,T + 2(a+ ‖H‖∞,T )‖H‖∞,T ,

8



(eλHs(Hs+2Ms− ) − 1)2 ≤ (e|λ|(‖H‖
2
∞,T +2(a+‖H‖∞,T )‖H‖∞,T ) + 1)2.

Combining with the inequality e2
≈
Zs− ≤ n2, this entails

E[

+∞∫
0

e2
≈
Zs− (eλHs(Hs+2Ms− )−1)21

s≤T∧Ta∧Sn(
≈
Z)
dNs] ≤ n2(e|λ|(‖H‖

2
∞,T +2(a+‖H‖∞,T )‖H‖∞,T )+1)2E[NT ] < +∞

Proof of Lemma 4 Let s ≤ t ≤ T and λ ∈ R. We use the following inequality:

∣∣∣eλHs − 1− λHs

∣∣∣ =

∣∣∣∣∣∣
∑
j≥2

(λHs)
j

j!

∣∣∣∣∣∣
=

∣∣∣∣∣∣(λHs)
2

2!
+H2

s

∑
j≥3

λjHj−2
s

j!

∣∣∣∣∣∣
≤ (|λ|Hs)

2

2!
+H2

s

∑
j≥3

|λ|j‖H‖j−2
∞,T

j!

= H2
s (
λ2

2
+

1

‖H‖2∞,T

∑
j≥3

|λ|j‖H‖j∞,T
j!

),

that is ∣∣∣eλHs − 1− λHs

∣∣∣ ≤ H2
s

‖H‖2∞,T

∑
j≥2

|λ|j‖H‖j∞,T
j!

. (15)

Integrating with respect to dΛs we obtain

|It(H,λ)| ≤
‖H‖22,T
‖H‖2∞,T

g(|λ|‖H‖∞,T )

where g(x) = ex − 1 − x. For the proof of (3), consider the function h de�ned for λ > 0 by
h(λ) = Ag(Bλ) − λx. Since h′(λ) = AB(eBλ − 1) − x, we get that the minimum of h is reached for
λ = 1

B log(1 + x
AB ) =: λ0 and h(λ0) = −AI( x

AB )

Proof of Theorem 1 Recall that It(H,λ) is de�ned by
∫ t

0 (eλHs − 1 − λHs)dΛs. We de�ne the
process Z as in Lemma 1 by Zt = λMt− It(H,λ) and for n ≥ 1, the stopping time Sn(Z) is de�ned by
Sn(Z) = inf{t > 0, eZt− ≥ n}. Since (Sn(Z))n≥1 is a non-decreasing sequence of stopping times with

lim
n→+∞

Sn(Z) = +∞ almost surely, we get by monotony

P( sup
0≤t≤T

Mt ≥ x) = lim
n→+∞

P( sup
0≤t≤T∧Sn(Z)

Mt ≥ x) = sup
n≥1

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x).

Using Lemma 4 (2), we obtain for all λ > 0, x > 0 and n ≥ 1,

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x) = P( sup
0≤t≤T

eλMt∧Sn(Z)−It∧Sn(Z)(H,λ)+It∧Sn(Z)(H,λ) ≥ eλx)

≤ P(e

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )

sup
0≤t≤T

eZt∧Sn(Z) ≥ eλx).

9



Doob's maximal inequality and Lemma 1 then lead to

P( sup
0≤t≤T

Mt∧Sn(Z) ≥ x) ≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )− λx)

for every λ > 0 with g(x) = ex − 1− x, so taking the limit in n and the in�mum in λ, we get by (3)

P( sup
0≤t≤T

Mt ≥ x) ≤ inf
λ>0

exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T )− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x))

that is (4). Applying this inequality with −H instead of H, we obtain also

P( sup
0≤t≤T

−Mt ≥ x) ≤ exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T
‖H‖22,T

x)).

Then (5) follows from the inequality

P( sup
0≤t≤T

|Mt| ≥ x) ≤ P( sup
0≤t≤T

Mt ≥ x) + P( sup
0≤t≤T

−Mt ≥ x)

Proof of Theorem 2 Let us begin with the proof of (6). We de�ne Z̃ as in Lemma 2 by Z̃t =
λM̃t − It(2HM,λ), thereby (Sn(Z̃))n≥1 is a sequence of non-decreasing stopping times such that

lim
n→+∞

Sn(Z̃) = +∞ almost surely. We proceed then as in the proof of Theorem 1. For all positive λ,

a and x

P( sup
0≤t≤T

M̃t ≥ x) = sup
n≥1

P( sup
0≤t≤T

M̃t∧Sn(Z̃) ≥ x) (16)

≤ P(Ta < T ) + sup
n≥1

P( sup
0≤t≤T

M̃t∧Ta∧Sn(Z̃) ≥ x ∩ Ta ≥ T )

≤ P( sup
0≤t≤T

|Mt| ≥ a) + sup
n≥1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx). (17)

Using the inequality (15), we get for t ≤ T and λ > 0

It∧Ta∧Sn(Z̃)(2HM,λ) =

∫ t∧Ta∧Sn(Z̃)

0
(e2λHsMs − 1− 2λHsMs)dΛs ≤

‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T ).

Since Ta is a bounded stopping time, Lemma 2 and Doob's maximal inequality yield for every λ > 0
and n ≥ 1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ P( sup

0≤t≤T
e
Z̃t∧Ta∧Sn(Z̃) ≥ e

λx−
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )− λx)

10



whereby

sup
n≥1

P( sup
0≤t≤T

e
λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ inf

λ>0
exp(

‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

2a‖H‖22,T
x))

thanks to (3). Coming back to the inequality (17), Theorem 1 then entail for every a > 0,

P( sup
0≤t≤T

M̃t ≥ x) ≤ 2e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖2
2,T

a)

+ e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

2a‖H‖2
2,T

x)

.

We choose a =
√

x
2 in order to obtain (6). For the proof of (7), we consider Z̃t = −λM̃t−It(2HM,−λ)

for λ > 0. We get similarly, thanks to Lemma 4 and Lemma 2

P( sup
0≤t≤T

e
−λM̃t∧Ta∧Sn(Z̃) ≥ eλx) ≤ P( sup

0≤t≤T
e
Z̃t∧Ta∧Sn(Z̃) ≥ e

λx−
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞)

) ≤ e
‖H‖22,T
‖H‖2∞,T

g(2λa‖H‖∞,T )−λx

and the end of the proof is similar to the one of (6). To conclude, (8) follows from the inequality

P( sup
0≤t≤T

|M̃t| ≥ x) ≤ P( sup
0≤t≤T

M̃t ≥ x) + P( sup
0≤t≤T

−M̃t ≥ x)

Proof of Theorem 3 This proof is similar to the one of Theorem 2. Let us begin showing the

inequality (9). We introduce
≈
Z as in Lemma 3 with

≈
Zt = λ

≈
Mt − It(H(H + 2M), λ) and its associated

sequence of stopping times Sn(
≈
Z) to obtain for all positive a, λ and x

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ P( sup

0≤t≤T
|Mt| ≥ a) + sup

n≥1
P( sup

0≤t≤T
exp(λ

≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx). (18)

Using the inequality (15), we get for t ≤ T and λ > 0

∫ t∧Ta∧Sn(
≈
Z)

0
(eλHs(Hs+2Ms) − 1− λHs(Hs + 2Ms))dΛs ≤

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a)).

Then Lemma 3 and Doob's maximal inequality yield for every λ > 0 and n ≥ 1

P( sup
0≤t≤T

exp(λ
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ P( sup
0≤t≤T

exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

) ≥ e
λx−

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T +2a))

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx).

As a consequence

sup
n≥1

P( sup
0≤t≤T

exp(
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ inf
λ>0

exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx)

= exp(−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖22,T (2a+ ‖H‖∞,T )
x)).
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thanks to (3). The inequality (18) and Theorem 1 then entail for every a > 0,

P( sup
0≤t≤T

≈
Mt ≥ x) ≤ 2e

−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖22
a)

+ e
−
‖H‖22,T
‖H‖2∞,T

I(
‖H‖∞,T

‖H‖2
2,T

(2a+‖H‖∞,T )
x)

.

We choose a = x
2a+‖H‖∞,T

i.e. a =
−‖H‖∞,T +

√
‖H‖2∞,T +8x

4 in order to get (9). For the proof of (10), let
≈
Z be de�ned by

≈
Zt = −λ

≈
Mt − It(H(H + 2M),−λ) for λ > 0. We obtain similarly with Lemma 4 and

Lemma 3

P( sup
0≤t≤T

exp(−λ
≈
M
t∧Ta∧Sn(

≈
Z)

) ≥ eλx) ≤ P( sup
0≤t≤T

exp(
≈
Z
t∧Ta∧Sn(

≈
Z)

) ≥ e
λx−

‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T +2a))

)

≤ exp(
‖H‖22,T
‖H‖2∞,T

g(λ‖H‖∞,T (‖H‖∞,T + 2a))− λx)

and the end of the proof is similar to the one of (9). To conclude, (11) also comes from the inequality

P( sup
0≤t≤T

|
≈
Mt| ≥ x) ≤ P( sup

0≤t≤T

≈
Mt ≥ x) + P( sup

0≤t≤T
−
≈
Mt ≥ x)

Proof of Theorem 4 Let us prove (12) �rst. We use the relationship Mt −Ms =
∫ t
c Hu(dNu −

Λu)−
∫ s
c Hu(dNu − Λu) to get

sup
(s,t)∈[c,d]

|Mt −Ms| ≤ 2 sup
t∈[c,d]

|
∫ t

c
Hu(dNu − Λu)|

= 2 sup
t∈[0,d−c]

∣∣∣∣∫ t

0
Hu+c(dN

c
u − dΛcu)

∣∣∣∣ .

Since N c satis�es the same assumptions than N, we may apply (5) with N c, Λc and the process
u 7→ Hu+c in order to obtain

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥ x) ≤ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

2
)),

that is (12). Let us prove (13) now. We shall consider the following relationship

(

∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu = M̃ c

t − M̃ c
s − 2(Mt −Ms)

∫ s

c
Hu(Nu − Λu)

where M̃ c
t = (

∫ t
c Hud(Nu −Λu))2 −

∫ t
c H

2
udΛu = (

∫ t−c
0 Hu+cd(N c

u −Λcu))2 −
∫ t−c

0 H2
u+cdΛcu. This yields

for a > 0

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x)

≤ P(2 sup
t∈[c,d]

|M̃ c
t | ≥

x

2
) + P( sup

s∈[c,d]
|
∫ s

c
Hu(Nu − Λu)| ≥ a) + P( sup

(s,t)∈[c,d]2
|Mt −Ms| ≥

x

4a
).

We get then from (8), (5) and (12)

12



P(2 sup
t∈[c,d]

|M̃ c
t | ≥

x

2
) ≤ 6 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)),

P( sup
s∈[c,d]

|
∫ s

c
Hu(Nu − Λu)| ≥ a) ≤ 2 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

a))

and

P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥
x

4a
) ≤ 2 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

x

8a
)).

If we choose a =
√

x
8 , we obtain

P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥ x) ≤ 10 exp(−

‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

8
)), (19)

that is (13). To conclude with the oscillation modulus of M̃ , we may use similarly

M̃t − M̃s = (

∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu + 2(Mt −Ms)Ms

and

P( sup
(s,t)∈[c,d]

|M̃t − M̃s| ≥ x) ≤ P( sup
(s,t)∈[c,d]2

|(
∫ t

s
Hud(Nu − Λu))2 −

∫ t

s
H2
udNu| ≥

x

2
)

+ P( sup
s∈[0,d]

|Ms| ≥ a) + P( sup
(s,t)∈[c,d]2

|Mt −Ms| ≥
x

4a
).

Using (13)), (5), (12) and choosing a =

√
x
8

‖H‖∞,[c,d]

‖H‖∞,d

‖H‖2,d
‖H‖2,[c,d]

we get

P( sup
(s,t)∈[c,d]

|M̃t − M̃s| ≥ x) ≤ 10 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(
‖H‖∞,[c,d]

‖H‖22,[c,d]

√
x

16
))

+ 2 exp(−
‖H‖22,d
‖H‖2∞,d

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))

+ 2 exp(−
‖H‖22,[c,d]

‖H‖2∞,[c,d]

I(

√
‖H‖∞,[c,d]‖H‖∞,d
‖H‖2,d‖H‖2,[c,d]

√
x

8
))
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