D. A. Barton, B. Krauskopf, and R. E. Wilson, Collocation schemes for periodic solutions of neutral delay differential equations, Journal of Difference Equations and Applications, vol.12, issue.11, pp.1087-1101, 2006.

B. Bentvelsen and A. Lazarus, Modal and stability analysis of structures in periodic elastic states: application to the ziegler column, Nonlinear Dynamics, vol.91, issue.2, pp.1349-1370, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01686514

W. J. Beyn, A. Champneys, E. Doedel, W. Govaerts, Y. A. Kuznetsov et al., Numerical continuation, and computation of normal forms, Handbook of dynamical systems III: Towards applications, 2001.

F. Boumédiène, A. Miloudi, J. Cadou, L. Duigou, and E. Boutyour, Nonlinear forced vibration of damped plates by an asymptotic numerical method, Computers & Structures, vol.87, pp.1508-1515, 2009.

T. Cameron and J. Griffin, An alternating frequency/time domain method for calculating the steady-state response of nonlinear dynamic systems, Journal of applied mechanics, vol.56, issue.1, pp.149-154, 1989.
URL : https://hal.archives-ouvertes.fr/hal-01333697

I. Charpentier and B. Cochelin, Towards a full higher order ad-based continuation and bifurcation framework, Optimization Methods & Software, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01770314

I. Charpentier, A. Lejeune, and M. Potier-ferry, The diamant approach for an efficient automatic differentiation of the asymptotic numerical method, Advances in Automatic Differentiation, pp.139-149, 2008.

B. Claude, L. Duigou, G. Girault, and J. M. Cadou, Eigensolutions to a vibroacoustic interior coupled problem with a perturbation method, Comptes Rendus Mécanique, vol.345, issue.2, pp.130-136, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01697263

B. Cochelin, A path-following technique via an asymptotic-numerical method, Computers & structures, vol.53, issue.5, pp.1181-1192, 1994.

B. Cochelin, N. Damil, and M. Potier-ferry, Asymptotic-numerical methods and pade approximants for non-linear elastic structures, International journal for numerical methods in engineering, vol.37, issue.7, pp.1187-1213, 1994.

B. Cochelin, N. Damil, and M. Potier-ferry, The asymptotic-numerical method: an efficient perturbation technique for nonlinear structural mechanics, vol.3, pp.281-297, 1994.

B. Cochelin and C. Vergez, A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions, Journal of sound and vibration, vol.324, issue.1, pp.243-262, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00315288

A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, Matcont: a matlab package for numerical bifurcation analysis of odes, ACM Transactions on Mathematical Software (TOMS), vol.29, issue.2, pp.141-164, 2003.

E. J. Doedel, Auto: A program for the automatic bifurcation analysis of autonomous systems, Congr. Numer, vol.30, pp.265-284, 1981.

E. J. Doedel, W. Govaerts, and Y. A. Kuznetsov, Computation of periodic solution bifurcations in odes using bordered systems, SIAM Journal on Numerical Analysis, vol.41, issue.2, pp.401-435, 2003.

E. J. Doedel and R. F. Heinemann, Numerical computation of periodic solution branches and oscillatory dynamics of the stirred tank reactor with a yields b yields c reactions, 1982.

K. Engelborghs, T. Luzyanina, and D. Roose, Numerical bifurcation analysis of delay differential equations using dde-biftool, ACM Transactions on Mathematical Software (TOMS), vol.28, issue.1, pp.1-21, 2002.

S. Farner, C. Vergez, J. Kergomard, and A. Lizée, Contribution to harmonic balance calculations of self-sustained periodic oscillations with focus on single-reed instruments, The Journal of the Acoustical Society of America, vol.119, issue.3, pp.1794-1804, 2006.

F. Fontanela, A. Grolet, L. Salles, and N. Hoffmann, Computation of quasi-periodic localised vibrations in nonlinear cyclic and symmetric structures using harmonic balance methods, Journal of Sound and Vibration, vol.438, pp.54-65, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02121508

K. Fritzsche and H. Grauert, From holomorphic functions to complex manifolds, vol.213, 2012.

A. Griewank and A. Walther, Evaluating derivatives: principles and techniques of algorithmic differentiation, vol.105, 2008.

L. Guillot, B. Cochelin, and C. Vergez, A generic and efficient taylor series based continuation method using a quadratic recast of smooth nonlinear systems, International Journal for Numerical Methods in Engineering, vol.0, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01827832

L. Guillot, C. Vergez, and B. Cochelin, Continuation of periodic solutions of various types of Delay Differential Equations using Asymptotic Numerical Method and Harmonic Balance Method, Nonlinear Dynamics, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01929349

L. Guillot, P. Vigué, C. Vergez, and B. Cochelin, Continuation of quasi-periodic solutions with two-frequency harmonic balance method, Journal of Sound and Vibration, vol.394, pp.434-450, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01413398

A. Jean and H. Nelson, Periodic response investigation of large order non-linear rotordynamic systems using collocation, Journal of Sound and Vibration, vol.143, issue.3, pp.473-489, 1990.

S. Karkar, B. Cochelin, and C. Vergez, A comparative study of the harmonic balance method and the orthogonal collocation method on stiff nonlinear systems, Journal of Sound and Vibration, vol.333, issue.12, pp.2554-2567, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01065672

H. Keller, Lectures on numerical methods in bifurcation problems, vol.217, p.50, 1987.

A. I. Khibnik, Y. A. Kuznetsov, V. V. Levitin, and E. V. Nikolaev, Continuation techniques and interactive software for bifurcation analysis of odes and iterated maps, Physica D: Nonlinear Phenomena, vol.62, issue.1-4, pp.360-371, 1993.

N. M. Krylov and N. N. Bogoliubov, Introduction to non-linear mechanics, 1949.

P. S. Marquis-de-laplace, Traité de mécanique céleste, vol.1, 1799.

A. Lazarus and O. Thomas, A harmonic-based method for computing the stability of periodic solutions of dynamical systems, Comptes Rendus Mécanique, vol.338, issue.9, pp.510-517, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01452004

B. Leimkuhler and S. Reich, Simulating hamiltonian dynamics, vol.14, 2004.

L. Lévy, Précisélémentaire de la théorie des fonctions elliptiques avec tables numériques et applications, 1898.

S. Liao, Beyond perturbation: introduction to the homotopy analysis method, 2003.

F. J. Munoz-almaraz, E. Freire, J. Galán, E. Doedel, and A. Vanderbauwhede, Continuation of periodic orbits in conservative and hamiltonian systems, Physica D: Nonlinear Phenomena, vol.181, issue.1-2, pp.1-38, 2003.

M. Nakhla and J. Vlach, A piecewise harmonic balance technique for determination of periodic response of nonlinear systems, IEEE Transactions on Circuits and Systems, vol.23, issue.2, pp.85-91, 1976.

N. M. Newmark, A method of computation for structural dynamics, Journal of the engineering mechanics division, vol.85, issue.3, pp.67-94, 1959.

M. Peeters, R. Viguié, G. Sérandour, G. Kerschen, and J. C. Golinval, Nonlinear normal modes, part ii: Toward a practical computation using numerical continuation techniques. Mechanical systems and signal processing, vol.23, pp.195-216, 2009.
URL : https://hal.archives-ouvertes.fr/hal-01581480

F. Schilder, H. M. Osinga, and W. Vogt, Continuation of quasi-periodic invariant tori, SIAM Journal on Applied Dynamical Systems, vol.4, issue.3, pp.459-488, 2005.

R. Seydel, From equilibrium to chaos: practical bifurcation and stability analysis, 1988.

P. Vigué, Solutions périodiques et quasi-périodiques de systèmes dynamiques d'ordre entier ou fractionnaire : applications a la corde frottée, 2017.

P. Vigué, C. Vergez, B. Lombard, and B. Cochelin, Continuation of periodic solutions for systems with fractional derivatives, Nonlinear Dynamics, pp.1-15, 2018.

B. Zhou, F. Thouverez, and D. Lenoir, A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems, Mechanical Systems and Signal Processing, vol.64, pp.233-244, 2015.