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Abstract Needles are tools that are used daily during min-
imally invasive procedures. During the insertions needles
may be affected by deformations which may threaten the
success of the procedure. To tackle this problem, needles
with embedded strain sensors have been developed and asso-
ciated with navigation systems. The localization of the nee-
dle in the tissues is then obtained in real-time by reconstruc-
tion from the strain measurements, allowing the physician to
optimize its gesture. As the number of strain sensors embed-
ded is limited in number, their positions on the needle have
a great impact on the accuracy of the shape reconstruction.
The main contribution of this paper is a novel strain sensor
positioning method to improve the reconstruction accuracy.
A notable feature of our method is the use of experimental
needle insertion data, which increases the relevancy of the
resulting sensor optimal locations. To the best of author’s
knowledge no experimentally-based needle sensor position-
ing method has been presented yet. Reconstruction valida-
tions from clinical data show that the localization accuracy
of the needle tip is improved by almost 40% with optimal lo-
cations compared to equidistant locations when reconstruct-
ing with two sensor triplets or more.
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1 Introduction

Needles are tools daily used during minimally invasive pro-
cedures, such as in brachitherapy and biopsies [29]. These
therapeutic gestures require to guide the needle to a target
located in the patient body. To achieve this goal, physicians
need to visualize the needle’s position in real-time in the
tissue. Different navigation systems have been thus devel-
oped to locate the needle in the tissue such as intraoperative
systems using ultrasound or computed tomography. These
systems have some drawbacks such as low precision or ir-
radiations. To overcome these issues, some navigation sys-
tems use preoperative images of the patient associated with
spatial registration of the needle to localize the needle in the
patient tissue [41]. Most of these systems use the hypothesis
that the needle remains straight during the insertion. Unfor-
tunately the needle may bend during the insertion because
of its interaction with the tissues. Experimental insertions
in phantom models using 18 gauge 200 mm needles have
shown that tip deflection can be as high as 2.8 mm for a 6
cm insertion [46] and 12 mm for a 10 cm insertion [32]. In
this case, the hypothesis of a straight needle can have con-
sequences such as attaining an undesired area of the tissues,
leading to negative therapeutic results. Thus, in order to pro-
vide the deformed shape of the needle to the physicians us-
ing those systems, needle with embedded strain sensors have
been developed. The goal is to increase the accuracy of the
positioning of the needle in the tissues in order to improve
the therapeutic results.

Instrumenting needle with strain sensors was first intro-
duced by Park et al. [31] using Fiber Bragg gratings embed-
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ded on the needles to retrieve strain informations and use
them to reconstruct the deformed shape. Since then, needle
instrumented with strain sensors has been an intense topic
of research with works by Henken et al. [16, 17], Abayazid
et al. [1], Seifabadi et al. [42] or Roesthuis et al. [39, 40].
One of the most crucial aspect of the works is the accuracy
of reconstruction of the needle deformed shape. As the tech-
nical limitations restricts the number of locations measures
on the needle, the main problem consists in reconstructing
a full deformed needle shape with only few strain measure-
ments. Two aspects who play a crucial role in the recon-
struction accuracy along the sensor sensibility are the needle
shape reconstruction method and the locations of the sensors
measures on the needle. Different reconstruction methods
have been proposed for needles depending on the hypothe-
sis made on the deformed needle shape during the insertion.
The small displacement methods based on Euler-Bernoulli
beam theory and presented in Park et al. [31], Abayazid et
al. [1] and Seifabadi et al. will be used when the tip deflec-
tion of the needle is small whereas the other reconstruction
methods proposed by Moon et al. [28], Roesthuis et al. [39]
and Henken et al. [17] can be used otherwise. This problem
of reconstruction, known as beam shape sensing, has also
been investigated by using 3D beam model such as Todd et
al. [45] in the general case or by Xu et al. [50] in the field of
robotic.

The problem of sensor positioning has been adressed
by Kim et al. [20] and Mahoney et al. [26] for continuum
robots and by Park et al. [31] and Seifabadi et al. for nee-
dles. In Kim et al. the curvature sensors are placed to min-
imize the reconstruction error of the shape which is rep-
resented as a linear combination of spatial functions. The
spatial functions are determined from actual robot config-
urations. Mahoney et al. [26] generalized this method to
other sensor types by using an information theoretic view-
point and demonstrated that shape reconstruction and sensor
placement are coupled problems, involving that the sensor
optimal locations are dependant of the shape reconstruction
method. Concerning the best sensor locations on a needle,
Park et al. [31] and Seifabadi et al. [42] have both proposed
a method which is based on the minimization of the recon-
struction error of a reference set of deformed needles. This
reference set of needles is constituted of 2D shapes of nee-
dles built from a force model using Euler-Bernoulli beam
theory. The best sensor locations computed with this method
are thus restricted to small tip deflections and plane defor-
mations only. Moreover, because they are built from force
models, the representativeness of the reference needles is
not guaranteed therefore compromising the relevancy of the
sensor positions.

As in the works of Park et al. [31] and Seifabadi et al.
[42], the sensor positioning method proposed in this paper
is based on the minimization of the reconstruction error of

a reference needle set. But on the contrary of these two ex-
isting methods, the reference needle set is not built from ar-
bitrary deformed needles using a force model but is based
on actual configurations as suggested by Kim et al. [20] and
Mahoney et al. [26] and consists instead of real deformed
needles coming from medical images of experimental nee-
dle insertions. The reference needles is thus composed of
3D deformed needles shapes obtained by segmentation and
smoothing from CT scans of needle insertions which are
then used in combination with the beam model to obtain
simulated strain measures. Our sensor positioning method
is not then limited to 2D or small deflection deformations.
It is believed that this approach increases the representative-
ness of the reference needle set and therefore more valuable
sensor location resulting in a higher gain of reconstruction
accuracy. The validation of these results from reconstruc-
tion simulations with clinical images of needle insertions
shows that the mean accuracy is 40% better with the result-
ing sensor locations than with equidistant locations when
reconstructing with two sensor triplets or more. To the best
of our knowledge, no experimentally-based needle sensor
positioning method has been presented yet.

Section 2 presents the medical images of needle inser-
tions used in this article. Section 3 consider deflection hy-
pothesis and their consequences on the accuracy of the nee-
dle shape reconstruction. Section 4 introduces the needle
shape reconstruction method and the strain sensor position-
ing method. Results of optimal sensor location results are
presented and validated in Section 5. Finally, discussion and
conclusion of our method are proposed in Section 6 and Sec-
tion 7.

2 Material

This section presents the two sets of medical images of nee-
dle insertions used in this study.

2.1 Experimental Needle Insertions

The first dataset is composed of 54 CT scans of experi-
mental needle insertions into pig shoulder carried out by
Robert et al. [37]. The needle insertions were performed on
a fresh pig shoulder (approximate size: 300 mm × 200 mm
× 100 mm) prepared in a plastic tray. The needles used for
the insertions were stainless steel 22 gauge 200 mm long
needles, standardly used in interventional radiology, with
an estimated Young’s modulus of 200 GPa. The choice of
porcine tissue was driven by its extensive use in needle in-
sertions experiments where it gives good performance as a
substitute for human tissue [18, 48, 19, 44]. As Ng et al.
[30] point out, ”the best replica closest to human tissue is



Optimized Needle Shape Reconstruction Using Experimentally-Based Strain Sensors Positioning 3

Fig. 1 Histogram of the tip deflection of the needles com-
ing from the experimental needle insertions.

the use of porcine tissue from specific portion of the ani-
mals” ([30], p.187) and according to Brett et al. ”models de-
veloped from porcine data will correlate with human speci-
mens” ([7], p.341). Shoulder had been chosen for the pres-
ence of tendons, muscles and bones. The use of a such com-
plex environment of insertion is driven by the necessity to
provide the most complete range of needle deformations as
possible [37]. A CT scan acquisition of the whole tissue vol-
ume was performed after each insertion. The insertions, as
described in Robert et al. [37], have been performed using
different characteristics every time (rotation, efforts, etc...),
purposely obtaining the widest range of deformations pos-
sible to increase the representativity of the constituted set.
The average tip deflection is 9 mm and the maximum tip de-
flection is 23 mm. The histogram of the tip deflection of the
needles is presented in Fig. 1.

2.2 Clinical Needle Insertions

The second dataset is composed of 10 CT scans of a clin-
ical trial performed at Grenoble-Alpes University Hospital,
France. Different interventional radiology procedures were
performed such as biopsies and injections. These CT scans
were selected on the basis of needle characteristics criteria
such as length, gauge and material. All the clinical CT scans
used in this works thus features insertions using 22 gauges
200 mm stainless steel needles. On the opposite of the pre-
vious CT scans set presented in Section 2.1, the characteris-
tics of the insertions of the needles are unknown. This clini-
cal trial received the authorization of the ANSM, the French
Agency for the Safety of Health Products, and the Comité de
Protection des Personnes Sud Est V, the regional authority
for human research protocols (ClinicalTrials.gov Identifier:
NCT00828893). With an average of 5 mm and a maximum

Fig. 2 Histogram of the tip deflection of the needles com-
ing from the clinical needle insertions.

of 11 mm the deflections of the needle tip are smaller than
in the case of the experimental needle insertions.

3 Small deflection vs large deflection hypothesis:
consequences on the needle shape reconstruction
accuracy

The main contributions of this paper is a needle shape re-
construction method covering 3D deformations and large
deflections and a strain sensor positioning method based
on experimental data. The needle deflection is the distance
at any of its point from its reference straight configuration
when subjected to deformation. The deflections are usually
considered large when the deflection is higher than 10% of
the beam length and are considered small otherwise. Large
deflections are not always taken into account when recon-
structing deformed needle shapes such as in Park et al. [31],
Abayazid et al. [1] and Seifabadi et al. [42]. The impact of
the small displacement hypothesis on the beam shape recon-
struction will be evaluated here by considering the distance
between the tips of needle shapes reconstructed with small-
displacement and large-displacement hypothesis. For sim-
plification purposes only cases of 2D bending deformations
will be considered. An initial straight beam of length L will
be considered with 2D coordinates being noted (x,y(x)). In
the reference configuration the beam is undeformed and thus
parallel to the x-axis: y(x) = 0. The expression of the curva-
ture of the beam in the deformed configuration is noted κ

and is defined as follows:

y′′(x)

(1+ y′2(x))3/2 = κ(x) (1)

which gives by integration:

y′(x)√
1+ y′2(x)

=
∫ x

0
κ(u)du (2)
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Table 1 Tip error of needle shape reconstructions with small displacement beam theory.

Needle characteristics Deformed needle shape tips comparison
L (mm) Y (L) (mm) Y (L)/L (%) ∆x(L) (mm) ∆y(L) (mm) d(L) (mm) d(L)/Y (L) (%)

100 12 12 % 0.87 0.03 0.87 8 %
200 11 6 % 0.36 0.01 0.36 4 %
200 23 12 % 1.59 0.04 1.61 7 %

The beam coordinates (x,y(x)) are parameterized by the ar-
clength s and noted (x(s),y(x(s))). As only bending is con-
sidered, the beam length is supposed to remain constant dur-
ing the deformation and the abscissa x(s) of the beam at the
arclength value s is then:

x(s) = x0 ∈ R / s =
∫ x0

0

√
1+ y′(x)2dx (3)

Using (2) and (3) we then have the following expression of
the coordinate y(x(s)) of the beam [27]:

y(x(s)) =
∫ x(s)

0

∫ v
0 κ(u)du√

1− (
∫ v

0 κ(u)du)2
dv (4)

The coordinates of the beam given by the linear Euler-
Bernoulli beam theory using the small displacement hypoth-
esis will be noted (x̃, ỹ(x̃)). Under the small displacement
hypothesis the value of the term y′2 in (1) is neglected and
the expression of the curvature is then:

ỹ
′′
(x̃) = κ(x̃) (5)

The beam coordinates (x̃, ỹ(x̃)) are parameterized by the ar-
clength s and noted (x̃(s), ỹ(x̃(s))). Under the hypothesis of
small displacement the coordinate x̃(s) of the beam is:

x̃(s) = s (6)

Using (5) and (6) we then have the following expression of
the coordinate ỹ(x̃(s)) of the beam:

ỹ(x̃(s)) =
∫ s

0

∫ v

0
κ(u)dudv (7)

Consequently, the linear Euler-Bernoulli beam model with
small displacement include one approximation for each of
the coordinates. Firstly, as shown in (6), the expression of
x̃(s) remains constant during the deformation and thus does
not take into account the deformation of the beam. Secondly,
as shown in (5) and then in (7) the curvature is approximated
which gives a simplified expression of the coordinate ỹ(s).

The distance d at arclength s between the beam shapes
(x(s),y(x(s))) and (x̃(s), ỹ(x̃(s))) is:

d(s) =
√

∆ 2
x (s)+∆ 2

y (s) (8)

with:

∆x(s) = x(s)− x̃(s) (9)

∆y(s) = y(x(s))− ỹ(x̃(s)) (10)

The expression of the distance d between the two recon-
structed shapes depends obviously of the needle curvature
κ . In order to obtain a realistic evaluation of what the maxi-
mum impact of the small displacement hypothesis can be on
the needle shape reconstruction, the distance d will be eval-
uated with curvature functions obtained from real deformed
needles characteristics. Two large deflections and one small
deflection needle deformations have thus been used to this
end: the 12 mm deflection of a 100 mm needle presented
in [32], the 23 mm deflection of a 200 mm needle coming
from experimental needle insertions presented in Section 2.1
and the 11 mm deflection of a 200 mm needle coming from
clinical neede insertions presented in Section 2.2. This char-
acteristics of length and deflection are then used with 2D
linear beam theory to obtain plausible curvatures of bend-
ing beams satisfying those characteristics. The distance be-
tween the two reconstructed end shapes d(L) constitute the
tip error of reconstruction and is presented for each of the
deformations in Table 1. According to the results, the rel-
ative tip errors d(L) appear to be mainly influenced by the
coefficient ∆x(L) and to be higher for large displacement de-
formations (7% and 8%) than for small displacement defor-
mations (4%). This means that the assumption made in (6)
concerning the abscissa of the beam is the main factor of in-
accuracy of Euler-Bernoulli beam theory for reconstructing
needles subjected to simple bending and that the higher the
tip deflection is, the higher the relative tip error of recon-
struction will be. As results show, taking into account large
displacement thus helps to improve the reconstruction accu-
racy in both cases of small and large deflections. The goal of
this article being to improve the needle shape reconstruction
accuracy by positioning strain sensors optimally, using large
displacement beam theory will first of all improve the accu-
racy of the method of reconstruction of the needle shape.

The estimation of optimal sensor locations from ex-
perimental needle data requires strain computations of de-
formed needle shapes, hence the need to adopt a beam model
including the material configuration of the beam. One of
the most convenient way to handle material configuration
was proposed by Cosserat [9] and consists in attaching a
frame to each particle in the continuum. This parameteri-
zation was used by Reissner [35] to develop a 1D contin-
uum large displacement 3D beam theory extending previous
works of Kirchhoff [21] and Love [24]. The Cosserat 1D
continuum parameterization associated with the large dis-
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placement modeling makes the Reissner beam theory per-
fectly designed to handle needle structures undergoing large
deflections which might occur during needle insertions. The
sensor positioning method proposed in this paper uses the
frame parametrization of the beam to formulate a differen-
tial system expressing the deformation of the material frame
of the needle in terms of strain configuration. This system is
one of novelty of this work and the key element of both re-
construction process and optimal sensor positioning. In fact,
its resolution provides a comprehensive shape reconstruc-
tion as an iterative method to obtain the shape of the needle
from the strain measurements of the sensors. Conversely, as-
sociated with curve framing the system is used in the sensor
positioning method to obtain the material frame of a needle
from a given needle shape and simulate the measurements
of the strain sensors.

4 Methods

4.1 3D Needle Shape Reconstruction for Large Deflections

This section addresses the problem of reconstructing the
shape of a needle using the data from its embedded strain
sensors. First of all, the strain measures are acquired from
the strain sensors and processed to retrieve the curvature and
the bending angle, two geometrical functions characterizing
the 3D deformation. The beam theory is then used to build
a linear matrix differential system accounting of the needle
deformation in terms of those two functions. This system is
solved using a method of resolution for differential equation
on a Lie algebra. Finally, an iterative scheme of reconstruc-
tion for the needle shape is then presented.

4.1.1 Needle Curvature and Bending Angle

In most articles dealing with needles with embedded strain
sensors located at the surface of the needle, the sensors are
oriented parallel to the needle to measure the axial strain and
placed on needle cross sections by groups of three with a 120
degrees angle between them [39, 1, 31, 16, 42], as shown in
Fig. 3. This orientation and distribution will be used in the
rest of this paper for each cross sections where sensors are
placed and will be called sensor triplets.

The deformation of a circular beam is presented in Fig.
4. The beam radius is noted r0 and the cross section is de-
fined by the intersection of the section plane Ps with the
beam. The sensor triplet located on the cross section is com-
posed of strain sensors S1, S2 and S3 whose respective local
strain measures are ε1, ε2 and ε3. The intersection between
the section plane Ps and the beam neutral axis is denoted O.
The curvature of the beam neutral axis at point O is denoted
κ . The beam deformation is characterized by the plane of
bending Pb which contains C, the center of the osculating

Fig. 3 Sensor triplets composed of strain sensors S1, S2,
S3 placed on a needle cross section with a 120 degrees angle
between them.

circle to the beam neutral axis at point O. The points of cross
section with maximum and minimum strains are denoted re-
spectively εmax and −εmax. The angle between the sensor S1
and the point εmax is called the bending angle and is denoted
θ . For linear elastic deformations, it is possible to express
the local strain measures εi in terms of curvature κ , bending
angle θ and bias due to other deformations than bending δ

[39, 1, 16]:
ε1 = r0κ cos(θ)+δ

ε2 = r0κ cos(θ − 2π

3 )+δ

ε3 = r0κ cos(θ − 4π

3 )+δ

(11)

By solving the set of equations (11) the parameters κ , θ

and δ are determined:

κ =
1

3r0

√
2
(
(ε1− ε2)

2 +(ε2− ε3)
2 +(ε1− ε3)

2
)
(12)

cos(θ) =
2ε1− ε2− ε3√

2
(
(ε1− ε2)

2 +(ε2− ε3)
2 +(ε1− ε3)

2
) (13)

sin(θ) =

√
3(ε2− ε3)√

2
(
(ε1− ε2)

2 +(ε2− ε3)
2 +(ε1− ε3)

2
) (14)

δ =
ε1 + ε2 + ε3

3
(15)

Considering a needle instrumented with n strain sen-
sor triplets, the curvature and the bending angle values at
the location si of the ith triplet are noted respectively κi
and θi. The estimate of curvature κest and the estimate of
bending angle θest can be obtained by interpolations of the
sets (κi)i=1,..,n and (θi)i=1,..,n over [0,L] with the following
boundary counditions:

κest(L) = 0 (16)

θest(0) = 0 (17)
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Fig. 4 (a) Deformation of a beam element. The section plane is denoted Ps and contains the sensor triplets (S1,S2,S3).
The plane of bending is denoted Pb and contains C the center of the osculating circle to the beam neutral axis at point O.
(b) Diagram of the plane of bending Pb. The radius of curvature is denoted R. The points of cross section with maximum
and minimum strains are denoted respectively εmax and −εmax.
(c) Diagram of the section plane Ps. The angle θ is called the bending angle and is defined as the angle between S1 and
εmax.

Condition from (16) reflects that curvature of the needle is
null at the distal extremity due to the absence of bending
moment there whereas condition from (17) is used to give
an initial value of bending angle. The method of interpo-
lation used is linear interpolation with the following initial
conditions:

κest(0) = κ1 (18)

θest(L) = θn (19)

4.1.2 Needle Deformation Model

The needle is modeled at its initial state by a cylindrical
straight beam of radius r0 and length L. The needle be-
ing composed of isotropic material and its section being
symmetric, the set of the centers of all the sections of the
beam composes the neutral axis. Needle deformations due
to shearing, tension and compression are neglected during
insertions into tissue. The position of the beam neutral axis
at length s is denoted r(s) in the reference configuration and
R(s) in the current configuration. The convected coordinates
of the beam, which are embedded in the material and de-
form along with the material [34], are defined in the refer-
ence configuration by the orthonormal frame (t,n1,n2) with
t tangent to the neutral axis r:

t = r′ (20)

and such that:

t = e1, n1 = e2, n2 = e3 (21)

with (e1,e2,e3) being the canonical basis of R3 as illustrated
in Fig. 5a. The sensor triplets are placed on beam sections
such that vectors e2 are directed at sensors S1. The convected
coordinates are defined in the current configuration by the
orthonormal frame (T,N1,N2) as shown in Fig. 5b. As a
consequence of (20) we then have:

T = R′ (22)

The differentiation of (T,N1,N2) gives the following linear
differential system [35]: T

N1
N2


′

= Ω

 T
N1
N2

 (23)

with

Ω =

 0 κ1 κ2
−κ1 0 κt
−κ2 −κt 0

 (24)

The components of Ω are the torsion factor κt and the bend-
ing factors κ1 and κ2. During the insertion the mechanical
torsion of the needle can be ignored because of the geometry
of the needle, its mechanical properties and its interactions
with the tissues, thus [1, 31]:

κt = 0 (25)

The components of Ω can be expressed in terms of curva-
ture κ and bending angle θ using the Serret-Frenet frame
(T,N,B) of the curve R. The vector T is the tangent vec-
tor and is shared by the Frenet-Serret frame and the con-
vected coordinates. The vector N is the normal vector and is
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(a)

(b)

Fig. 5 (a) Needle convected coordinates before deforma-
tion (e1,e2,e3). The sensor triplet (S1,S2,S3) belongs to the
plane (e2,e3).
(b) Needle convected coordinates after deformation
(T,N1,N2). The sensor triplet (S1,S2,S3) belongs to the
plane (N1,N2). The normal vector N is included in the plane
of bending, directed towards the center of the osculating
plane and is obtained with the rotation of N1 by an angle θ .

directed towards the center of the osculating circle and the
vector B is the binomial vector. The derivative of (T,N,B)
can be expressed with the curvature κ and the mathematical
torsion τ:

T
N
B


′

=

 0 κ 0
−κ 0 τ

0 −τ 0

T
N
B

 (26)

Because T is a shared vector of both orthonormal
frames, the convected coordinates (T,N1,N2) can be ob-
tained from the Serret-Frenet frame (T,N,B) by a rotation
of axis T [12]. Thus the rotation angle transforms the vector
N to the vector N1 and the vector B to the vector N2. As N is
included in the plane of bending and N1 is directed towards
the sensor S1 (Fig. 5b) the angle of rotation between the two
frames is the previously defined bending angle θ . We then
have the following relation:

 T
N1
N2

=

1 0 0
0 cosθ sinθ

0 −sinθ cosθ

T
N
B

 (27)

The differentiation of (27) associated with (26) leads to the
following expression: T

N1
N2


′

=

 0 κ 0
−κcosθ −(θ ′+ τ)sinθ (θ ′+ τ)cosθ

κsinθ −(θ ′+ τ)cosθ (θ ′+ τ)sinθ

T
N
B

 (28)

Finally, using in (28) the expression of (T,N,B) in terms
of (T,N1,N2) obtained from (27) then gives the differential
system defined in (23): T

N1
N2


′

=

 0 κcosθ −κsinθ

−κcosθ 0 (θ
′
+ τ)

κsinθ −(θ ′ + τ) 0

 T
N1
N2

 (29)

By taking the value of the torsion factor κt from (25) the
expression of Ω is:

Ω = κ

 0 cosθ −sinθ

−cosθ 0 0
sinθ 0 0

 (30)

The differential system (23) governing the evolution of the
convected coordinates (T,N1,N2) can now be resolved.

4.1.3 Iterative Needle Shape Reconstruction

Equation (23) can be rewritten using the more practical form
of a matrix differential equation:

Y′ = ΩY, Y(0) = Y0 (31)

with Y the matrix containing the coordinates of (T,N1,N2).
The initial condition Y0 contains the coordinates of
(T,N1,N2) at the proximal extremity of the needle.

Equation (31) is a differential equation on the matrix Lie
group SO(3), the 3D rotation group, ensuring the existence
and uniqueness of a solution, which belongs to SO(3) [13].
It will be solved using the structure preserving method Local
Coordinates Approach [13] giving an approximate solution
belonging to SO(3).

The set (si)i=0,N is the spatial discretization of the length
of the beam, with s0 = 0, sN = L and sn+1 = sn + h, h =

L/(n− 1) being the step of resolution. The method is pre-
sented for a step from sn to sn+1. The approximation of
Y(sn) and Y(sn+1) are denoted Yn and Yn+1. The iterative
step of the method is based on the Magnus expansion [25]
which gives an exponential representation of the solution of
first order matrix differential equations such as (31). Trun-
cation of the Magnus expansion and approximation by mid-
point rule gives the following iteration to obtain Yn+1 from
Yn which is a method of order 2 [13]:

Yn+1 = exp
(

hΩest

(
sn +

h
2

))
Yn (32)



8 Pierre-Loup Schaefer1 et al.

with Ωest the estimate of Ω from (30) using the estimates
κest and θest as functions κ and θ . Equation (32) contains a
matrix exponential. Using the formula for exponential map-
ping in SO(3) gives the following expression [43]:

exp
(

hΩest

(
sn +

h
2

))
=

 c1 s1c2 −s1s2
−s1c2 c1 +αs2

2 αc2s2
s1s2 αc2s2 c1 +αc2

2

 (33)

with:

c1 = cos
(

hκest

(
sn +

h
2

))
(34)

s1 = sin
(

hκest

(
sn +

h
2

))
(35)

c2 = cos
(

θest

(
sn +

h
2

))
(36)

s2 = sin
(

θest

(
sn +

h
2

))
(37)

α = 1−hκest

(
sn +

h
2

)
(38)

Using relation (32) iteratively on the set (si)i=1,..,n gives
(Yi)i=1,..,n containing the coordinates of Ti the approxima-
tion of T(si). We then have the set of the tangent approxi-
mations (Ti)i=1,..,n. By using (22) we define Ri, the approx-
imation of R(si), using the recurrence relation:

R0 = R(s0) (39)

Ri+1 = Ri +hTi

Finally the set (Ri)i=1,..,n is the three-dimensional recon-
struction of the shape of the deformed needle.

4.2 Needle Sensor Positioning

The problem of sensor positioning involves finding the sen-
sor triplet locations on a needle which provide the best
reconstruction accuracy. Such locations are called optimal
sensor locations [42]. The reconstruction accuracy of a nee-
dle is evaluated by an error measure between its original
and reconstructed shape. Thus, the optimal sensor locations
are the locations that minimize in average this error measure
[20]. In practice, Park et al.[31] and Seifabadi et al.[42] es-
tablished the optimal sensor locations as the locations that
minimize the mean of the error measure for some reference
needles. Therefore, for given sensor locations, the recon-
structed shape associated to a reference needle is obtained
by needle shape reconstruction with the strain inputs being
the strains of the reference needle at the sensor locations. In
their works, Park et al. [31] and Seifabadi et al. [42] built
the reference needles using Euler-Bernoulli beam theory to
reconstruct needle shapes from a 2D force model. Thus, the

deformations of their reference needles are restricted to 2D
small deflections.

The sensor positioning method proposed in this paper is
based on a novel approach using experimental needle inser-
tions data to build the reference needle set. Figure 1 shows
that the deflection of some needle of the experimental data
can’t be qualified as large but still have high values, com-
prised between 5% and 10% of the needle length. According
to Section 1, the processing of such needles thus justifies the
use of large displacement beam theory as the approximation
using a small displacement beam theory would degrade the
quality of treatment, especially on the abscissa parameter-
ization. By using the deformation model presented in Sec-
tion 4.1.2 it is then possible to take complex deformations
into account, such as 3D deformations or large deflections.
The first part of this section presents a method to retrieve
the deformed configuration of the needle from a scanner im-
age. Thus, the convected coordinates of needles inserted into
tissue are retrieved from the CT scans of the experimental
needle insertions into pig shoulder presented in Section 2.1
(Fig. 6a) and then used as reference needles. Finally, in the
second part of this section, the needle sensor positioning is
defined as a minimization problem and its resolution is ad-
dressed.

4.2.1 Reconstruction of Needle Deformed Configuration

This section describes the method to recover the 3D con-
vected coordinates of a needle from a scanner image. This
method use the hypothesis and the deformation model pre-
sented in Section 4.1.2.

Needle Voxel Segmentation The CT scan is segmented in or-
der to separate needle voxels from surrounding tissues. The
seeded region growing technique is particularly appropriate
because of the difference in voxel density between the tis-
sues and the needle [2]. This algorithm was implemented
as a plug-in in the medical visualization software CamiTK
[11]. The results of the segmentation is a set containing all
the needle voxels, as shown in Fig. 6b.

Needle Shape Smoothing The needle voxels are the result of
a noisy spatial discretization of the needle shape. Therefore,
it is possible to approximate the needle shape by smoothing
the needle voxels. The smoothing method used in this pa-
per is the B-spline smoothing, one of the most commonly
used method to smooth data, which consists in performing a
regularized regression on a B-spline basis.

B-splines are piecewise polynomials defined by their de-
grees, knots and control points [6]. The degree of the spline
is denoted n, the number of knots is denoted nk and the
number of control points is denoted nc. The knots are de-
noted (ti)i=1,..,nk ∈ Rnk and the control points are denoted
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(a) (b)

(c) (d)

Fig. 6 Presentation of the different stages of the reconstruction process of a deformed needle. (a) The needle selected for
illustration purpose has a planar deformation so that its insertion is fully visible in one slice of the CT scan. (b) The needle
voxels are extracted from the CT scans by segmentation (Section 4.2.1). (c) The shape of the needle as a 3D B-spline is
obtained by spline smoothing (Section 4.2.1). (d) The convected coordinates of the needle are computed from its shape
(Section 4.2.1)

(Pi)i=1,..,nc with ∀i,Pi ∈ R3. Let S be the B-spline which is
defined by:

S(t) =
nc

∑
i=1

Bi,n(t)Pi (40)

with the following recursive definition of the B-spline basis
set (Bi,n)i=1,..,nc :

Bi,0(t) =

{
1 if ti ≤ t ≤ ti+1

0 otherwise
(41)

Bi,n(t) =
t− ti

ti+n− ti
Bi,n−1(t)+

ti+n+1− t
ti+n+1− ti+1

Bi+1,n−1(t) (42)

The definition of the B-spline basis ensures that the B-spline
S is of class Cn−1. This property justifies the use of B-splines
here as it ensures that the resulting approximation of the nee-
dle shape will be smooth.

Let (Xi)i=1,..,nd
be the set of the nd data points to smooth,

here the needle voxels, with Xk ∈ R3 containing the 3D co-
ordinates of the kth voxel. Voxels have been pre-ordered us-
ing the PCA-based method proposed by Furferi et al [38].
The data points are associated to the B-spline points through
the parameters (t̄i)i=1,..,nd which reflect the distribution of
the data points along the B-spline. These parameters were
obtained using the centripetal parameterization method pro-
posed by Lee [23] which is one of the most common method
used in solving the parameterization problem [14]. The

weight wk represents the contribution assigned to the data
point Xk during the smoothing. The voxel values were used
as weights because they decrease with distance between the
voxel and the needle neutral axis, therefore giving less sig-
nificancy to voxels located far from the needle neutral axis.
The smoothing system takes the following form:
nd

∑
l=1

wl ‖S(t̄l)−Xl‖2 +λ

∫ 1

0

∥∥∥S(m)(t)
∥∥∥2

dt (43)

with m the degree of smoothing and S a B-spline of degree
2m− 1 [10]. The value of the smoothing degree for (43) is
set to m = 3 which corresponds to quintic B-splines and al-
lows correct estimates of first and second derivatives of the
data to be obtained [49]. The quality of these estimates is
crucial as they are further used to compute curvature and
bending angle functions. The smoothing B-spline estimate
is defined to be the minimization of (43) over the control
points (Pi)i=1,..,nc . The first term of (43) reflects the accu-
racy of the data points whereas the second term expresses
the roughness of the estimate. The trade-off between these
two terms is the variable λ , called the smoothing parameter.

The choice of the smoothing parameter λ is critical as
it impacts the accuracy and the roughness of the solution.
The optimal value of λ can be defined as the value which
minimizes the shape error between the deformed needle and
the reconstruction from its voxels discretization. This value
is shape dependant and then each deformed needle has its
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own optimal value of λ . In our case, the deformed nee-
dle data is unavailable as we only have the discrete voxels
from segmented scans. Nevertheless, it is possible to over-
come this situation by using methods such as Generalized
Cross-Validation [10] which gives us the optimal value of
the smoothing parameter for a given deformed needle from
its voxel discretization. Finally the shape of the needle in the
CT scan is reconstructed, as shown in Fig. 6c.

Computation of the Needle Convected Coordinates The
simplest way to obtain the convected coordinates of the nee-
dle consists of rotating the Serret-Frenet frame as shown
in (27). Nevertheless, as the computation of the Serret-
Frenet frame can result in an undesirable rotation around
the tangent of the curve, especially when the curve is almost
straight, more stable computations of other frames are of-
ten preferred to the Serret-Frenet frame [47]. The method
employed here is the Double reflection method, proposed by
Wang et al., which computes the rotation-minimizing frames
(RMF) of a curve with a fourth order of approximation error.
The RMF is a 3D orthonormal frame based on Bishop ap-
plication of parallel transport to curve framing composed of
a vector tangent to the curve and two vectors whose deriva-
tives are tangential [3]. Equation (29) and (30) shows that
when the torsion of the needle is ignored the derivatives
N1
′
=−κ cosθT and N2

′
= κ sinθT are tangential and then

the convected material frame of the needle (T,N1,N2) is
a RMF which can be computed with the double reflection
method, as shown in Fig. 6d.

4.2.2 Optimization Problem

The set containing the convected coordinates of the refer-
ence needles is denoted N , it was obtained from the pig
needle insertion experimental data presented in Section 2.1
which was processed as described in Section 4.2.1. The con-
vected coordinates of a needle can then be used to recon-
struct the needle shape and to simulate strain sensor mea-
sures. The error measure used is the tip error employed by
Park et al. [31] and Seifabadi et al. [42], which is the dis-
tance between the tip of the reference needle and the tip of
its reconstructed shape. This choice is driven by the fact that
a correctly positioned needle tip is one of the principal fac-
tors for success in interventional radiology procedures. The
function giving the tip position of a needle is denoted tip.
The optimal sensor locations are the locations that minimize
the sum of squared error measure between the reference nee-
dle N and its reconstructed shape rec(N,L) from given sen-
sor locations L . Let L be the set of locations of nt sensor
triplets on a needle of length L. The problem of the opti-
mal sensor triplet locations is then defined as the following

optimization problem:

minimize
L∈L ∑

N∈N
‖tip(N)− tip(rec(N,L))‖2 (44)

This optimization problem belongs to the Mixed Inte-
ger Nonlinear Programming (MINLP) family as it is a prob-
lem with a nonlinear objective function and the solutions
considered are integers. Thus MINLP optimization algo-
rithms have been used to solve (44). The algorithms selected
are NOMAD[22], KNITRO[8] and MATLAB genetic algo-
rithm. Finally, the locations minimizing (44) are the optimal
sensor triplet locations.

5 Results

The works concerning instrumented needles differ by the
number of triplets per needle. This number is the number
of cross section instrumented with strain sensors, mostly
based on fiber Bragg gratings technology. The instrumenta-
tion presented in the litterature use two [31], three [15, 42],
four [1, 39] or five [17] triplets. Consequently, in order to
cover all possible cases, the number of triplet considered is
comprised between one (the minimum number of triplet re-
quired to instrument a needle) and five (the maximum num-
ber of triplet of an instrumented needle presented in the lit-
terature). The minimization described in Section 4.2.2 was
then performed on the set of the experimental needle inser-
tions for a number of sensor triplets from one to five. The
resulting optimal locations of sensor triplets are presented
in Table 2. Locations are specified in mm from the proximal
extremity of the needle.

Table 2 Optimal sensor triplet locations. Locations are ex-
pressed as distances in mm from the proximal extremity of
the needle.

Number of
sensors triplets

Optimal sensor triplet locations (mm)
l1 l2 l3 l4 l5

1 81
2 28 101
3 25 77 136
4 9 40 95 144
5 11 34 77 128 171

For comparison purposes, optimal locations were used
along with equidistant locations to reconstruct the experi-
mental and clinical needle sets. Boxplots of tip errors of the
reconstructed needles are presented in Fig. 7. These results
show that, for both needle sets, the quartiles and the maxi-
mal tip error are smaller with sensors placed at optimal loca-
tions than with sensors placed at equidistant locations. The
mean tip error for both sets, presented in Table 3, is also
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Table 3 Reconstruction results of the needle from experimental and clinical insertions with sensors triplets placed at
equidistant and optimal locations. P-values were calculated using a Wilcoxon signed-rank test on tip errors.

Needle set Number of
sensors triplets

Reconstruction tip error Gain in accuracy
Equidistant locations Optimal locations

Mean (mm) Median (mm) Mean (mm) Median (mm) Mean±SD (mm) Relative mean (%) P-value

Experimental

1 9.67 8.43 8.03 8.08 1.64 ± 5.58 17% 0.053
2 5.57 5.12 3.93 3.69 1.64 ± 3.29 29% 0.002
3 4.32 3.45 3.25 2.67 1.07 ± 3.04 25% 0.017
4 3.60 3.08 2.65 2.04 0.95 ± 2.51 26% 0.010
5 3.38 2.65 2.21 1.89 1.17 ± 1.87 35% < 0.001

Clinical

1 8.08 7.13 8.04 6.45 0.04 ± 2.21 < 1% 1.000
2 4.25 3.86 2.33 2.40 1.92 ± 2.56 45% 0.063
3 2.86 2.75 1.41 1.18 1.45 ± 1.28 51% 0.063
4 1.71 1.00 0.91 0.64 0.80 ± 0.76 47% 0.031
5 1.62 0.95 0.91 0.58 0.70 ± 1.04 43% 0.031

smaller with optimal locations. Therefore, the gain of ac-
curacy which is defined by the difference between the tip
error with equidistant locations and tip error with optimal
locations is positive in every case. The gain of accuracy is
comprised between 0.95 mm and 1.64 mm for experimen-
tal needle insertions and between 0.04 mm and 1.92 mm for
clinical needle insertions. To determine the statistical sig-
nificance of these gains, a Wilcoxon signed-rank test was
performed on the tip errors to test whether the mean tip er-
ror differs. The significance threshold was set at 0.05. The
resulting p-values, presented in Table 3, show that there is
significant differences between the tip errors of reconstruc-
tions of the experimental needle insertions with a number
of triplets greater than 2 and between the tip errors of re-
constructions of the clinical needle insertions with a number
of triplets greater than 4. Finally, when the gain in accu-
racy is statistically significant, the use of optimal locations
improves in average the reconstruction accuracy by 25% to
35% for experimental needle insertions, as presented in Ta-
ble 3, and by 43% to 47% for clinical needle insertions, as
shown in Table 3.

Needles have also been reconstructed using optimal sen-
sors triplets locations coming from the works of Park et al.
[31] and Seifabadi et al. [42]. The locations provided in Park
et al. [31] for two sensor triplets on a 150 mm needle corre-
sponds to 15% and 57% of the needle length and locations
provided in Seifabadi et al. [42] for three sensor triplets on
a 110 mm needle corresponds to 13%, 39% and 68% of the
needle length. Reconstruction results of both needle inser-
tions sets using those values as sensors triplets locations are
presented in Table 4 and Table 5. Results show there is a sta-
tistically significant gain in accuracy using the optimal loca-
tions instead of the locations obtained from Park et al. [31]
for the reconstruction of the experimental needle set and that
the gain is also statistically significant when the optimal lo-
cations are used instead of locations obtained from Seifabadi

et al. [42] for the reconstruction of both experimental and
clinical needle sets. The use of optimal locations thus im-
proves the reconstruction accuracy by 11% compared to lo-
cations from Park et al. [31] and between 62% and 69%
compared to locations from Seifabadi et al. [42].

6 Discussion

The locations of the strain sensors on the needle are critical
because of their impact on the needle shape reconstruction.
Therefore, as the number of embedded sensors on needles
is limited due to technical restrictions, positioning sensors
appropriately constitutes an efficient way to improve recon-
struction accuracy. A new method to compute the optimal
locations of the strain sensor triplets of a needle has been
proposed in this study. The results demonstrate that the re-
construction is more accurate with these locations compared
to equidistant locations and locations presented in the liter-
ature.

The optimal locations computed using experimental
needle insertions data and presented in Table 2 demonstrate
that optimal locations are much closer to the proximal ex-
tremity than the distal extremity of the needle. In fact, the
closer from the proximal extremity a reconstruction impreci-
sion is made, the worst the reconstruction is. Hence the need
to acquire more deformation informations near the proximal
extremity, which explains a larger sensor density near that
area. The results of reconstruction with equidistant and opti-
mal locations show that in every case the tip error is smaller
when the sensor triplets are located at optimal locations. For
a number of triplets greater than two, the gain in accuracy
stays similar in each set (29%, 25%, 26%, 35% for exper-
imental needle set and 45%, 51%, 47%, 53% for clinical
needle set) and do not have specific trends. On the opposite,
when the number of triplets increases the standard deviation
decreases, meaning that the dispersion of the gain in accu-
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Table 4 Reconstruction results of the needle from experimental and clinical insertions with sensors triplets placed at loca-
tions obtained from Park et al. [31] and optimal locations. P-values were calculated using a Wilcoxon signed-rank test on tip
errors.

Needle set Number of
sensors triplets

Reconstruction tip error Gain in accuracy
Locations from Park et al. Optimal locations

Mean (mm) Median (mm) Mean (mm) Median (mm) Mean±SD (mm) Relative mean (%) P-value
Experimental 2 4.43 4.30 3.93 3.69 0.51±1.86 11% 0.045

Clinical 2 2.58 2.55 2.33 2.40 0.25±0.99 10% 0.188

Table 5 Reconstruction results of the needle from experimental and clinical insertions with sensors triplets placed at loca-
tions obtained from Seifabadi et al. [42]. P-values were calculated using a Wilcoxon signed-rank test on tip errors.

Needle set Number of
sensors triplets

Reconstruction tip error Gain in accuracy
Locations from Seifabadi et al. Optimal locations
Mean (mm) Median (mm) Mean (mm) Median (mm) Mean±SD (mm) Relative mean (%) P-value

Experimental 3 8.66 7.38 3.25 2.67 5.41±4.93 62% < 0.001
Clinical 3 4.52 4.42 1.41 1.18 3.11±3.37 69% 0.031

racy decreases as well. In this case, it signifies there is more
and more cases where the reconstruction is better with the
optimal locations than with the equidistant locations. One
explanation is that with the increase of the sensor density on
the needle the deformations are less likely to be unnoticed.
It thus minimizes the randomness of the deformations on
the reconstruction accuracy. Consequently, as the p-values
decreases, the gain in accuracy obtained with the use of the
optimal locations are more and more statistically significant.
For the experimental needle insertions the gain in accuracy
becomes statistically significant when the number of triplets
considered is greater than 2 and for the clinical needle inser-
tions when the number of triplets is greater than 4.

To the best of the author’s knowledge there is no work in
the literature concerning optimal locations of sensor triplets
for a 200 mm long needle. Park et al. [31] presented optimal
locations for a 150 mm long needle and Seifabadi et al. [42]
for a 110 mm long needle. The locations were computed
from uniformly distributed load and concentrated forces at
the extremity. The chosen load values are reflecting the inter-
action with the tissue during the insertion and are thus inde-
pendant from the needle length. Optimal locations from Park
et al. [31] and Seifabadi et al. [42] have then been scaled to
fit on 200 mm needles, giving optimal locations of 29 mm
and 113 mm for Park et al. [31] and 55 mm, 144 mm and
180 mm for Seifabadi et al. [42]. The optimal locations for
two triplets presented in Table 3 are very close to those ob-
tained from Park et al. [31] whereas the optimal locations
for three triplets are very distant from the one obtained from
Seifabadi et al. [42]. One of the reason is that, in the work of
Seifabadi, the number of sensors activated varies during the
insertion. Nevertheless, when the needle is fully inserted all
sensors are activated, as in our case, which makes the use of
these locations relevant. In every case the tip error of the re-

construction are smaller with the optimal locations than with
locations obtained from the literature. The gain in accuracy
using the optimal locations is 10% and 11% compared to
Park et al. [31] and 62% and 69% compared to Seifabadi et
al. [42].

These gains in accuracy are statistically significant ex-
cept for the reconstruction of the clinical needle set with
two triplets. This result is due to the limited number of el-
ements of the clinical needle set. This phenomenon, asso-
ciated with the effect discussed above about reconstruction
with a limited number of triplet, is also the cause of the al-
most null gain in accuracy (0.04 %) when reconstructing
with one triplet the clinical needle set using optimal loca-
tions compared to equidistant locations. Thus, the reduced
size of the clinical needle set constitutes a limitation of the
results presented here and could be corrected by consider-
ing a larger set of needle insertions. Another limitation of
our method is the quality of approximation of the needle in
the scan which has an impact on the approximation of the
curvature and bending angle functions and then on the re-
sults of the optimal sensor locations. This limit is present
regardless of the approximation method used. An interest-
ing development would be to characterize the approximation
error. Many articles deal with the approximation error of a
smoothing spline [33, 36] and their work would constitute a
first step towards evaluating the quality of the approximation
of the needle shape.

Finally the reconstructions of the experimental and clin-
ical needle sets validate the proposed approach as the op-
timal locations provide improvement of the reconstruction
accuracy. In particular, the gain in accuracy obtained with
the reconstructions of the clinical needle set using the same
type of needles demonstrate the potential of the optimal lo-
cations for clinical application. We underline the fact that
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Fig. 7 Boxplots of the reconstruction tip errors of the ex-
perimental needle insertions (top) and clinical needle inser-
tions (bottom) according to the sensor triplets locations.

the optimal locations, determined from a set of needle in-
sertions in pig tissue, improve the reconstruction of a set of
needle inserted in real human tissue. This suggests that the
optimal locations are not limited to the type of tissues with
which they were computed. Consequently, these results sup-
port the use of optimal locations given by our method for po-
sitioning the strain sensors on an instrumented needle. The
non-specificity of the method to characteristics such as tis-
sue and the insertions are strong indications that the method
would work with other type of soft tissues or insertions. To
this end, the similarity of the tissues of both dataset and the
exhaustivity of insertions performed experimentally seem to
be key factors of the method success.

7 Conclusion

Finally, in this paper, we presented a 3D large deflection
needle shape reconstruction method and an experimentally-
based method for positioning strain sensors on needles. The
optimal sensor locations were computed from experimen-
tal data of needle insertions into pig tissue. Reconstruction
simulations from clinical data of needle insertions using the
same type of needles showed that using the optimal loca-
tions instead of equidistant locations improves the needle
shape reconstruction in average. We conclude that the nee-
dle reconstruction accuracy benefit from this new sensor
positioning method and its use on instrumented needles in
navigation systems would result in a better location of the
needle in the tissues, improving the therapeutic result of the
procedure. Currently most instrumented needle prototypes
use fiber Bragg gratings as strain sensors technology. These
sensors consist in reflectors implemented in optical fibers
embedded at the surface of the needle. As these sensors are
expensive, the number of triplets of the needle has thus a sig-
nificant impact on the price of the needle instrumentation.
Consequently, the method presented in this paper can pro-
vide positive effects on the price-accuracy trade-off, either
by improving the accuracy for a given number of sensors or
reducing the number of sensors necessary for a given accu-
racy. Prototypes of instrumented needles are currently being
developed by Bonvilain et al. with successfull results con-
cerning instrumentation of needles with strain gauges [4, 5].
Experimental insertions of needles with strain gauges will
then be realised as future work when a working prototype of
instrumented needle will be available. It will then be possi-
ble to compare reconstruction results from different sensor
locations and to evaluate the gain of accuracy obtained with
optimal locations directly from experimentation.

Conflicts of interest

The authors declare they have no conflict of interests.

Acknowledgment

This work is part of the project GAME-D, financed by the
French National Agency for Research (ref: ANR-12-TECS-
0019) and supported by Laboratory of Excellence CAMI
(ref: ANR-11-LABX-0004-01).

The authors would like to thank Benjamin Spencer and
Cecilia Hughes for their English reviews and corrections.

References

1. Abayazid, M., Kemp, M., Misra, S.: 3d flexible needle
steering in soft-tissue phantoms using fiber bragg grat-



14 Pierre-Loup Schaefer1 et al.

ing sensors. In: Proc. IEEE International Conference
on Robotics and Automation (ICRA), pp. 5843–5849
(2013). DOI 10.1109/ICRA.2013.6631418

2. Adams, R., Bischof, L.: Seeded region growing. IEEE
Transactions on pattern analysis and machine intelli-
gence 16(6), 641–647 (1994)

3. Bishop, R.L.: There is more than one way
to frame a curve. The American Mathemat-
ical Monthly 82(3), 246–251 (1975). URL
http://www.jstor.org/stable/2319846

4. Bonvilain, A., Gangneron, M.: Characterization of
strain microgauges for the monitoring of the deforma-
tions of a medical needle during its insertion in hu-
man tissues. Microsystem Technologies 22(3), 551–
556 (2016). DOI 10.1007/s00542-015-2588-2. URL
https://doi.org/10.1007/s00542-015-2588-2

5. Bonvilain, A., Zanardelli, L., Carriquiry, A.: Piezore-
sistif microsensors for an instrumented medical nee-
dle for its real time monitoring in a microlocaliza-
tion tool. Microsystem Technologies 24(7), 3161–
3167 (2018). DOI 10.1007/s00542-018-3814-5. URL
https://doi.org/10.1007/s00542-018-3814-5

6. de Boor, C.: A Practical Guide to Splines. Springer-
Verlag New York (1978)

7. Brett, P.N., Parker, T., Harrison, A.J., Thomas, T.A.,
Carr, A.: Simulation of resistance forces acting on sur-
gical needles. Proceedings of the Institution of Me-
chanical Engineers, Part H: Journal of Engineering in
Medicine 211(4), 335–347 (1997)

8. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An
integrated package for nonlinear optimization. In:
Large-scale nonlinear optimization, pp. 35–59. Springer
(2006)

9. Cosserat, E., Cosserat, F., et al.: Théorie des corps
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